
NEURAL NETWORKS FOR CONTROL∗

Eduardo D. Sontag
Department of Mathematics, Rutgers University

New Brunswick, NJ 08903, USA

Abstract
This paper starts by placing neural net techniques in a general nonlinear

control framework. After that, several basic theoretical results on networks
are surveyed.

1 Introduction

The field commonly referred to as “neuro-” or “connectionist” control has
been the focus of a tremendous amount of activity in the past few years.
As emphasized in [20], work in this and related areas represents to a great
extent a return to the ideas of Norbert Wiener, who in his 1940s work on
“cybernetics” drew no boundaries between the fields now called artificial
intelligence, information theory, and control theory.

In this presentation, requested by the conference organizers, the goal
is definitely not to provide an exhaustive or even a representative survey.
Most recent major control conferences have had introductory courses de-
voted to the topic, and, in addition, many good overviews are available in
the general literature; see for instance the papers [5], [20], [7], [16], and
other papers in the books [27] and [39]. Rather, the first objective is to
explain the general context in which this work has taken place, namely the
resurrection of some very old ideas dealing with numerical and “learning”
techniques for control —a rebirth due more than anything else to the avail-
ability of raw computational power, in amounts which were unimaginable
when those ideas were first suggested. Starting from a very general control
paradigm, the framework is progressively specialized until the particular
case of neural networks is arrived at. After this, the paper deals with an
aspect which is perhaps not adequately covered by other expository efforts:
the study of the question what is special about neural nets? , understood in
the sense of the search for mathematical properties which are not shared
by arbitrary parametric models.

In keeping with the program outlined above, there will not be any dis-
cussion of implementation details, simulation results, or any other “prac-
tical” issues; once more, the reader is referred to the above survey papers
for pointers to the relevant literature. Moreover, the availability of these
papers and their extensive bibliographies has the advantage of allowing in-
∗Research described here partially supported by US Air Force Grant AFOSR-91-0343.

This paper was written in part while visiting Siemens Corporate Research, Princeton.

1

direct citations; a reference such as: [20:175] will mean “item [175] in the
bibliography given in the paper [20].”

1.1 Learning and Adaptive Control

One of the main advantages claimed for neurocontrollers is their alleged
ability to “learn” and “generalize” from partial data. What is meant by
this, roughly, is that after being exposed to the “correct” control actions
in several situations, the learning system should be able to react appro-
priately, by interpolation or extrapolation, to new situations. (Later the
paper reviews one of the ways in which this idea can be framed, using the
terminology of computational learning theory, but almost nothing has been
done in applying such a formalization to control systems, so for now the use
of terms such as learning is done in a completely informal manner.) The
“learning” may be thought of as being performed “off-line,” by a numerical
algorithm during a training phase, or “on-line,” during actual closed-loop
operation. But the distinction between off-line and on-line is essentially
one of modeling rather than a mathematical one; it mainly reflects the
time span considered and the information available from the environment.
Especially in the latter case, learning is closely related to adaptation in
the usual sense of the word in control theory. (Actually, the term “adap-
tive control” is itself ill-defined; when studying nonlinear systems, adaptive
control can often be seen simply as a form of control of partial states.)

Still, when studying very specific types of systems, and using particular
controller structures, many authors differentiate between adaptation and
on-line learning. In practice, adaptive control tends to refer to the control
of slowly changing systems (after a modeling distinction is made between
state variables and parameters), and sudden changes in parameters can lead
to transient behavior during which adaptation occurs and performance is
degraded. Learning control, on the other hand, is a term that tends to de-
note controllers that adapt to various regions of the state or the parameter
space, and which store the control laws that have been found to be appro-
priate for that region, to be later retrieved when the same operating cir-
cumstances are encountered, with no need for readaptation (but requiring
“pattern recognition” capabilities to classify such previously learned situ-
ations in order to allow later for fast recognition). Clustering algorithms,
neural networks, and large amounts of memory are usually associated with
learning controllers.

2 Plants, Controllers, and Models

In order to provide some unity to the description of neurocontrol, the paper
starts with a general paradigm, which is progressively specialized. This

2

discussion should be understood as an informal one. It is not the purpose
to give rigorous mathematical definitions, but rather to establish a language
in which to frame the various applied issues that are being considered. It
is far too early, given the current poor state of knowledge and level of
results obtained, to attempt to provide a general theoretical setting for
neurocontrol. So this section should be read as a philosophical, informal
discussion. In addition, the reader will note that the term “neural network”
will be used several times but is left undefined. The discussion depends on
nothing more than the fact that nets provide a certain particular class of
dynamical systems (or, in static situations, maps). By not defining the
term, this fact is emphasized.

2.1 The Initial Paradigm

Take as a starting point the following basic control paradigm. The object to
be controlled, called the “plant,” interacts with its environment by means
of two types of input and output channels.

- -
-

�

plant

controller

u

w z

y

The signal w contains all inputs that cannot be directly affected by the
controller. This includes disturbances, measured or unmeasured, as well as
signals to be tracked and other reference information. If the controller is to
have access to some of these inputs, a pass-through connection is assumed
to be part of the box labeled “plant” so that the respective information
appears again in the measured output variable y; this variable contains as
well all other data which is immediately available to the controller, such as
values of state variables. The signal u is the part of the input that can be
manipulated, and the signal z encodes the control objective. The objective
may be for instance to drive this variable (which might be the difference
between a certain function of the states and a desired reference function) to
zero. If needed, one may assume that the control values themselves appear
in y, and this is useful to keep in mind when the controller will consist of
separate subsystems, as done later.

This setup can be formalized in various ways, using abstract definitions
of control systems as in [33], but the current discussion will be completely
intuitive.

3

2.2 Learning Control Structure

The first refinement of the basic control paradigm that one may consider is
the splitting of the controller into a fixed part and a “learning” or adaptable
part; see the Figure (the signal flow is drawn from left to right, for ease of
reference).

6

uvηy

PCLCPF

The box labeled LC represents a “learning controller” as discussed later.
The other two parts —which may be missing— are used to indicate that
part of the controller which does not change. The box labeled PF represents
a “prefiltering” device; it may perform for instance one of the following (not
necessarily distinct) functions:
Feature Extraction. This may be based on Fourier, wavelet, or other
numeric transforms, or on symbolic procedures such as edge detection in
images. One may also include in this category the computation of basic
operations on measured signals y; for example, obtaining all pairwise prod-
ucts yiyj of coordinates allows correlations to be used as inputs by the
subsequent parts of the controller.
Sampling. Quantization, time-sampling, and general A/D conversion.
Template Matching. The output of PF may be a binary signal which
indicates if y equals a specific value, or more generally, if this signal belongs
to a predetermined set. More generally, its output may be a discrete signal
that indicates membership in various, possibly overlapping, receptive fields,
that is, a vector of the form (χS1(y), . . . , χSk(y)), where each Sl is a subset
of the space where instantaneous values of y lie. When these sets consist
of just one point each, pure template matching results. More interestingly,
one may have spheres centered at various points in y-space, which allows a
certain degree of interpolation. Instead of characteristic functions, a more
“fuzzy” weighting profile may be used, corresponding to degrees of mem-
bership. The possible overlap of regions of influence allows for distributed
representations of the input; CMAC-type controllers (see e.g. [7:2] for many
references) employ such representations together with hashing memory ad-
dressing systems for associative recall. Localized receptive fields play a role
quite analogous, for approximation problems, to splines, and this connec-
tion is explored in [20:108].

The box labeled PC represents a “precomputed (part of the) controller”
which also is invariant in structure during operation. Included here are, as
examples:
Gain Scheduled Control Laws. A finite number of precomputed com-
pensators, to be switched on according to the value of a discrete signal v,

4

or to be blended according to weights indicated by a continuous v (“fuzzy”
control applications).
A State Feedback Law. For instance, v may be a state estimate produced
by LC (which then plays the role of an observer), and PC may be a state
feedback law. Recall that the observation y may be assumed to include, by
making the “plant” larger, information on the input signal u; or one may
include a backward path from PC into LC, for use by the observer.
Sampling. As with the prefiltering box, one may include here smoothers,
D/A conversion, hold devices, and so forth.

This structure is only given for expository purposes; in practice the
boundaries between prefiltering, learning, and precomputed controller are
often blurred. (For instance, one may use various clustering algorithms
for the PF part, but these algorithms may in turn be “learned” during
operation of the controller.)

2.3 Refining the LC Block

Refining further the general control paradigm in order to arrive to neu-
rocontrol techniques, assume that the block LC splits into two parts, a
“tuner” and a box representing a system (dynamical, or a static mapping)
with parameters determined by the tuner.

- - -

6
η k, λ

TUNER Σkλ
v

The block labeled Σkλ corresponds to a system or static mapping param-
eterized by a vector λ of real parameters and operating on the input signal
η. There is as well a discrete parameter k, so that the size of the vector
λ is a function of k. For instance, k may determine a choice of number of
state variables in a controller, or number of neurons —or more generally an
encoding of an “architecture”—for a neural network, and λ encompasses all
free parameters in the corresponding model. The tuner (see arrow) selects
the parameters of Σkλ according to some “learning procedure” which uses
all available information (included as part of η).

In adaptive control, one might include as models Σkλ linear systems of
order k, parameterized by λ. The tuner would then include an adaptation
rule for this controller. Or, the tuner might be used to set the parameters
in an identification model Σkλ, and the result of identification could be a
signal used to drive a precomputed controller. The term “precomputed”
could be taken to mean, in this last case, “to be computed by a standard
algorithm” such as LQG design.

5

This is the place where neural nets are most often used in applications.
Typically the family Σkλ will include a class of systems and/or controllers
that is sufficiently rich to represent a wide variety of dynamical behav-
iors (if used as an identification model, or for representing controllers with
memory), or static maps (for pattern recognition applications, or for imple-
menting static controllers). This motivates the search for such rich classes
of models, and the study of their representational and approximation prop-
erties. Many choices are possible. For dynamical systems, one may pick
linear or bilinear systems, or more generally systems of the form

ẋ = f(x, λ, u), y = h(x, λ) (1)

(or analogously in discrete time) where the functional form of f and h is
predetermined, for each state space dimension n. This functional form may
simply be a linear combination of a set of basic functions (polynomials,
splines with fixed nodes, and so forth), with the λ variables providing the
coefficients of the combination. Or, the parameters may appear nonlinearly,
as in rational parameterizations, splines with free nodes, and neural nets
(whatever this last term means). Instead of state-space models, one may
use parameterized classes of input/output behaviors; in that case, the pa-
rameters might correspond to coefficients in transfer functions or in coprime
factorizations, or kernels in Volterra or Chen-Fliess series expansions.

