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1 Introduction

In most applications dealing with learning and pattern recognition, neural
nets are employed as models whose parameters, or “weights,” must be fit
to training data. Gradient descent and other algorithms are used in order
to minimize an error functional, which penalizes mismatches between the
desired outputs and those that a candidate net —with a fixed architecture
and varying weights— produces.

There are many numerical issues that arise naturally when using such
a design approach, in particular: (i) the possibility of local minima which
are not globally optimal, and (ii) the possibility of multiple global mini-
mizers. The first question was dealt with by many different authors —see
for instance [5, 13, 14]— and will not reviewed here. Regarding point (ii),
observe that there are obvious transformations that leave the behavior of a
network invariant, such as interchanges of all incoming and outgoing weights
between two neurons, that is the relabeling of neurons, or, for odd activa-
tion functions, flipping the signs of all incoming and outgoing weights at any
given node. Two networks differing in such a manner give the same error on
the training data. When there is a net that fits perfectly the data, all nets
differing from it by one of the above transformations also attain the global
minimum (zero) of the error functional.
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A natural question, asked by Hecht-Nielsen in [10], is to what extent are
neuron exchanges and sign flips the only transformations that generically
occur. If indeed these are the only possible ones, then essentially all the
internal structure is uniquely determined by the external behavior of the
network. Moreover, the set of invariant transformations is then finite. (One
may want to build additional symmetries into a network, in order to increase
representational bias, by imposing artificial conditions such as asking that
certain weights be equal, which is helpful in designing networks that focus
on invariances in the input patterns; see e.g. [7]. This leads to richer
transformation groups, but that is a different issue than the one treated
here.)

Various conditions can be given which assure that equality of behaviors
between two networks implies equality up to neuron relabeling and signs
flips. An important consequence in those cases in which the conditions apply
is that there is no possible dimensionality reduction in the parameter space,
contrary to the situation in classical linear identification, where canonical
forms have to be introduced in order to achieve parameter identifiability.
(Seen more positively, the parameterizations provided by neural networks
have very little redundancy.) In this short expository survey, we sketch
various known facts about this issue, including recent results about recurrent
nets, and we provide a new and simple proof of a uniqueness result that
applies in the single hidden layer case.

2 Single-Hidden Layer Nets

Let σ : IR→ IR be any function, and letm,n, p be positive integers. A single-
hidden layer net with m inputs, p outputs, n hidden units, and activation
function σ is specified by a pair of matrices B,C and a pair of vectors β, c0,
where B and C are respectively real matrices of sizes n×m and p× n, and
β and c0 are respectively real vectors of size n and p. We denote such a net
by a 5-tuple

Σ = Σ(B,C, β, c0, σ) ,

omitting σ if obvious from the context. In particular, Σ has no offsets if
β = c0 = 0 (the terminology “biases” or “thresholds” is sometimes used
instead of offsets).

For simplicity, we will assume from now on that p = 1; generalizations
to the multiple-output case are not hard but they complicate the notations.
Thus, from now on, C is a row n-vector and c0 is a constant.



Let ~σn : IRn → IRn indicate the application of σ to each coordinate of
an n-vector:

~σn(x1, . . . , xn) = (σ(x1), . . . , σ(xn)) .

(We will drop the subscript as long as its value is clear from the context.)
The behavior of Σ is defined to be the map

behΣ : IRm → IR : u 7→ C~σ(Bu+ β) + c0 .

In other words, the behavior of a network is a composition of the type f◦~σ◦g,
where f and g are affine maps. Given two networks Σ and Σ̂, we say that
they are (input/output) equivalent and denote

Σ ∼ Σ̂ ,

if behΣ = behΣ̂ (equality of functions). The question to be studied, then,
is: when does Σ ∼ Σ̂ imply Σ = Σ̂?