2.4 A (Mini-) Illustration

The following is an example of a parametric adaptation rule used in neuro-
control applications. Although very simplified and for a very special case,
it illustrates some of the typical ideas. (If desired, one could formulate in
various manners this example in terms of the above general paradigms, but
as explained earlier, those structures have no formal meaning and are only
given to help understand the literature. In this particular case, the method-
ology will be clear.) Assume that the plant to be controlled is described,
in discrete time, by the scalar equation

x+ = f(x) + u

(use the superscript + to indicate time shift). The mapping f is unknown
but x can be observed. The objective is to track a known reference signal
r; more precisely, to obtain

x(t)− r(t− 1)→ 0 as t→∞

by means of an appropriate control. If the mapping f were known, one
would use the control law u(t) = −f(x(t)) + r(t) in order to achieve perfect
tracking. (Note that this system is easy to control; most applications of
neurocontrol have been indeed for systems that would be easy to control

6

if perfectly known, most often for feedback-linearizable systems. Later,
the paper considers some problems that arise when the system itself is
truly nonlinear, and the constraints that this imposes on neural controller
structure.) Since f is unknown, one proposes a parametric model such as

x+ = F (x, λ) + u (2)

where F is “rich enough” and attempts to find a λ̂ so that F (x, λ̂) ≈ f(x)
for all x. Once such an approximation is found, the certainty equivalence
controller u(t) = −F (x(t), λ̂) + r(t) is used, possibly updating λ̂ during
operation. For instance, F may be a generic polynomial in x of some large
degree k, and λ is a vector listing all its coefficients.

How should the parameter(s) λ be estimated? One possibility is to
assume that (2) is the true model but it is subject to driving and observation
noise:

x+ = F (x, λ) + u+ ξ1, y = x+ ξ2

where ξ1, ξ2 are independent 0-mean Gaussian variables and y is being
observed. This leads to an extended Kalman filtering formulation, if one
assumes also a stochastic model for the parameters: λ+ = λ+ ξ3 where ξ3
is independent from the other noise components. One may then use the a
posteriori EKF estimate λ̂[t|t] as λ̂. The estimate x̂[t|t] can be used instead
of x. (If only partial observations are available, an output mapping y =
h(x) + ξ2 may be assumed instead of the identity, and a similar procedure
may be followed.) See for instance [25] and [23] for this type of parametric
nonlinear adaptive control approach.

When parameterizations are linear in λ, this procedure, or one based on
Lyapunov techniques for parameter identification —possibly in conjunction
with sliding mode robust control, to handle the regions where the true f
differs considerably from the best possible model of the form F (x, λ)— can
be proved to converge in various senses; see especially [32], as well as for
instance [30].

In general, however, there are absolutely no guarantees that such a
procedure solves the tracking problem, and only simulations are offered
in the literature to justify the approach. (An exception are certain local
convergence results; see e.g. [12].) Moreover, the control problem itself was
capable of being trivially solved by feedback linearization, once that the
plant was identified. Note also that the nonlinear adaptive control approach
is independent of the neural nets application; by and large there have been
no theoretical results given in the literature, for adaptive control, that would
in any way use properties particular to neural nets. This is typical of
most neural networks applications at present, and it is the main reason
for concentrating below instead on the basic representation, learnability,
and feedback control questions involved.

7

2.5 Other Techniques for Control

When systems are not feedback linearizable, nonlinear control becomes a
very hard problem, even leaving aside identification issues (as an illustra-
tion, see [33], Section 4.8, and the many references given there, for stabi-
lization questions). There are several adaptation approaches which have
been popular in neurocontrol and which correspond to various combina-
tions of tuners and parametric models. Many of these approaches are very
related to each other, and they are really independent of the use of neural
networks; in fact, they represent methods of numerical control that have
been around since at least the early 1960s. Briefly described next are some
of the ideas that have appeared in this context, with the only objective of
helping the reader navigate through the literature.
Identifying a State Feedback Law. Here one assumes a parametric
form for a state feedback law u = k(λ, x) and the parameter λ is chosen
so as to minimize some cost criterion. Obviously, the class of feedback
functions that can be represented in this manner should be rich enough to
contain at least one solution to whatever the ultimate control objective is.
(In practice, this is simply assumed to be the case.) A cost criterion that
depends on the parameter and the state is picked to be minimized, such as
for instance:

J(λ, x0) =
∫ ∞

0

Q(x(t), u(t)) dt ,

where x(·), u(·) are the state and input obtained when using u = k(λ, x)
as a controller for the given system ẋ = f(x, u) and x(0) = x0. Now
one may attempt to minimize maxx J(λ, x) over λ. This is the type of
approach taken, for example, in [4], in which the viability problem (make
the state stay in a desired set) is attacked using neural net controllers. (The
minimax character of the problem makes it suitable for nondifferentiable
optimization techniques.)
Estimate a Lyapunov or Bellman Function. A basic problem in feed-
back control theory, which also arises in many other areas (it is known as
the “credit assignment problem” in artificial intelligence) is that of deciding
on proper control actions at each instant in view of an overall, long-term,
objective. Minimization of an integrated cost, as above, leads implicitly
to such good choices, and this is the root of the Lagrangian or variational
approach. Another possibility, which underlies the dynamic programming
paradigm, is to attempt to minimize at each instant a quantity that mea-
sures the overall “goodness” of a given state. In optimal control, this quan-
tity is known as the Bellman (or the cost-to-go, or value, function); in sta-
bilization, one talks about Lyapunov (or energy) functions; game-playing
programs use position evaluations (and subgoals); in some work that falls
under the rubric of learning control, one introduces a critic. Roughly speak-
ing, all these are variants of the same basic principle of assigning a cost (or,

8

dually, an expectation of success) to a given state (or maybe to a state
and a proposed action) in such a way that this cost is a good predictor of
eventual, long-term, outcome. Then, choosing the right action reduces to
a simpler, nondynamic, pointwise-in-time, optimization problem: choose a
control that leads to a next state with least cost.

Finding a suitable measure in the above sense is a highly nontrivial
task, and neural network research has not contributed anything concep-
tually new in that regard. The usual numerical techniques from dynamic
programming (value or policy iteration) can be used in order to compute
the Bellman function for an optimization problem. Other work has been
based on posing a parametric form for a Lyapunov (“critic”, etc) function
V (λ, x). In this latter mode, one attempts to fit parameters λ for both
the Lyapunov function and the proposed feedback law K(λ, x) simultane-
ously. This is done by adjusting λ after a complete “training” event, by
means of, typically, a gradient descent step. The “adaptive critic” work
by Barto and others (see [7] and the many references there) is one exam-
ple of this approach, which is especially attractive when the overall goal is
ill-defined in quantitative terms. For instance, the technique is often illus-
trated through the problem of controlling an inverted pendulum-on-a-cart
system, in which the parameters are unknown and the only training sig-
nal allowed is the knowledge that the car has achieved a certain maximum
displacement or that the pendulum angle has reached a maximum devia-
tion. This type of work is also closely related to relatively old literature
in learning control by researchers such as Mendel, Fu, and Sklansky in the
mid to late 1960s and Narendra in the 1970s. See for instance [7:(64,74)]
and [16:54].
Local Adaptive Control. One may consider several selected operating
conditions, and design an adaptive (or a robust) controller for the lineariza-
tion around each of them. (Operating conditions close to one of the selected
ones give rise to linear models that are thought of as parameter variations.)
The “learning part” consists in building an association between the current
state and the appropriate controller. This is conceptually just a variant
on the idea of gain-scheduling and use of a pattern recognition device to
choose the appropriate gain, and it appears in many neurocontrol appli-
cations. There is nothing special in the use of “neural nets” as pattern
recognizers or associative memories; any other reasonable technique would
in principle apply equally well. Again, no mathematical analysis is ever
given of overall performance.
Expert-Systems (Mimicking) Approach. Often a good controller may
be available, but various reasons may make it worth to simulate its action
with a neural net. For instance, a human expert may be good at a given
control task and one may want to duplicate her behavior. In this case,
one may be able to fit a parameterized class of functions, on the basis of
observations of typical controller operation; see e.g. [7:111].

9

Feedforward Control. A popular technique in neurocontrol is closely
related to model reference adaptive control. Here a controller, in the form
for instance of a recurrent network (see below), is trained in such a manner
that when cascaded with the plant the composite system emulates a desired
model. The training is often done through gradient descent minimization
of a cost functional.

- - -controller plant

desired

y

u

A particular case that has been much explored experimentally —see for
instance [7:(3,4,56,58,67,79,90)]— is the one where the desired model is a
pure multiple delay (in discrete time) or integrator (continuous time), that
is, the case of system inversion. A training set is obtained by generating
inputs u(·) at random, and observing the corresponding outputs y(·) pro-
duced by the plant. The inverse system is then trained by attempting to
fit the reversed pairs (y, u). Once that an inverse is calculated, a desired
output yd(·) can be obtained for the overall system (possibly delayed or
integrated) by feeding yd to the controller. This approach is already sub-
ject to serious robustness problems even for linear systems. But in the
nonlinear case there are major additional difficulties, starting with the fact
that nice inverses can be assumed to exist at best locally, so training on
incomplete data cannot be expected to result in a good interpolation or
“generalization” capability, which after all is the main objective of learning
control.

If only certain particular outputs yd(·) are of interest, then generating
training data in the random manner just sketched is very inefficient. It
is more reasonable in that case to train the controller so that when given
those particular targets yd it generates inputs to the plant that produce
them. Given such a more limited objective, the procedure described above
amounts to exhaustive search, and steepest descent is preferable. In order
to apply steepest descent, one sets up an appropriate cost to be minimized.
Since the derivative of this cost involves a derivative of the plant, this
may lead to serious errors if the plant is not perfectly known, but only an
experimentally obtained approximation is available. A bit more formally,
the problem is as follows. One wishes to find a value λ so that, for certain
yd,

P (C(yd, λ)) = yd

where the “plant” transformation P is approximately known and the “con-
troller” C is a function of outputs and parameters. Equivalently, one at-
tempts to minimize F (λ) = ‖P (C(yd, λ))− yd‖2. The gradient flow in this
case is λ̇ = −∇λF (λ). Now, if instead of P one must work with an ap-

10

proximation P1 of P , the gradient of F will be computed using derivatives
of P1 (understood in a suitable functional sense, for dynamical systems)
rather than of P . Thus it is essential that the approximation of P by P1

had been previously done in a topology adequate for the problem, in this
case a C1 topology, in other words, so that the derivative of P1 is close to
the derivative of P . This issue was pointed out in the neural nets literature,
and used in deriving algorithms, in for instance [7:(46,104,105,106)].

2.6 Modeling via Recurrent Nets

An especially popular architecture for systems identification (models Σkλ)
has been that of recurrent neural nets. Described later are some theoretical
results for these, but in practice the question that has attracted the most
attention has been that of fitting parameters to observed input/output be-
havior. The work done has consisted mostly of a rediscovery of elementary
facts about sensitivity analysis. Essentially, given a system as in Equation
(1), an input u(·) on an interval [0, T], and a desired final output yd(T),
one wants to find parameters λ such that the output y(T), say for a given
initial state, differs as little as possible from yd(T), on this input u(·). (One
may be interested instead in matching the entire output function y(·) to
a desired function yd(·), that is, in minimizing an error functional such as
J(λ) =

∫ T
0
‖y(t) − yd(t)‖2dt . This can be reduced to the previous case

by adding a state variable ż(t) = ‖y(t) − yd(t)‖2 and minimizing z(T), as
routinely done in optimal control. Also, one may also be dealing with a
finite set of such pairs u, yd rather than just one, but again the problem is
essentially the same.) In order to perform steepest descent, it is necessary
to compute the gradient of ‖y(T)−yd(T)‖2 with respect to λ. Denoting by
∂x(T)/∂λ the differential of x(T) with respect to λ, evaluated at the pa-
rameter values obtained in the previous iteration of the descent procedure,
one must compute

∂‖h(x(T))− yd(T)‖2
∂x(T)

∂x(T)
∂λ

(3)

(the parameters λ are omitted, for notational convenience.) Viewing the
parameters as constant states, the second term can be obtained by solving
the variational or linearized equation along the trajectory corresponding to
the control u(·), for the system obtained when using the current parameters
λ; see for instance Theorem 1 in [33]. (One “old” reference is [26].) Such an
approach is known in network circles as the “real time recurrent learning”
algorithm, and it is often pointed out that it involves a fairly large amount
of variables, as the full fundamental solution (an n×n matrix of functions)
must be solved for. It has the advantage of being an “online” method, as the
equations can be solved at the same time as the input u is being applied,
in conjunction with the forward evolution of the system. An alternative

11

procedure is as follows. Since the full gradient is not needed, but only
the product in (3) is, one may instead propagate the first term in (3) via
the adjoint equation, again as done routinely in optimal control theory.
This involves two passes through the data (the adjoint equation must be
solved backwards in time) but less memory requirements. It is a procedure
sometimes called “backpropagation through time”. In discrete time, the
difference between the two procedures is nothing more than the difference
between evaluating a product

vAT . . . A2A1 (4)

where A1, . . . , AT are matrices and v is a vector, from right to left (so a
matrix must be kept at each stage, but the procedure can be started before
all Ai’s are known) or from left to right (so only a vector is kept). The
discussion of the relative merits of each approach seems to have consumed a
major amount of effort in this area. Nothing especial about neural network
models seems to have been used in any papers, except for some remarks on
storage of coefficients. No global convergence theorems are proved.

3 Neural Nets

Artificial neural nets give rise to a particular class of parameterized con-
trollers and models. What is meant precisely by the term neural net varies,
depending on the author. Most often, it means a linear interconnection
of memory-free scalar nonlinear units, supplemented by memory elements
(integrators or delay lines) when dynamical behavior is of interest. The
coefficients characterizing the connections, called “weights,” play a role
vaguely analogous to the concentrations of neurotransmitters in biological
synapses, while the nonlinear elements in this over-simplified analogy cor-
respond to the neurons themselves. In practice, one decides first on the
class of “neurons” to be used, that is, the type of nonlinearity allowed,
which is typically of the “sigmoidal” type reviewed below. The weights are
“programmable” parameters that are then numerically adjusted in order to
model a plant or a controller. In some of the literature, see e.g. [28], each
scalar nonlinear unit acts on a scalar quantity equal to the distance be-
tween the incoming signal and a reference (vector) value; this is in contrast
to operating on a linear combination of the components of the incoming
signal, and gives rise to “radial basis function” nets, which are not treated
here. See the textbook [18] for a clear and well-written, if mathematically
incomplete, introduction to neural nets.

Motivating the use of nets is the belief —still not theoretically justified—
that in some sense they are an especially appropriate family of parameter-
ized models. Typical engineering justifications range from parallelism and
fault tolerance to the possibility of analog hardware implementation; nu-

12

merical and statistical advantages are said to include good capabilities for
learning (adaptation) and generalization.

3.1 What are Networks

As explained above, by a (“artificial neural”) net one typically means a
system which is built by linearly combining memory-free scalar elements,
each of which performs the same nonlinear transformation σ : IR → IR on
its input. One of the main functions σ used is sign (x) = x/|x| (zero for
x = 0), or its relative, the hardlimiter, threshold, or Heaviside function
H(x), which equals 1 if x > 0 and 0 for x ≤ 0 (in either case, one could
define the value at zero differently; results do not change much). In order
to apply various numerical techniques, one often needs a differentiable σ
that somehow approximates sign (x) or H(x). For this, it is customary to
consider the hyperbolic tangent tanh(x), which is close to the sign function
when the “gain” γ is large in tanh(γx). Equivalently, up to translations and
change of coordinates, one may use the standard sigmoid σs(x) = 1

1+e−x .
Also common in practice is a piecewise linear function, π(x) := x if |x| < 1
and π(x) = sign (x) otherwise; this is sometimes called a “semilinear” or
“saturated linearity” function.

Whenever time behavior is of interest, one also includes dynamic ele-
ments, namely delay lines if dealing with discrete-time systems, or integra-
tors in the continuous-time case.

In the static case, one considers nets formed by interconnections without
loops, as otherwise the behavior may not be well-defined; these are called
“feedforward” nets, in contrast to the terms “feedback,” “recurrent,” or
“dynamic” nets used in the general case. The next Figure provides an
example of a static net computing the function y = 2σ[3σ(5u1 − u2) +
2σ(u1 + 2u2 + 1) + 1] + 5σ[−3σ(u1 + 2u2 + 1) − 1] and of a dynamic net
representing the system ẋ1 = σ(2x1 +x2−u1 +u2), ẋ2 = σ(−x2 +3u2), y =
x1.

h
h h
h

hσ
hσ
hσ
hσ h jσ

jσ
h
h-

--�
�
��

6

?

66

�
���

--

-
@
@@R

-

- -

-
-

���

@@R 6

6

? -

-

-

-

--

--�
�
��

u2

u1

3

2

−3
1 −1

1
5

2

1−1
y

2

5

y
1

−1

1

3
−1

2

∫
∫

x2

x1
u1

u2

13

3.2 A Very Brief History

In the 1940s, McCulloch and Pitts introduced in [20:119] the idea of study-
ing the computational abilities of networks composed of simple models of
neurons. Hebb ([20:78]) was more interested in unsupervised learning and
adaptation, and proposed the training rule known by his name, which is still
at the root of much work, and which consists of reinforcing the associations
between those neurons that are active at the same time.

Rosenblatt, in the late 1950s, pursued the study of “perceptrons” or, as
they might be called today, “multilayer feedforward nets” such as the first
one shown above, using the Heaviside activation H. He developed various
adaptation rules, including a stochastic technique. (He called the latter
“backpropagation” but the term is now used instead for a gradient descent
procedure. For a very special case, that of networks in which all nodes are
either input or output nodes, a global convergence result was proved, which
came to be known as the “perceptron convergence theorem.” It is a widely
held misconception that this latter special case was the main one that he
considered.) The book [20:148] summarized achievements in the area. His
goal was more the understanding of “real” brains than the design of artifi-
cial pattern recognition devices, but many saw and promoted his work as
a means towards the latter. Unfortunately, the popular press —in Rosen-
blatt’s words, “which (treated Perceptrons) with all the exhuberance and
discretion of a pack of happy bloodhounds”— published hyped-up claims
of perceptron-based artificial intelligence. When the expectations were not
met, Rosenblatt suffered from the backlash, and the work was to a great ex-
tent abandoned. The book by Minsky and Papert [7:70] is widely credited
with showing the mathematical limitations of perceptrons and contributing
to the decline of the area, but Rosenblatt was already well-aware, judging
from his book, of the difficulties with his models and analysis techniques.

During the mid 1970s many authors continued work on models of neural
nets, notably Grossberg and his school —see for instance [20:71]— with
most of this work attempting to produce differential equation models of
various conditioning phenomena. Work by Kohonen and others ([20:99])
on feature extraction and clustering techniques was also prominent during
this period.

The resurgence in interest during the mid 1980s can be traced to two
independent events. One was the work by Hopfield [20:183] on the design
of associative memories, and later the solution of optimization problems,
using a special type of recurrent networks. The other was the suggestion
to return to Rosenblatt’s feedforward nets, but using now differentiable,
“sigmoidal,” activation functions σ. Differentiability makes it possible to
employ steepest descent on weight (parameter) space, in order to find nets
that compute a desired function or interpolate at desired values. This was
emphasized in the very popular series of books and papers by the “Parallel

14

Distributed Processing” research group —see for instance [20:150]— and
came to be known under the term “backpropagation.” (The term comes
from the fact that in computing the gradient of an error criterion with
respect to parameters, via the chain rule, one multiplies a product such
as the one in equation (4) from left to right, “propagating backwards” the
vector v that corresponds to the error at the output.)

The interest in Hopfield-type nets for associative storage has waned, as
their limitations have been well-explored, theoretically and in applications,
while the use of the “backpropagation” approach, sometimes modified in
various ways, and extended to include general recurrent neural nets, has
taken center stage.

It is hard to explain the popularity of the artificial neural nets from a
purely mathematical point of view, given what is currently known about
them. Some of the claimed advantages were mentioned earlier, but many
of the same claims could apply in principle to several other classes of func-
tion approximators and systems models. Of course, analogies to biological
structure, coupled with a substantial marketing effort by their proponents,
did not hurt. Ease of use and geometric interpretability of results helps in
user-friendliness, and this has been a major factor. But perhaps the best
explanation is the obvious one, namely that their recent re-introduction
coincided with the advent of cheap massive computational power. Com-
pared with the mostly linear parameter fitting techniques widely in use,
it is conceivable that any suitably rich nonlinear technique could do bet-
ter, provided enough computational effort is spent. In fact, without prior
knowledge that one must wait for hundreds of thousands of iterations be-
fore noticing any sort of convergence, few would have tried this approach
even 20 years ago!

3.3 This Paper

The rest of this paper explores various properties of “backpropagation” net-
works, with an emphasis on results which are specific to them (as opposed
to more general nonlinear models). The reader should not interpret these
results in any manner as a justification for their use, nor should it be as-
sumed that this is an exhaustive survey, as it concentrates on those topics
which the author has found of interest. There will be a brief discussion
of some basic theoretical results (potentially) relevant to the use of nets
for identification and control. Even for the topics that are covered, most
details are not included; references to the literature are given for precise
definitions and proofs. There are no explanations of experimental results,
solely of theory. Moreover, numerical questions and algorithms are ignored,
concentrating instead on ultimate capabilities of nets.