Consider first the case in which σ is the identity. In that case, behΣ =
CBu + (Cβ + c0), and we see that any two nets Σ giving rise to the same
products CB and Cβ + c0 have the same behavior. Assume that Σ ∼ Σ̂.
Under suitable minimality conditions (B, B̂ of full row rank and C, Ĉ of full
column rank), there must exist an invertible matrix T such that Ĉ = CT ,
B̂ = T−1B, and ĉ0 = C(β−T β̂) + c0. Conversely, for any given Σ, any such
T , and any β̂, the above formulas define a Σ̂ which is equivalent to the given
one. Thus, uniqueness is very far from being satisfied. The same argument
applies if σ is any linear map. Observe, as the same fact will be needed
later, that without minimality assumptions nothing at all can be concluded;
for instance, if B, B̂, β, β̂, c0, ĉ0 all vanish, one has Σ ∼ Σ̂ but there need be
no relation among C and Ĉ.

One might at first think that nonlinear maps σ provide uniqueness up
to finitely many symmetries. But it is easy to see that far more is needed.
For instance, such a property cannot hold for polynomials, nor for periodic
functions, nor for the exponential function (see below). Thus one is led to
the search for easily verifiable conditions on the mapping σ which imply the
desired property. We formalize what is needed:

Definition 2.1 The function σ satisfies the independence property (“IP”
from now on) if, for every positive integer l, nonzero real numbers b1, . . . , bl,
and real numbers β1, . . . , βl for which the pairs (bi, βi), i = 1, . . . , l satisfy

(bi, βi) 6= ±(bj , βj) ∀i 6= j ,



it must hold that the functions

1 , σ(b1x+ β1) , . . . , σ(blx+ βl)

are linearly independent. The function σ satisfies the weak independence
property (“WIP”) if the above linear independence property is only required
to hold for all pairs with βi = 0, i = 1, . . . , l. 2

Observe that the independence condition is:

c0 +
l∑

i=1

ciσ(bix+ βi) = 0 ∀x ∈ IR ⇒ c0 = c1 = . . . = cl = 0 .

This is the property needed for the desired uniqueness results, as we discuss
next.

Recall that some sort of nontriviality hypothesis is needed. Let
Σ(B,C, β, c0, σ) be given, and denote by Bi the transpose of the ith row
of the matrix B and by ci and βi the ith entries of C and β respectively.
With these notations, behΣ(u) = c0 +

∑n
i=1 ciσ(Biu+βi). As in [15], we say

that Σ is irreducible if the following properties hold:

1. ci 6= 0 for each i = 1, . . . , n.

2. Bi 6= 0 for each i = 1, . . . , n.

3. (Bi, βi) 6= ±(Bj , βj) for all i 6= j.

Given Σ(B,C, β, c0, σ), a sign-flip operation consists of simultaneously
reversing the signs of ci, Bi, and βi, for some i. A node-permutation consists
of interchanging (ci, Bi, βi) with (cj , Bj , βj), for some i, j. Given two nets
Σ and Σ̂, we say that they are equivalent if n = n̂ and (B,C, β, c0) can
be transformed into (B̂, Ĉ, β̂, ĉ0) by means of a finite number of sign-flips
and node-permutations. Of course, equivalent nets have the same behavior
(since σ has been assumed to be odd). The next simple remark establishes
the connection between the concepts just introduced. The proof is adapted
from [15]. We assume for simplicity that the function σ is odd, but it is easy
to generalize this in various ways.

Lemma 2.2 Let σ be odd and satisfy property IP. Assume that Σ and Σ̂
are both irreducible, and Σ ∼ Σ̂. Then, Σ and Σ̂ are equivalent. If σ only
satisfies WIP, the same statement is true for nets with no offsets.



Proof. Assume that Σ and Σ̂ are as in the statement, so

C~σ(Bu+ β) + c0 = Ĉ~σ(B̂u+ β̂) + ĉ0 for all u ∈ IRm . (1)

Pick any fixed vector ū ∈ IRm such that:

• Biū 6= 0 and B̂iū 6= 0 for all i = 1, . . . , n ,

• (Biū, βi) 6= ±(Bj ū, βj) and (B̂iū, β̂i) 6= ±(B̂j ū, β̂j) for all i 6= j .