In many papers found in the more theoretical neural nets literature, a
theorem or algorithm valid for more or less arbitrary parametric families is

15

quoted, and the contribution is to verify in a more or less straightforward
manner conditions of applicability. In this category one often finds work
in, for instance, the following topics (which will not be treated here):
Numerical techniques for solving neural net approximation prob-
lems. Much work has been done on using conjugate gradient and quasi-
Newton algorithms.
Statistical studies. In network learning systems, all the usual issues
associated to estimation arise: the tradeoff between variance and bias (or,
in AI terms, between generality and generalization). Cross-validation and
other techniques are often applied; see for instance the book [40] for much
on this topic.
Studies of the effect of incremental (on-line) versus “all at once”
(batch or off-line) learning. In actual applications that involve gradient
descent, often the complete gradient is not computed at each stage, but an
approximation is used, which involves only new data. This is closely related
to standard issues treated in the adaptive control and identification liter-
ature, and in fact many papers have been written on the use of stochastic
approximation results for choosing learning parameters.

Rather than giving a general definition and then treating particular
cases, the exposition will be organized in the opposite way: first single-
hidden layer nets will be considered, as these have attracted by far the
largest portion of research efforts, then two-hidden layer nets, mostly in
order to emphasize that such nets are more natural for control applications,
and finally recurrent nets, in which feedback is allowed.

4 Feedforward Nets

Let σ : IR → IR be any function, and let m,n, p be positive integers. A
single-hidden layer net with m inputs, p outputs, n hidden units, and ac-
tivation function σ is specified by a pair of matrices B,C and a pair of
vectors b0, c0, where B and C are respectively real matrices of sizes n×m
and p×n, and b0 and c0 are respectively real vectors of size n and p. Denote
such a net by a 5-tuple

Σ = Σ(B,C, b0, c0, σ) ,

omitting σ if obvious from the context.
Let ~σn : IRn → IRn indicate the application of σ to each coordinate of an

n-vector: ~σn(x1, . . . , xn) = (σ(x1), . . . , σ(xn)) . (The subscript is omitted
as long as its value is clear from the context.) The behavior of Σ is defined
to be the map

behΣ : IRm → IRp : u 7→ C~σ(Bu+ b0) + c0 . (1HL)

16

In other words, the behavior of a network is a composition of the type f◦~σ◦g,
where f and g are affine maps. The name “hidden layer” reflects the fact
that the signals in the intermediate space IRn are not part of inputs or
outputs. A function f is said to be computable by a 1HL net with n hidden
units and activation σ if it is of the type behΣ as above. For short, “1HL”
will stand from now on for “single hidden layer” when writing about nets
or the functions that they compute. Due to lack of space, some notations
are unavoidable: Fpn,σ,m will be used for the set of 1HL functions with n
hidden units, and Fpσ,m :=

⋃
n≥0 Fpn,σ,m. The superscripts are dropped if

p = 1; note that one can naturally identify Fpσ,m with (Fσ,m)p.
Often is useful to allow a linear term as well, which can be used

for instance to implement local linear feedback control about a desired
equilibrium. Such linear terms correspond to direct links from the in-
put to the output node. A function computable by a net with possi-
ble direct input to output connections (and 1HL) as any function g :
IRm → IRp of the form Fu + f(u) where F is linear and f ∈ Fpn,σ,m.

Figure illustrates the intercon-
nection architecture of 1HL nets;
the dotted line indicates a possi-
ble direct i/o connection. (Here
p = 1, b0 = (b01, . . . , b0n), and
C = (c1, . . . , cn).) fσd

d fσ
d fσ

d
-

-

-
XXXz
���:

�
�
�>

@
@
@R

HHHj

A
A
A
A
A
AU

J
J
J
JĴ

���:�
�
�
�
�
���

�
�
�
��7

XXXXXz

��
���1

HHHHHHj -
XX

XX
?

?

?

? y

u1

u2

um

u3

b11

bnm

b1m

c1
c2

b10

bn0

c0
b20

b21

cn

4.1 Approximation Properties

Much has been written on the topic of function approximation by nets.
Hilbert’s 13th problem, on realizing functions by superpositions of scalar
ones, is sometimes cited in this context. A positive solution of Hilbert’s
problem was obtained by Kolmogorov, with enhancements by Lorentz and
Sprecher. The result implies that any multivariable, real-valued continuous
function f can be exactly represented, on compacts, in the form f(x) =∑n
j=1 σ (

∑m
i=1 µij(ui)) where the µij ’s are universal scalar functions (they

depend only on the input dimension, not on f). The number of “hidden
units” n can be taken to be 2m + 1. The function σ, however, depends
on the f being represented, and, though continuous, is highly irregular.
(Essentially, one is describing a dense curve in the space of continuous
functions, parameterized by the scalar function σ.) This result can be used
as a basis of approximation by nets —with two hidden layers, to be defined
later— and using more regular activation functions, but it seems better to
start from scratch if one is interested in 1HL theorems.

17

4.2 Scalar Inputs

Given a function σ : IR→ IR, write Fσ instead of Fσ,1; this is the affine span
of the set of all dilations and translates of σ. So the elements of Fσ are
those functions IR→ IR that can be expressed as finite linear combinations

c0 +
n∑
i=1

ciσ(Biu+ bi) (5)

(denoting bi instead of b0i and letting Bi:= ith entry of B).
The mapping σ is a universal activation if, for each −∞ < α < β <∞,

the restrictions to the interval [α, β] of the functions in Fσ constitute a
dense subset of C0[α, β], the set of continuous functions on [α, β] endowed
with the metric of uniform convergence. Note that, at this level of gener-
ality, nothing is required besides density. In practical applications, it may
be desirable to consider special classes of functions σ, such as those used
in Fourier analysis or wavelet theory, for which it is possible to provide
“reconstruction” algorithms for finding, given an f : [α, β] → IR, a set of
coefficients Bi, bi, ci that result in an approximation of f to within a desired
tolerance.

Not every nonlinear function is universal in the above sense, of course;
for instance, if σ is a fixed polynomial of degree k then Fσ is the set of
all polynomials of degree ≤ k, hence closed and not dense in any C0. But
most nonlinear functions are universal. A conclusive result has recently
been obtained and is as follows; see [22]: Assume that σ is locally Riemann
integrable, that is, it is continuous except at most in a set of measure zero,
and it is bounded on each compact. Then, σ is a universal activation if and
only if it is not a polynomial .

Previous results along these lines were obtained in [19], which estab-
lished that any σ which is continuous, nonconstant, and bounded is univer-
sal (see also [13] and [20:(59,85)] for related older results).

The proof in [22] is based essentially on two steps: First, one reduces,
by convolution, to the case in which σ is infinitely differentiable (and non-
polynomial). Locally, Taylor series expansions can be used to write σ ap-
proximately as a polynomial of arbitrary degree, and enough linearly inde-
pendent polynomials can be obtained by suitable dilations and translations
of σ. Now the Weierstrass Theorem completes the proof. Rather than
providing details, it is instructive to briefly sketch the proof of universality
in some special but still quite general cases. These special cases are also
of interest since they illustrate situations in which the approximations are
constructive and give rise to explicit bounds.

A sigmoidal function is any function with the property that both
limu→−∞ σ(u) and limu→+∞ σ(u) exist and are distinct (without loss of
generality, assume the limits are 0 and 1 respectively). If σ is also mono-

18

tone, one says that it is a squashing function. For squashing σ, the as-
sociated “bump function” function σ(u) := σ(u) − σ(u − 1) is (Riemann)
integrable. To show that σ is universal, it is enough to show that σ is, so
from now on assume without loss of generality that σ is integrable, non-
negative, and not identically zero. Let σ̂ denote the Fourier transform of σ.
As σ is nonzero, there is some ω0 so that σ̂(ω0) 6= 0, and one may assume
ω0 6= 0 (by continuity). Then, for each t:

eitσ̂(ω0) =
∫ ∞
−∞

σ(x)e−iω0xeit dx =
1
|ω0|

∫ ∞
−∞

σ

(
u+ t

ω0

)
e−iu du .

Taking real and imaginary parts, and approximating the integral by Rie-
mann sums, one concludes that sines and cosines can be approximated
by elements of Fσ. From here, density of trigonometric polynomials pro-
vides the desired result. To approximate a given function, one first needs
to obtain an approximation by trigonometric polynomials, and then each
sine and cosine is approximated by a 1HL net. The speed and accuracy
of approximation in this manner is thus determined essentially by Fourier
information about both the function to be fit and σ.

Another proof, which allows accuracy to be estimated by the local oscil-
lation of the function being fit, is as follows. Take any continuous function
f on [α, β], and assume one wants to approximate it to within error ε > 0.
First approximate f uniformly, to error ε/2, by a piecewise constant func-
tion, i.e. by an element g ∈ FH; this can be done in such a manner that
all discontinuous steps be of magnitude less than ε/4. Assume a linear
combination with k steps achieves this. Now, if σ is squashing, each term
in this sum corresponding to a cH(u + b) can be approximated by a term
of the form cσ(B(u + b)) for large enough positive B; this can be done to
within error ε/4k uniformly away from the discontinuity and with values
everywhere between the limits of the step function. Adding all terms, there
results a uniform approximation of g by an element of Fσ, to tolerance ε/2,
and hence also an ε-approximation of the original function.

The above proof works for any continuous function (in fact, for any
“regulated” function: f must have one-sided limits at each point), but the
number of terms and/or the coefficients needed may be very large, if f
is fast changing. It can be proved, and this will be used below, that if
f happens to be a function of bounded variation (for instance, if f has a
continuous first derivative), then, letting V (f) denote the total variation of
f on the interval [α, β], the following holds. For each ε > 0 there exists a
sum as in (5), with σ = H, which approximates f uniformly to within error
ε and so that the sum of the absolute values of the coefficients satisfies∑
i>0 |ci| ≤ V . The term c0 can be taken to equal f(α). In fact, the

variation V is exactly the smallest possible number so that for each ε there
is an approximation with such a coefficient sum. This result holds for any
function of bounded variation, even if not continuous, and characterizes

19

the classical bounded variation property. An equivalent statement, after
normalizing, is as follows. The variation of f is the smallest V > 0 such
that f − f(α) is in the closure (in the uniform metric) of the convex hull of
{±VH(±u+ b), b ∈ IR} .

4.3 Multivariable Inputs

Universality of σ implies the corresponding multivariable result. That is,
for each m, p, and each compact subset K of IRm, the restrictions to K of
elements of Fpσ,m (i.e., the functions F : IRm → IRp computable by 1HL)
form a dense subset of C0(K, IRp). This can be proved as follows.

Working one coordinate at a time, one may assume that p = 1. For
any σ : IR → IR, universal or not, a σ-ridge function f : IRm → IR is one
of the form f(u) = σ(Bu + b), where B ∈ R1×m and b ∈ IR. A finite sum
f(u) =

∑r
i=1 σi(Biu + bi) of functions of this type is a “multiridge” func-

tion. Such multiridge functions (not the standard terminology) are used in
statistics and pattern classification, in particular when applying projection
pursuit techniques, which incrementally build f by choosing the directions
Bi, i = 1, . . . , r in a systematic way so as to minimize an approximation
or classification error criterion; see for instance [15]. Note that Fσ,m is
precisely the set of those multiridge functions for which there are scalars ci
such that σi = ciσ for all i.