Such vectors exist, because we only need to avoid the union of the hyper-
planes in IRm determined by each of the equations: Biu = 0, (Bi+Bj)u = 0
for each i, j for which βi = −βj , (Bi − Bj)u = 0 for each i, j for which
βi = βj , and the corresponding ones for Σ̂.

In particular, we may consider elements u ∈ IRm of the form u = ūx in
Equation (1). With the notations bi = Biū and b̂i = B̂iū, we obtain the
identity

(c0 − ĉ0) +
n∑
i=1

ciσ(bix+ βi)−
n∑
i=1

ĉiσ(b̂ix+ β̂i) = 0 for all x ∈ IR .

If the functions 1, bix + βi, b̂ix + β̂i, i = 1, . . . , n are linearly independent,
then all ci = 0, contradicting irreducibility. Since property IP holds (or
WIP, in the case of nets with no offsets, for which all βi = β̂i = 0), the only
way in which linear independence can fail is if some bi or b̂i vanishes, which
cannot be the case because of the choice of ū, or —since also by construction
(bi, βi) 6= ±(bj , βj) and similarly for the (bi, βi)’s— if (bi, βi) = ±(b̂j , β̂j)
for some i, j. Thus, using that σ is odd, we may relabel indices, apply if
necessary a sign-flip and collect these two terms, there resulting an equation:

(c0 − ĉ0) + (c1 − εĉ1)σ(b1x+ β1) +
n∑
i=2

ciσ(bix+ βi)−
n∑
i=2

ĉiσ(b̂ix+ β̂i) = 0

with ε = ±1, where now no pair (bi, βi) or (b̂i, β̂i) equals ±(b1, β1). We may
iterate this argument until all terms have been collected, which leads to an
equation such as

(c0 − ĉ0) +
n∑
i=1

(ci − εiĉi)σ(bix+ βi) = 0 .

Once more using property IP, this implies that c0 = ĉ0 and ci = εiĉi for all
i, completing the proof.



Remark 2.3 For infinitely differentiable σ, there is a slightly different ar-
gument that can be used in the above proof, instead of the choice of a
direction ū, but which makes the stronger assumption that all derivatives
of σ satisfy IP or WIP. This argument was given in [8], which dealt with
projection-pursuit algorithms in statistics, an area closely related to neural
networks; we sketch the idea next. Again, we need to reduce an equation
such as (1) to the scalar case. To do this, we apply a sequence of partial
derivation operators wk · ∇, where each wk is chosen so as to kill one direc-
tion at a time among the vectors Bi, while the rest of the directions provide
a nonzero inner product. After this procedure, there results a scalar linear
dependence involving a derivative of σ instead of σ itself. 2

Our goal is then to explore easily verifiable and weak conditions for IP
and WIP to hold.

2.1 The Property WIP

Characterizing WIP is especially easy, and very classical: for odd analytic
functions σ, property WIP holds if and only if σ is not a polynomial.

Lemma 2.4 If σ is a polynomial, WIP does not hold. Conversely, if σ
is odd and infinitely differentiable, and if there are an infinite number of
nonzero derivatives qk = σ(k)(0), then σ satisfies property IP.

Proof. If σ is a polynomial of degree r, the functions σ(bix) are all polyno-
mials of degree r, and hence are linearly dependent, for any choice of distinct
and positive numbers bi, i = 1, . . . , r + 2. For the converse, we need to see
that c0 +

∑l
i=1 ciσ(bix) ≡ 0 implies that c0 = c1 = . . . = cl = 0, assuming

that all the bi are nonzero and have different absolute values. Since σ is
odd, σ(0) = 0, so c0 = 0. Furthermore, we may assume after sign-flips if
necessary, that all bi > 0. Taking derivatives of various orders, and evalu-
ating at x = 0, one obtains qk

∑l
i=1 cib

k
i = 0 for all k. Let C = (c1, . . . , cl).