To reduce to the single-input case treated in the previous section, it is
enough to show that the set of all multiridge functions (with regular enough
σi’s) is dense, as one can then approximate each ridge term σi(Biu + bi)
by simply approximating each scalar function σi(x) separately and then
substituting x = Biu+ bi. Now observe that, by the Weierstrass Theorem,
polynomials are dense, so it suffices to show that each monomial in m
variables can be written as sum of ridge polynomials. By induction on
the number of variables, it is enough to see this for each monomial in two
variables. Write such a monomial in the following form, with 0 < r < d:
ud−rvr. The claim is now that this can be written as:

∑d
i=0 ci(aiu+v)d for

any fixed choice of distinct nonzero a0, . . . , ad (for instance, a0 = 1, a1 =
2, . . . , ad = d+1) and suitable ci’s. Dividing by ud and letting z := v/u it is
equivalent to solve

∑d
i=0 ci(ai + z)d = zr for the ci’s. As the polynomials

(ai+ z)d are linearly independent —computing derivatives of order 0, . . . , d
at z = 0 results in a Vandermonde matrix,— they must span the set of all
polynomials of degree ≤ d, and in particular zr is in the span, as desired.

Instead of polynomials, one can also base the reduction proof on Fourier
expansions. For this, it is enough to see that trigonometric polynomi-
als satisfy the conditions of the Stone-Weierstrass Theorem. Other proofs
use various algorithms for reconstruction from projections, such as Radon
transforms (see [11]). In conclusion, universality guarantees that functions
of the type (5) are dense in C0. One can also establish density results for Lq

20

spaces, q < ∞, on compact sets, simply using for those spaces the density
of continuous functions. Approximation results on noncompact spaces, in
Lq but for finite measures, are also possible but considerably harder; see
[19].

It is false, on the other hand, that one can do uniform approximation
of more or less arbitrary discontinuous functions, that is, approximation in
L∞, even on compact sets. In input dimension 1, the approximated function
must be regulated (see above), which is not too strong an assumption. But
in higher input dimensions, there are strong constraints. For instance, the
characteristic function of a unit square in the plane cannot be approximated
by 1HL nets to within small error. This leads to very interesting questions
for control problems, where it is often the case that the only solution to a
problem is one that involves such an approximation. Later the paper deals
with such issues.

4.4 Number of Units

It is interesting to ask how many units are needed in order to solve a given
classification or interpolation task. This can be formalized as follows. Let
U be a set, to be called the input set , and let Y be another set, the output
set . In the results below, for 1HL nets, U = IRm, but the definitions are
more general. To measure discrepancy in outputs, it may be assumed that
Y is a metric space. For simplicity, assume from now on that Y = IR, or Y
is the subset {0, 1}, if binary data is of interest. A labeled sample is a finite
set S = {(u1, y1), . . . , (us, ys)} , where u1, . . . , us ∈ U and y1, . . . , ys ∈ Y .
(The yi’s are the “labels;” they are binary if yi ∈ {0, 1}.) It is assumed that
the sample is consistent, that is, ui = uj implies yi = yj . A classifier is a
function F : U → Y . The error of F on the labeled sample S is defined as

E(F, S) :=
s∑
i=1

(F (ui)− yi)2
.

A set F of classifiers will be called an architecture. Typically, and below,
F = {F~w : U → Y, ~w ∈ Rr} is a set of functions parameterized by ~w ∈ Rr,
where r = r(F). An example is that of nets withm=1 inputs, p =1 outputs,
and n hidden units, that is, F1

n,σ,1; here the parameter set has dimension
r=3n+ 1.

The sample S is loadable into F iff inff∈F E(F, S) = 0 . Note that
for a binary sample S and a binary classifier F , E(F, S) just counts the
number of missclassifications, so in the binary case loadability corresponds
to being able to obtain exactly the values yi by suitable choice of f ∈ F .
For continuous-valued yi’s, loadability means that values arbitrarily close
to the desired yi’s can be obtained.

One may define the capacity c(F) of F via the requirement that:

21

c(F) ≥ κ iff every S of cardinality κ is loadable.

(Other natural definitions of capacity measures are possible, in particular
the VC dimension mentioned below.) That is, c(F) = ∞ means that all
finite S are loadable, and c(F) = κ < ∞ means that each S of cardinality
≤ κ is loadable but some S of cardinality κ+ 1 is not.

Various relations between capacity and number of neurons are known
for nets with one hidden layer and Heaviside or sigmoidal activations. It
is an easy exercise to show that the results are independent of the input
dimension m, for any fixed activation type σ and fixed number of units n.
(Sketch of proof: the case m = 1 is included in the general case, by simply
taking collinear points ui. Conversely, given any set of points ui in IRm,
there is always some vector v whose inner products with the distinct ui’s
are all different, and this reduces everything to the one dimensional case.)
In the case m = 1, parameter counts are interesting, so that case will be
considered next. Observe that, for 1HL nets with one input, and n hidden
units (and p=1), there are 3n+ 1 parameters (appearing nonlinearly) —or
3n+ 2 if allowing direct connections, that is, when there is an extra linear
term cn+1u in (5)— though for H, effectively only 2n + 1 matter. (In the
case of the standard sigmoid, a Jacobian computation shows that these
parameters are independent.) For classification purposes, it is routine to
consider just the sign of the output of a neural net, and to classify an input
according to this sign. Thus one introduces the class H(F1

n,σ,1) consisting
of all {0, 1}-valued functions of the form H(f(u)) with f ∈ F1

n,σ,1.
Of interest are scaling properties as n → ∞. Let clsf(σ) :=

lim n→∞c(F)/r(F) for F = H(F1
n,σ,1) and intp(σ) := lim n→∞c(F)/r(F)

for F = F1
n,σ,1 . Define similarly clsf

d, intp
d when using 1HL nets with

direct connections.
Consider the property (*): ∃ c s.t. σ is differentiable at c and σ′(c) 6= 0.

Then, for classification, the following results are given in [34]:

clsf(H) = 1/3, clsf
d(H) = 2/3, clsf(σ) ≥ 2/3

assuming that σ is sigmoidal and (*) holds. The last bound is best possible,
in the sense that for the piecewise linear π one has clsf(π) = 2/3 while it is
the case that clsf(σ) =∞ for some “nice” (even, real-analytic) sigmoidal
functions σ satisfying (*). Regarding continuous-valued interpolation, these
are the results:

intp(H) = 1/3, intp
d(H) = 1/3, intp(σ) ≥ 2/3

assuming in the last case that (*) holds and σ is a continuous sigmoidal.
Again here, intp(π) = 2/3 , and one can also show that 2/3 ≤ intp(σs) ≤ 1
for the standard sigmoid (the proof of the upper bound in this latter case
involves some algebraic geometry; the value may be infinite for more general

22

sigmoids; see also [24]). Furthermore, the inequality intp(σ) ≥ 1/3 holds
for any universal nonlinearity. Obtaining the precise value for σs is a very
interesting open problem.

Note that the above discussion focused on general bounds on what can
be achieved. In practice, however, one is given a particular labeled sample
and the problem is to decide whether this sample can be loaded into the
desired architecture. For differentiable activations, numerical techniques
are used to estimate the answer. But one may ask about the abstract
(in the sense of computer science) computational complexity of the loading
problem: do there exist weights that satisfy the desired objective? For
fixed input dimension and Heaviside activations, this becomes essentially
a linear programming problem, but even for such activations, the problem
is NP-hard when scaling with respect to the number of input or output
dimensions; see [9] and [21] for much on this issue.

4.5 Learnability and VC Dimension

One of the main current approaches to defining and understanding the
question of learning, which after all underlies much of the reason for the
use of neural nets in control, is based on the probably approximately correct
(“PAC”) model proposed in computational learning theory by Valiant in the
early 1980s. Very closely related ideas appeared in statistics even earlier, in
the work of Vapnik and Chervonenkis —see the excellent book [38]— and
the interactions between statistics and computer science are the subject of
much current research. The next few paragraphs introduce the basic ideas,
using terminology from learning theory; for more details see for instance
the textbook [3].

In the PAC paradigm, a “learner” has access to data given by a labeled
sample S = (u1, y1), . . . , (us, ys). The inputs ui are being generated at
random, independently and identically distributed according to some prob-
ability measure P . There is some fixed but unknown function f so that, for
each i, yi = f(ui), and f belongs to some known class of functions F . This
class of functions is used to characterize the assumptions (“bias”) being
made about what is common among the observed input/output pairs. The
learner knows the class F but not the particular f being used. For instance,
in systems identification, the ui’s might correspond to inputs applied to a
plant and the yi’s would be the corresponding outputs, while F might con-
sist of all stable SISO systems of a certain degree. The learner’s objective
is to use the information gathered from the observed labeled sample in order
to guess the correct f in F . In a control environment, a learning controller
might be trained in this manner to recognize certain features of the state
space which are associated to a particular control action.

For simplicity, because the theory is far simpler in that case, and because
of the application to pattern classification, only binary-valued functions

23

f (and hence binary samples yi ∈ {0, 1}) will be considered here. Thus
instead of a class of functions F one could work equivalently with a class
of concepts , that is, those subsets of the input space which are of the form
{u | f(u) = 1} for the various f ∈ F . There are many generalizations of this
basic setup, including dealing with noisy data, continuous-valued outputs,
or allowing the learner to guess a function not in the original class F , but
the basic ideas are best illustrated in this simplest case.

One defines the error of a hypothesis f̂ made by the learner as the
probability that it will incorrectly classify a new randomly chosen example
(u, y), that is, the probability that f̂(u) 6= y (the prediction error). It is
assumed that u is picked with the same probability distribution P that was
used to generate the training inputs ui. Since only a limited number of
samples are presented during training, they will in general not be sufficient
to distinguish between all possible concepts (possible functions f), and this
is a source of error. Another possible source of error arises from the fact that
the inputs u, having been randomly chosen, might not be representative
enough of future inputs. Neither of these errors need be as serious as it
may seem at first sight, however. First of all, if the sample is large enough,
and f̂(ui) = yi for all i, it is quite unlikely that f 6= f̂ unless the class is
too rich. It may happen, but with small probability. For the second type
of error, if the probability distribution P being used to generate the inputs
ui is concentrated in a part of the input space where f and f̂ coincide, then
the new testing input u will likely come from this part of the space as well,
and hence the prediction error will again be small. The term PAC learning
refers to the fact that (very) “probably” the estimate will be “approximately
correct.”

Before giving precise definitions of learnability in the sense just dis-
cussed, it is instructive to consider very informally a case which does not
lead to learnability and one that does. Assume that the inputs u are real
numbers uniformly distributed in the interval [0, 1] and that the set of
functions F consists of the functions fk(u) := H(sin(ku)), over all positive
integers k. That is, fk(u) is 1 if sin(ku) > 0 and zero otherwise. Now,
given a random sequence (u1, f(u1)), . . . , (us, f(us)), where f = fk, there
is in general no possible good prediction of f(u) for a new u. Indeed, with
probability one, the complete set u1, . . . , us, u will consist of rationally in-
dependent real numbers, and therefore there exists some j 6= k so that
fj(ui) = f(ui) for i = 1, . . . , s but fj(u) 6= f(u). (Recall that the set of
values of (sin(lu1), . . . , sin(lus), sin(lu)), as l ranges over the positive inte-
gers, is dense in [−1, 1]s+1.) Since the learner is not able to decide, on
the basis of the observed data, if f = fk or f = fj , the prediction f̂(u)
cannot be made with any degree of reliability. Contrast this example with
the following one, at the other extreme: the functions F are now of the
type fa(x) := H(x − a), with a ∈ [0, 1]. The concepts to be identified are
the sets of the form {x > a}. Identifying the concept means identifying the

24

cut point a. Given a large enough (s � 1) sample, there will be enough
pairs (ui, yi) with ui near a so that a good estimate of a can be obtained,
for instance by estimating a as the midpoint of the interval [a1, a2], where
a1 is the largest observed ui so that f(ui) = 0 and a2 is the smallest one
so that f(ui) = 1. The only errors would be due to a bad sample (it so
happened that all the ui’s were far from a, so the interval is very large)
or to the test input u falling in the interval [a1, a2], where no information
about a is available. But these errors occur with low probability.

The definitions are as follows (they are standard, but the terminology is
changed a bit in order to make it closer to systems and control usage). An
input space U as well as a collection F of maps U → {0, 1} are given. The set
U is assumed to be countable, or an Euclidean space, and the maps in F are
assumed to be Borel measurable. In addition, mild regularity assumptions
are made which insure that all sets appearing below are measurable (details
are omitted; see the references). Let W be the set of all sequences

w = (u1, f(u1)), . . . , (us, f(us)) (6)

over all s ≥ 1, (u1, . . . , us) ∈ Us, and f ∈ F . An identifier is a map ϕ :
W → F . The value of ϕ on the sequence appearing in (6) will be denoted as
ϕw. The error of ϕ with respect to a probability measure P on U , an f ∈ F ,
and a sequence (u1, . . . , us) ∈ Us, is Err (P, f, u1, . . . , us) := Prob [ϕw(u) 6=
f(u)] (where the probability is being understood with respect to P).

The class F is (uniformly) learnable if there is some identifier ϕ with
the following property: For each ε, δ > 0 there is some s so that, for every
probability P and every f ∈ F , Prob [Err (P, f, u1, . . . , us) > ε] < δ (where
the probability is being understood with respect to P s on Us).

In the learnable case, the function s(ε, δ) which provides, for any given
ε and δ, the smallest possible s as above, is called the sample complexity
of the class F . It can be proved that s(ε, δ) is automatically bounded by a
polynomial in 1/ε and 1/δ. In fact, it can be bounded by −(c/ε) log(δε),
where c is a constant that depends only on the class F . It can also be
proved that, if there is any identifier at all in the above sense, then one can
always use the following naive identification procedure: pick any element
f which is consistent with the observed data. This leads computationally
to the loading question discussed earlier. In the statistics literature —see
[38]— this “naive technique” is a particular case of what is called empirical
risk minimization.

The above discussion corresponds to being able to learn uniformly with
respect to unknown input distributions. Much research is currently taking
place on the question of learning with respect to particular subfamilies of
distributions on U . It is perfectly possible for an F not to be learnable in the
above sense but to be learnable if the inputs are assumed to be Gaussian, for
instance. Notions of Kolmogorov metric entropy are used to characterize
such learning. (In the case of learning with respect to particular data

25

distributions, the naive identification procedure is no longer guaranteed to
work, and more sophisticated methods must be used.) Another variation
consists of studying the computational effort required in order to use the
identifier ϕ; the definition given above is purely information-theoretic, but
the original work of Valiant emphasized that aspect, essentially the loading
problem, as well.

Checking learnability is in principle a difficult issue, and the introduc-
tion of the following combinatorial concept is extremely useful in that
regard. A subset S = {u1, . . . , us} of U is said to be shattered by
the class of binary functions F if all possible binary labeled samples
{(u1, y1), . . . , (us, ys)} (all yi ∈ {0, 1}) are loadable into F . The Vapnik-
Chervonenkis dimension vc (F) is the supremum (possibly infinite) of the
set of integers κ for which there is some set S of cardinality κ that can
be shattered by F . (Thus, vc (F) is at least as large as the capacity c(F)
defined earlier.)

The main result, due to [10], but closely related to previous results in
statistics (see [38]) is: The class F is learnable if and only if vc (F) <∞.
So the VC dimension completely characterizes learnability with respect to
unknown distributions; in fact, the constant “c” in the sample complexity
bound given earlier is a simple function of the number vc (F), independent
of F itself.

It follows from the results in [8] that, for the classH(Fn,σ,m) of classifiers
implementable by 1HL nets with with n hidden units and m inputs (n and
m fixed) and activation σ = H, vc (F) < dmn(1 + log(n)), for a small
constant d. Thus 1HL nets with threshold activations are learnable in the
above sense. Note that finiteness is trivial to verify in one very special
case, namely m = 1: in this case, a function f computable by a 1HL H-net
with n hidden units is piecewise constant with at most n discontinuities.
This means that, given any set with n+ 2 elements or more, the alternate
labeling 0, 1, 0, 1, . . . cannot be implemented; in other words, vc (F) is at
most n+ 1.

It is easy to construct examples of sigmoids, even extremely well-
behaved ones (analytic and squashing, for instance) for which the VC di-
mension of the class H(Fn,σ,m) is infinite; see [34]. However, for the stan-
dard sigmoid, a recent result in [24] proves that vc (F) <∞, so neural nets
with activation σs are also learnable. Thus sigmoidal nets appear to have
some special properties, vis a vis other possible more general parametric
classes of functions, at least from a learnability viewpoint. Other results
on finiteness of learning, but from a more statistical viewpoint (nonlinear
regression, estimation of joint densities), are given in [17], where metric
entropy estimates are obtained for networks with bounded weights.

The results on learnability just explained extend to other classes of
feedforward nets, including 2HL nets (defined below) and nets involving
products of inputs (“high order nets”), but such more general results will

26

not be reviewed here. Note also that the general question of guessing values
of a function at unseen inputs is essentially also that of extrapolation, and
it is classical in numerical analysis. In that context, the “prior” class of
functions F often reflects a smoothness constraint.

4.6 Quality of Approximation

Certain recent results due to Andrew Barron and Lee Jones have been used
to support the claim that 1HL neural network approximations may require
less parameters than conventional techniques. What is meant by this is
that, given a function f to be approximated (for instance, a pattern classi-
fier or a controller), approximations of f to within a desired error tolerance
ε can be obtained using “small” networks, while using, for instance, orthog-
onal polynomials, splines, or Fourier series, would require an astronomical
number of terms, especially for multivariate inputs.

At least as the results currently stand, this claim represents a misun-
derstanding of the very nice contributions of Barron and Jones. First of
all, their results would, in general terms, apply equally well to show that
one can obtain efficient approximations with various types of classical basis
functions, as long as the basis elements can be chosen in a nonlinear fash-
ion, just as with neural networks. For instance, splines with varying (rather
than fixed) nodes, or trigonometric series with adaptively selected frequen-
cies, will have the same properties. What is important is the possibility of
selecting terms adaptively, in contrast to the use of a large basis contain-
ing many terms and fitting these through the use of least squares. Thus,
the important fact about the recent results is that they emphasize that
nonlinear parameterizations may require less parameters than linear ones
to achieve a guaranteed degree of approximation. (Abstractly, this is not so
surprising: for an analogy, consider the fact that a one-parameter analytic
curve, based on ergodic motions, can be used to approximate arbitrarily
well every element in an Euclidean space IRd, but no (d − 1)-dimensional
subspace can do so.) The most interesting —and as yet unresolved— issues
have to do with the tradeoffs between rate of approximation and number
of parameters, and the related balance between generalization capabilities
and computational complexity.

The rest of this section reviews some of the basic results in question. The
main tool is the following Lemma, which is often attributed to Maurey (see
[29]): Let G be a bounded subset of a Hilbert space H, with ‖g‖ ≤ γ for all
g ∈ G, and let Gn be the subset of H consisting of all convex combinations
of at most n elements of G. Then, for each f in the closed convex hull of
G, and for each n ≥ 1,

inf
g∈Gn

‖f − g‖ ≤ γ√
n
.

27

There are several different proofs, probabilistic and geometric, of this result
and related ones in which the constant in the bound may be allowed to be
slightly larger. Jones pointed out that one may use an incremental approxi-
mation, monotonically decreasing the approximation error while recursively
adding one element of G at a time.

In applications, the set H is a space of square integrable functions and,
for some fixed Γ > 0, G = G(Γ) is the set of ridge functions cσ(Bu + b),
with |c| ≤ Γ, B ∈ IR1×m, and b ∈ IR. In that case, G(Γ)n is the set of 1HL
σ-nets with n units and weight sums

∑
|ci| ≤ Γ. The approximation result

says that those functions f which can be approximated arbitrarily close by
elements of the G(Γ)n’s (fixed Γ), can in fact be also approximated with
a mean square error O(1/n) using 1HL nets with no more than n units.
To apply all of this, one must understand what functions f are of this
form. One such example was discussed earlier, namely the case of scalar
functions of bounded variation on an interval [α, β]. In that case, it was
remarked that f -f(α) is in the closed convex hull of {±VH(±u − b)} (in
the uniform norm, and hence also in L2 for any finite measure on [α, β]).
Generalizing, Barron in [6] suggested defining a function f : Q→ IR, where
Q is a bounded subset of IRm, to have “bounded variation with respect to
halfspaces” if this property holds: there exists a real number V so that, for
some q ∈ Q, f -f(q) is in the closed convex hull, in the uniform norm, of
the functions ±VH(Bu + b). The smallest such V he called the variation
Vf,Q of the function f on the set Q. For functions with Vf,Q < ∞, there
is then a rate of approximation theorem using 1HL H-nets, and from there
also one for sigmoidal nets (just approximate each Heaviside function by a
sigmoid). The conclusion is that one can approximate by 1HL nets with
n units with an error as small as Vf,Q/

√
n in L2(Q,µ), for any probability

measure µ on Q.
One source of examples of functions of bounded variation in this gener-

alized sense is as follows. Let Q for simplicity be taken to be the unit ball.
Assume that f admits a Fourier representation f(u) =

∫
IRm

eiω.uf̃(ω)dω
for each u ∈ Q, and that Cf =

∫
IRm
‖ω‖|f̃(ω)|dω < ∞. Then, Vf,Q ≤ 2Cf .