Picking l nonzero derivatives qkj , j = 1, . . . , l, there results that CM = 0,

where M is the generalized Vandermonde matrix with entries bkji . It is a
classical fact that such a matrix is nonsingular (Descartes’ rule of signs), so
C = 0 as desired.

Thus the conditions in Lemma 2.2 are satisfied for many interesting non-
linearities, for the case of nets with no offset. Nets with no offsets appear
naturally in signal processing and control applications, as there it is often



the case that one requires that the zero input signal causes no effect, corre-
sponding to equilibrium initial states for a controller or filter.

Even stronger results can be proved if constraints are imposed on the ma-
trix B. For instance, one may require that the successive rows of B have the
form (d1, . . . , dk, 0, . . . , 0), (0, d1, . . . , dk, 0, . . . , 0), (0, 0, d1, . . . , dk, 0, . . . , 0),
. . . . Such a constraint is natural if one is dealing with a composition

f◦σ◦g ,

where f, g are finite impulse response filters, and the inputs u are thought of
as time signals. (The di’s are the coefficients of the filter g; the coefficients
defining f are the entries of C.) If any di is nonzero, then all rows of B are
nonzero, and it holds automatically that Bi 6= ±Bj for all i 6= j; essentially,
due to the regularity of B, one is dealing here with a case closer to that of
one neuron (n = 1) than general n. The uniqueness result in this context
is essentially what was proved in [3]. (Actually, [3] treated more general
time-invariant linear systems than FIR filters, as well as a continuous-time
version, and in [4] the authors generalized their work to other structures
containing one scalar nonlinearity. That work was in turn motivated by the
older work [11] and [9] which dealt with interconnections of linear systems
and memory free nonlinearities.)

2.2 The Property IP

It appears to be harder to obtain elegant characterizations of the stronger
property IP. For obvious examples of functions not satisfying IP, take
σ(x) = ex, any periodic function, or any polynomial. One case is rela-
tively simple: the one concerning dependence equations in which all bi = 1
in the definition of the property IP. Now the only condition left is that the
elements βi must be all distinct. Given an equation

c0 +
l∑

i=1

ciσ(x+ βi) ≡ 0 , (2)

taking Fourier transforms results in the desired conclusion that all ci must
vanish, as long as σ is not identically zero (a.e.). Of course, many functions
do not admit Fourier transforms, but observe that any linear combination
of functions satisfying a nontrivial identity as above again satisfies a similar
identity (with larger l). Thus, for instance, if there is a nonzero linear
combination of translates of σ which is integrable, then σ itself cannot satisfy



such an equation. An example is any “squashing” function (σ is measurable,
nondecreasing, and bounded), in which case σ(x+ 1)− σ(x− 1) is in L1.

The most interesting case, for neural network applications, is σ(x) =
tanh(x), or equivalently after a linear transformation, the standard sigmoid

1
1+e−x . (It is more convenient to work with tanh(x), as it is odd.) For this
function σ, consider first again the case when bi = 1 and equation (2). From
this equation, with a change of variables z = e−2x we obtain

ĉ0 +
l∑

i=1

ĉi
qi + z

≡ 0 (3)

where ĉ0 = c0−
∑
ci, ĉi = 2ciqi, and qi = e2βi . Taking the limit as z → +∞,

we have that ĉ0 = 0. We may consider the identity (3) over the complexes
(analytic continuation), and take residues at the various z = −qi; from here
one concludes the desired linear independence.

In place of the residue argument, we may instead use a formula due to
Cauchy, which shows the stronger fact that from the values of the right-hand
side of (3) at any l points z1, . . . , zl one can retrieve the ci’s uniquely: let M
be the matrix with entries Mij = 1

qi+zj
, then ([6], Section 11.3):

detM =
∏
i>j(zi − zj)(qi − qj)∏

i,j(qi + zj)
6= 0 .