(Norm of ω is standard Euclidean norm.) For the spaces {f |Cf ≤ k}, k a
fixed constant, Barron also proved (see references in [6]) that approxima-
tions by linear subspaces of dimension n would result in a worst-case error
of at least O(n−1/d), which is asymptotically worse than O(1/

√
n) when

d > 2.
Note that the approximations, as they use Maurey-type arguments, hold

a priori only in L2 (or other Hilbert spaces). Indeed, these arguments are
false for approximation in L∞, if the set G is arbitrary (see [14] for this
and related remarks). However, Barron in the above reference was also able
to prove a similar result for the particular case in which G corresponds to
characteristic functions of half-spaces, using a deeper result due to Dudley.
This beautiful recent contribution is closer to being a true “neural net-

28

works” theorem, as it uses essentially a property involving VC dimension
which is not true in general.

4.7 Uniqueness

As discussed, in most applications dealing with learning and pattern recog-
nition, neural nets are employed as models whose parameters must be fit
to training data characterized by a labeled sample. Gradient descent and
other algorithms are used in order to minimize E(F, S) over all F cor-
responding to a fixed network architecture. Among the many numerical
complications that arise when following such a procedure are the possibil-
ities of (1) non-global local minima, and (2) multiple global minimizers.
The first issue was dealt with by many different authors —see for instance
[36] and the references there— and will not be reviewed here. Regarding
the second point, observe that there are obvious transformations that leave
the behavior of a network invariant, such as interchanges of all incoming
and outgoing weights between two neurons (mathematically, the relabeling
of neurons) and, for odd activation functions, flipping the signs of all in-
coming and outgoing weights at any given node. Two networks differing
in such a manner give the same error on the training data. When there is
a net that fits perfectly the data, all nets differing from it by one of the
above transformations also attain the global minimum (zero) of the error
functional.

It is then natural to ask if neuron exchanges and sign flips are the only
function-preserving transformations that can generically occur. If these are
the only possible ones, then essentially all the internal structure is uniquely
determined by the external behavior of the network. Moreover, the set
of invariant transformations is then finite, and there is no possible dimen-
sionality reduction in the parameter space. Such a situation is in sharp
contrast to classical linear systems, where canonical forms have to be intro-
duced in order to achieve parameter identifiability. (Seen more positively,
the parameterizations provided by neural networks are then irredundant.)

For simplicity, assume from now on that p = 1; generalizations to the
multiple-output case are not hard but they complicate notations. Also,
assume that σ is an odd function. Thus, from now on, C in the definition
of 1HL net is a row n-vector and c0 is a constant. Two networks Σ and Σ̂
are (input/output) equivalent , denoted Σ ∼ Σ̂, if behΣ = behΣ̂ (equality
of functions). The question to be studied, then, is: to what extent does
Σ ∼ Σ̂ imply Σ = Σ̂?

The function σ satisfies the independence property (“ip” from now
on) if, for every positive integer l, nonzero real numbers b1, . . . , bl, and
real numbers b01, . . . , b0l for which the pairs (bi, b0i), i = 1, . . . , l satisfy
(bi, b0i) 6= ±(bj , b0j) ∀i 6= j, it must hold that the functions 1 , σ(b1u +
b01) , . . . , σ(blu + b0l) are linearly independent. The function σ satisfies

29

the weak independence property (“wip”) if the above linear independence
property is only required to hold for all pairs with b0i = 0, i = 1, . . . , l.

Let Σ(B,C, b0, c0, σ) be given, and denote by Bi the transpose of the
ith row of the matrix B and by ci and b0i the ith entries of C and b0
respectively. With these notations, behΣ(u) = c0 +

∑n
i=1 ciσ(Biu + b0i).

As in [37], Σ is called irreducible if the following properties hold: ci 6= 0 for
each i = 1, . . . , n; Bi 6= 0 for each i = 1, . . . , n; and (Bi, b0i) 6= ±(Bj , b0j)
for all i 6= j. Given Σ(B,C, b0, c0, σ), a sign-flip operation consists of
simultaneously reversing the signs of ci, Bi, and b0i, for some i. A node-
permutation consists of interchanging (ci, Bi, b0i) with (cj , Bj , b0j), for some
i, j. Two nets Σ and Σ̂ are sign-permutation (sp) equivalent if n = n̂ and
(B,C, b0, c0) can be transformed into (B̂, Ĉ, b̂0, ĉ0) by means of a finite
number of sign-flips and node-permutations. Of course, sp-equivalent nets
have the same behavior (since σ has been assumed to be odd). With this
terminology, the following holds: Let σ be odd and satisfy property ip.
Assume that Σ and Σ̂ are both irreducible, and Σ ∼ Σ̂. Then, Σ and Σ̂
are sp-equivalent. A net Σ has no offsets if b0 = c0 = 0 (the terminology
“biases” or “thresholds” is sometimes used instead of offsets, but these
terms are used for other very different purposes as well). Then, also: If
σ is odd and satisfies wip, the same statement is true for nets with no
offsets.

Characterizing wip is especially easy, and very classical: If σ is a poly-
nomial, wip does not hold. Conversely, if σ is odd and infinitely differen-
tiable, and if there are an infinite number of nonzero derivatives σ(k)(0),
then σ satisfies property ip. Nets with no offsets appear naturally in signal
processing and control applications, as there it is often the case that one
requires that beh(0) = 0, that is, the zero input signal causes no effect,
corresponding to equilibrium initial states for a controller or filter. Results
in this case are closely related to work in the 1970s by Rugh and coworkers
and by Boyd and Chua in the early 1980s.

It appears to be harder to obtain elegant characterizations of the
stronger property ip. For obvious examples of functions not satisfying
ip, take σ(x) = ex, any periodic function, or any polynomial. How-
ever, the most interesting activation for neural network applications is
σ(x) = tanh(x), or equivalently after a linear transformation, the standard
sigmoid 1

1+e−x . In this case, Sussmann showed in [37] that the ip property,
and hence the desired uniqueness statement, hold. His proof was based on
explicit computations for the particular function tanh(x). An alternative
proof is possible, using analytic continuations and residues, and allows a
more general result to be established (see [2] for details): Assume that σ is
a real-analytic function, and it extends to an analytic function σ : C → C
defined on a subset D ⊆ C of the form:

D = {z | |Im z| ≤ λ} \ {z0, z̄0}

30

for some λ > 0, where Im z0 = λ and z0 and z̄0 are singularities, that is,
there is a sequence zn → z0 so that |σ(zn)| → ∞, and similarly for z̄0.
Then, σ satisfies property ip.

4.8 Two-Hidden Layers and Nonlinear Feedback

The previous sections dealt with 1HL nets. Next, the case of two hidden
layers is treated. For the topics treated here, there is no need to define
nets themselves, but just their behavior. If σ : IR → IR is any function,
and m, p are positive integers, a function computed by a two-hidden layer
(“2HL”) net with m inputs and p outputs and activation function σ is by
definition one of the type f◦~σn◦g◦~σl◦h, where f , g, and h are affine maps
(n + l is then called the number of “hidden units”). As earlier, a function
computable by a 2HL net with direct input/output connections is one of
the form Fu+ f(u), where F is linear and f is computable by a 2HL net.

One hidden layer networks have universal approximation properties, and
rates of convergence can be estimated. However, these rates may not be as
good as those achievable with 2HL nets. For instance, functions that are
piecewise constant on squares approximate certain classes of functions in
IR2 very efficiently, and while it is not difficult to express them using 2HL
nets, often no such 1HL net expression is possible.

Another disadvantage of 1HL vis a vis 2HL nets arises from the topolo-
gies in which the 1HL approximation theorems hold. This has serious im-
plications in control applications, and can be illustrated with the following
idea. Suppose that there is some discontinuous feedback law u = k(x)
which globally asymptotically stabilizes the planar system ẋ = f(x, u) with
respect to the origin. Assume that k is perfectly known but one wishes
to restrict possible controllers to those computable by 1HL nets. It would
appear that this would be easy to achieve, as one may merely approximate
the given k by a 1HL function k̂ and then use this k̂ as the controller.
The problem is that, for general discontinuous functions, the results only
insure approximation in Lp norm (p finite), but it is impossible in general
to approximate k uniformly . (Uniform approximation of functions that are
continuous, or that are of “bounded variation with respect to half spaces,”
is possible, however, so when there is a continuous feedback k that stabi-
lizes, this type of obstruction dissappears.) A weak type of approximation
may not be enough for control purposes. For instance, it may be the case
that for each approximant k̂ there is some simple closed curve Γ encircling
the origin where the approximation is bad (a set of measure zero!) and
that this causes the vector field f(x, k̂(x)) to point outward everywhere on
Γ; in that case the closed loop behavior cannot be globally asymptotically
stable, as trajectories cannot cross Γ.

It is possible to construct examples of systems which are otherwise sta-
bilizable but such that every possible feedback implementable by a 1HL net

31

(with basically any type of activation, continuous or not) must give rise to
a nontrivial periodic orbit. On the other hand, it can be shown that every
system that is stabilizable, by whatever k, can also be stabilized using 2HL
nets with discontinuous activations (under mild technical conditions, and
using sampled control). See [35] for details.

To summarize, if stabilization requires discontinuities in feedback laws,
it may be the case that no possible 1HL net stabilizes. Thus the issue of
stabilization by nets is closely related to the standard problem of continu-
ous and smooth stabilization of nonlinear systems, one that has attracted
much research attention in recent years. Roughly, there is a hierarchy of
state-feedback stabilization problems: those that admit continuous solu-
tions, those that don’t but can still be solved using 1HL nets with discon-
tinuous activations, and more general ones (solvable with 2HL). It can be
expected that an analogous situation will be true for other control prob-
lems. The reason that most neurocontrol papers have used 1HL nets is that
they almost always dealt with feedback linearizable systems, which admit
continuous stabilizers.
Some Details.

Before discussing stabilization, one can understand the necessity of 2HL
nets by means of a more abstract type of question. Consider the following
inversion problem: Given a continuous function f : IRp → IRm, a compact
subset C ⊆ IRm included in the image of f , and an ε > 0, find a function
φ : IRm → IRp so that ‖f(φ(x)) − x‖ < ε for all x ∈ C. One wants
to find a φ which is computable by a net, as done in global solutions of
inverse kinematics problems —in which case the function f is the direct
kinematics. It is trivial to see that in general discontinuous functions φ are
needed, so nets with continuous σ cannot be used. However, and this is
the interesting part, [35] establishes that nets with just one hidden layer,
even if discontinuous σ is allowed, are not enough to guarantee the solution
of all such problems. On the other hand, it is shown there that nets with
two hidden layers (using H as the activation type) are sufficient, for every
possible f , C, and ε. The basic obstruction is due, in essence, to the
impossibility of approximating by single-hidden-layer nets the characteristic
function of any bounded polytope, while for some (non one-to-one) f the
only possible one-sided inverses φ must be close to such a characteristic
function.