Thus (ĉ1, . . . , ĉl)M = 0 implies once more that all ĉi = 0.
The reduction of questions about tanh-nets to questions about rational

functions, by means of the transformation z = e−2x, formed the basis of the
approach taken in [13] to study local minima of gradient descent; see also
the recent work [16], which carries this much further into deeper questions
of approximation theory. A similar reduction can be done whenever the bi
are rational numbers, but the above proof works only under the assumption
that all the bi are equal. However, for the particular function σ = tanh, the
full property IP, with no further restrictions on the bi’s, was established by
Sussmann in [15], using a very different argument. We wish to show now
that a residue type of argument works in general, and in the process we
extend considerably the class of functions to which it applies.

Theorem 1 Assume that σ is a real-analytic function, and it extends to an
analytic function σ : C→ C defined on a subset D ⊆ C of the form:

D = {z | |Im z| ≤ λ} \ {z0, z̄0}



for some λ > 0, where Im z0 = λ and z0 and z̄0 are singularities, that is,
there is a sequence zn → z0 so that |σ(zn)| → ∞, and similarly for z̄0. Then,
σ satisfies property IP.

Proof. Assume that

c0 + c1σ(b1z + β1) + . . .+ crσ(brz + βr) ≡ 0 (4)

is an equation of linear dependence, with r as small as possible. Thus ci 6= 0
for all i = 1, . . . , r. Without loss of generality, we may assume that |b1| ≥ bi
for all i > 1. After a change of variables b1z + β1 → z, we have that
(b1, β1) = (1, 0), (bi, βi) 6= ±(1, 0) for all i ≥ 2, and bi ≤ 1 for all i. Thus, by
the assumptions on singularities, biz0 + βi is not a singularity of σ, for all
i ≥ 2. Dividing the expression in (4) by σ(z) and taking limits as z → z0,
we obtain c1 = 0, a contradiction.

A typical example of a σ satisfying the hypotheses of the theorem is
that of a σ having a meromorphic extension which has a unique pole of
minimal positive real part. Most rational functions satisfy this, as well as
the main example in neural networks research, σ(x) = tanh(x). In this case,
the set of poles is the set {(kπ/2)i , k odd} and one can take z0 = (π/2)i.
Another interesting example for neural nets is that of arctan(x). In this
case, integrating 1

1+z2 , one can find a branch defined on the complement of
{Re z = 0, |Im z| ≥ 1}.

Remark 2.5 C. Fefferman (personal communication) has recently been
able to extend this argument to “multiple hidden layer” nets, for the special
case of the nonlinearity tanh(x). 2

3 Recurrent Nets

A recurrent net with m inputs, p outputs, dimension n, and activation func-
tion σ is specified by a triple of matrices A,B,C and a pair of vectors β, c0,
where A, B, and C are respectively real matrices of sizes n× n, n×m and
p × n, and β and c0 are respectively real vectors of size m and p. We use
the notation

Σ = Σ(A,B,C, β, c0, σ) ,

again omitting σ if obvious from the context. Because this is natural in
control applications, and since the only results to be described are for that



case, we assume that Σ has no offsets, i.e. β = c0 = 0, and write just
Σ(A,B,C, σ).

We will interpret the above data (A,B,C) as defining a controlled and
observed dynamical system evolving in IRn (in the standard sense of control
theory; see e.g. [12]) by means of a differential equation

ẋ = ~σ (Ax+Bu) , y = Cx (5)

in continuous-time (dot indicates time derivative), or a difference equation

x+ = ~σ (Ax+Bu) , y = Cx (6)

in discrete-time (“+” indicates a unit time shift). Other systems models are
possible; for instance, “Hopfield nets” have dynamics of the form

ẋ = −Dx + ~σ (Ax+Bu) (7)

(with D a diagonal matrix and often A symmetric); results analogous to
those to be described can be obtained for these more general models as well.

Depending on the interpretation (5) or (6), one defines an appropriate
behavior behΣ, mapping suitable spaces of input functions into spaces of
output functions, again in the standard sense of control theory (see [12]). For
instance, in continuous time, one proceeds as follows: For any measurable
essentially bounded u(·) : [0, T ] → IRm, we denote by φ(t, ξ, u) the solution
at time t of (5) with initial state x(0) = ξ; this is defined at least on a small
enough interval [0, ε), ε > 0. (The maps σ of interest in neural network
theory tend to be mostly globally Lipschitz, in which case ε = T .) For each
input, we let behΣ(u) be the output function corresponding to the initial
state x(0) = 0, that is,

behΣ(u)(t) := C(φ(t, 0, u)) ,

defined at least on some interval [0, ε). Given recurrent nets Σ and Σ̂ (nec-
essarily with the same numbers of input and output channels, i.e. with p = p̂
and m = m̂), we again say that Σ and Σ̂ are equivalent (in discrete or con-
tinuous time, depending on the context) if it holds that behΣ = behΣ̂; as
before, we denote Σ ∼ Σ̂ (To be more precise, in continuous-time, we require
that for each u the domains of definitions of behΣ(u) and behΣ̂(u) coincide,
and their values be equal for all t in the common domain.)

Next we summarize the main results from [1] and [2] on weight unique-
ness for recurrent networks.



3.1 Continuous-Time

We assume from now on that σ is infinitely differentiable, and that it satisfies
the following assumptions:

σ(0) = 0 , σ
′
(0) 6= 0 , σ

′′
(0) = 0 , σ(q)(0) 6= 0 for some q > 2 . (∗)

We let S(n,m, p) denote the set of all recurrent nets Σ(A,B,C, σ) with
fixed n,m, p. Two nets Σ and Σ̂ in S(n,m, p) are sign-permutation equivalent
if there exists a nonsingular matrix T such that

T−1AT = Â , T−1B = B̂ , CT = Ĉ

and T has the special form:
T = PD ,

where P is a permutation matrix and D = diag(λ1, . . . , λn), with each λi =
±1. The nets Σ and Σ̂ are just permutation equivalent if the above holds
with D = I, that is, T is a permutation matrix.

Let Bn,m be the class of n×m real matrices B for which:

1. bi,j 6= 0 for all i, j,

2. for each i 6= j, there exists some k such that |bi,k| 6= |bj,k|.

For any choice of positive integers n,m, p, we denote by Scn,m,p the set
of all triples of matrices (A,B,C), A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n which
are “canonical” (observable and controllable, as in [12], section 5.5). This
is a generic set of triples, in the sense that the entries of the ones that
do not satisfy the property are zeroes of certain nontrivial multivariable
polynomials.

Finally, we let:

S̃(n,m, p) =
{

Σ(A,B,C, σ)
∣∣∣ B ∈ Bn,m and (A,B,C) ∈ Scn,m,p

}
.

Then, in [1], the following result was proved:

Theorem 2 Assume that σ is odd and satisfies property (*). For any two
Σ, Σ̂, Σ ∼ Σ̂ if and only if Σ and Σ̂ are sign-permutation equivalent.

If we simply modify the definition of Bn,m to consist now of matrices for
which 1. holds and 2. is replaced by:



2’. for each i 6= j, there exists some k such that bi,k 6= bj,k,

and defining S̃ as above, but with this new Bn,m, the above reference also
proved:

Theorem 3 Assume that σ is not odd and satisfies property (*). For any
two Σ, Σ̂, Σ ∼ Σ̂ if and only if Σ and Σ̂ are permutation equivalent.

The paper [1] explains how in fact the assumption that both nets have
the same activation function σ is basically redundant, as the equality of
activation functions can be derived from the equality of behaviors. Many
more results are given there, for other continuous-time models.

3.2 Discrete-Time

Similar results hold for discrete-time recurrent nets. These are treated in
detail in [2]. Proofs are technically different than in the continuous case,
but the results are analogous. More precisely, we assume that σ not only
satisfies (*), but also the following extra condition, which appeared above
in the context of single-hidden layer nets with no offsets: σ(k)(0) 6= 0 for
infinitely many integers k. Then the same theorems as before hold, provided
that we redefine:

Ŝ(n,m, p) =
{

(A,B,C)
∣∣∣(A,B,C) ∈ S̃(n,m, p), cij 6= 0 ∀ i, j

}
.
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