Consider now state-feedback controllers. The objective, given a system
ẋ = f(x, u) with f(0, 0)=0, is to find a stabilizer u=k(x), k(0)=0, mak-
ing x=0 a globally asymptotically stable state of the closed-loop system
ẋ=f(x, k(x)). The first remark is that the existence of a smooth stabilizer
k is essentially equivalent to the possibility of stabilizing using 1HL nets
(with smooth σ). (Thus the simple classes of systems studied in many
neurocontrol papers, which are typically feedback-linearizable and hence
continuously stabilizable, can be controlled using such 1HL nets.)

32

More precisely, assume that f is twice continuously differentiable,
that k is also in C2, that the origin is an exponentially stable point for
ẋ=f(x, k(x)), and that K is a compact subset of the domain of stability.
Pick any σ which has the property that twice continuously differentiable
functions can be approximated uniformly, together with their derivatives,
using 1HL nets (most interesting twice-differentiable scalar nonlinearities
will do; see [19]). Then, one can conclude that there is also a different k, this
one a 1HL net with activation σ, for which exactly the same stabilization
property holds. (Sketch of proof: one only needs to show that if kn → k
in C2(K), with all kn(0)=0 —this last property can always be achieved
by simply considering kn(x)− kn(0) as an approximating sequence— then
ẋ=f(x, kn(x)) has the origin as an exponentially stable point and K is in
the domain of attraction, for all large n. Now, the proof of Theorem 12
in [33] shows that there is a neighborhood V of zero, independent of n,
where exponential stability will hold, for all n sufficiently large, because
f(x, kn(x))=Anx + gn(x), with An → A and with gn(x) being o(x) uni-
formly on x (this last part uses the fact that σ approximates in C2(K)).
Now continuity of solutions on the right-hand side gives the result globally
on K.)

In general, smooth (or even continuous) stabilizers fail to exist, as dis-
cussed for instance in [33], Section 4.8 and references there. Thus 1HLN
feedback laws, with continuous σ, do not provide a rich enough class of con-
trollers. This motivates the search for discontinuous feedback. It is easy
to provide examples where 1HL H-nets will stabilize but no net with con-
tinuous activations (hence implementing a continuous feedback) will. More
surprisingly, 1HLN feedback laws, even with H activations, are not in gen-
eral enough —intuitively, one is again trying to solve inverse problems—
but two hidden layer nets using H (and having direct i/o connections) are
always sufficient. More precisely, [35] shows that the weakest possible type
of open-loop asymptotic controllability is sufficient to imply the existence
of (sampled) controllers built using such two-hidden layer nets, which stabi-
lize on compact subsets of the state space. On the other hand, an example
is given there of a system satisfying the asymptotic controllability condi-
tion but for which every possible 1HL stabilizer gives rise to a nontrivial
periodic orbit.

5 Recurrent Nets

A recurrent net (or σ-system) with m inputs, p outputs, dimension n, and
activation function σ is specified by a triple of matrices A,B,C where A, B,
and C are respectively real matrices of sizes n×n, n×m and p×n. Use the
notation Σ = Σ(A,B,C, σ), omitting σ if obvious from the context. One
interprets the above data (A,B,C) as defining a controlled and observed
dynamical system evolving in IRn (in the standard sense of control theory;

33

see e.g. [33]) by means of a differential equation ẋ = ~σ (Ax+Bu) , y = Cx
in continuous-time (dot indicates time derivative), or a difference equation
x+ = ~σ (Ax+Bu) , y = Cx in discrete-time (“+” indicates a unit time
shift). See the block diagram in the next Figure, where ∆ = x+ or = ẋ in
discrete or continuous time respectively.

u
- B - h+ - σ -∆−1 - C -

yx r
�A

6

Other systems models are possible; for instance, “Hopfield nets” have
dynamics of the form ẋ = −Dx+ ~σ (Ax+Bu) (with D a diagonal matrix
and often A symmetric); results analogous to those to be described can be
obtained for these more general models as well.

Depending on the interpretation (discrete or continuous time), one
defines an appropriate behavior behΣ, mapping suitable spaces of input
functions into spaces of output functions, again in the standard sense of
control theory, for any fixed initial state. For instance, in continuous
time, one proceeds as follows: For any measurable essentially bounded
u(·) : [0, T] → IRm, denote by φ(t, ξ, u) the solution at time t with ini-
tial state x(0) = ξ; this is defined at least on a small enough interval
[0, ε), ε > 0. (The maps σ of interest in neural network theory are usually
globally Lipschitz, in which case ε = T .) For each input, let behΣ(u) be
the output function corresponding to the initial state x(0) = 0, that is,
behΣ(u)(t) := C(φ(t, 0, u)), defined at least on some interval [0, ε). Two
recurrent nets Σ and Σ̂ (necessarily with the same numbers of input and
output channels, i.e. with p = p̂ and m = m̂) are equivalent (in discrete or
continuous time, depending on the context) if it holds that behΣ = behΣ̂;
as before, denote Σ ∼ Σ̂. (To be more precise, in continuous-time, one
requires that for each u the domains of definitions of behΣ(u) and behΣ̂(u)
coincide, and their values be equal for all t in the common domain.)

Electrical circuit implementations of recurrent nets, employing resis-
tively connected networks of n identical nonlinear amplifiers, with the resis-
tor characteristics used to reflect the desired weights, have been suggested as
analog computers, in particular for solving constrained optimization prob-
lems and for implementing content-addressable memories. In speech pro-
cessing applications and language induction, as well as in signal processing
([25]) and control ([30]), recurrent nets are used as identification models
or as prototype dynamic controllers (for partially observed systems or sys-
tems given in input/output form); they are often fit to experimental data by

34

means of the gradient-descent optimization (the so-called “dynamic back-
propagation” procedure) of some cost criterion.

5.1 Approximation

Recurrent nets provide universal identification models, in a suitable sense.
Consider a continuous- or discrete-time, time-invariant, control system Σ:

ẋ [or x+] = f(x, u) (7)
y = h(x)

under standard smoothness assumptions. (For instance, x(t) ∈ IRn, u(t) ∈
IRm, and y(t) ∈ IRp for all t, and f and h are continuously differentiable.)
For any measurable essentially bounded control u(·) : [0, T]→ IRm, denote
by φ(t, x0, u) the solution at time t of (7) with initial state x(0) = x0; this
is defined at least on a small enough interval [0, ε), ε > 0. For recurrent
networks, when σ is bounded or globally Lipschitz with respect to x, it
holds that ε = T ; so assume here that the controls being considered are
so that solutions exist globally, at least for initial states on some compact
set of interest. It is not hard to prove that, on compacts and for finite
time intervals, the behavior of Σ can be approximated by the behavior of
a recurrent σ-net, if σ is universal.

Assume given two systems Σ and Σ̃, as in (7), where tildes denote
data associated to the second system, and with same number of inputs
and outputs (but possibly ñ 6= n). Suppose also given compact subsets
K1 ⊆ IRn and K2 ⊆ IRm, as well as an ε > 0 and a T > 0. Suppose
further (this simplifies definitions, but can be relaxed) that for each initial
state x0 ∈ K1 and each control u(·) : [0, T] → K2 the solution φ(t, x0, u)
is defined for all t ∈ [0, T]. The system Σ̃ simulates Σ on the sets K1,K2

in time T and up to accuracy ε if there exist two continuous mappings
α : IRñ → IRn and β : IRn → IRñ so that the following property holds: For
each x0 ∈ K1 and each u(·) : [0, T] → K2, denote x(t) := φ(t, x0, u) and
x̃(t) := φ̃(t, β(x0), u); then this second function is defined for all t ∈ [0, T],
and

‖x(t)− α(x̃(t))‖ < ε , ‖h(x(t))− h̃(x̃(t))‖ < ε

for all such t. One may ask for more regularity properties of the maps α
and β as part of the definition.

Assume that σ is a universal activation, in the sense defined earlier.
Then, for each system Σ and for each K1, K2, ε, T as above, there is a σ-
system Σ̃ that simulates Σ on the sets K1,K2 in time T and up to accuracy
ε. The proof if not hard, and it involves first simply using universality
in order to approximate the right-hand side of the original equation, and
then introducing dynamics for the “hidden units” consistently with the
equations. This second part requires a little care; for details, see [31].

35

Thus, recurrent nets approximate a wide class of nonlinear plants. Note,
however, that approximations are only valid on compact subsets of the state
space and for finite time, so that many interesting dynamical characteristics
are not reflected. This is analogous to the role of bilinear systems, which
had been proposed previously (work by Fliess and Sussmann in the mid-
1970s) as universal models. As with bilinear systems, it is obvious that
if one imposes extra stability assumptions (“fading memory” type) it will
be possible to obtain global approximations, but this is probably not very
useful, as stability is often a goal of control rather than an assumption.

5.2 Computation

The paper [31], and the references given there, dealt with computational ca-
pabilities of recurrent networks, seen from the point of view of classical for-
mal language theory. This work studied discrete-time recurrent networks,
focusing on the activation σ = π. (Though more general nonlinearities as
well as continuous-time systems are of interest, note that using σ = sign
would give no more computational power than finite automata.) The main
results —after precise definitions— are: (1) with rational matrices A, B,
and C, recurrent networks are computationally equivalent, up to polyno-
mial time, to Turing machines; (2) with real matrices, all possible binary
functions, recursive or not, are “computable” (in exponential time), but
when imposing polynomial-time constraints, an interesting class results.
Computational universality, both in the rational and real cases, is due to
the unbounded precision of state variables, in analogy to the potentially
infinite tape of a Turing machine.

To state precisely the simulation results, consider then recurrent net-
works with σ = π, the piecewise-linear saturation, and having just one
input and output channel (m = p = 1). A pair consisting of a recurrent
network Σ and an initial state ξ ∈ IRn is admissible if the following prop-
erty holds: Given any input of the special form u(·) = α1, . . . , αk, 0, 0, . . . ,
where each αi = ±1 and 1 ≤ k <∞, the output that results with x(0) = ξ
is either y ≡ 0 or y is a sequence of the form

y(·) = 0, 0, . . . , 0︸ ︷︷ ︸
s

, β1, . . . , βl, 0, 0, . . . , (8)

where each βi = ±1 and 1 ≤ l <∞. The pair (Σ, ξ) will be called rational
if the matrices defining Σ as well as the initial ξ all have rational entries; in
that case, for rational inputs all ensuing states and outputs remain rational.

Each admissible pair (Σ, ξ) defines a partial function

φ : {−1, 1}+ → {−1, 1}+ ,

where {−1, 1}+ is the free semigroup in the two symbols ±1, via the fol-
lowing interpretation: Given a sequence w = α1, . . . , αk, consider an input

36

as above, and the corresponding output, which is either identically zero or
has the form in Equation (8). If y ≡ 0, then φ(w) is undefined; otherwise,
if Equation (8) holds, then φ(w) is defined as the sequence β1, . . . , βl, and
one says that the response to the input sequence w was computed in time
s+ l. The (partial) function φ is realized by (Σ, ξ).

In order to be fully compatible with standard recursive function theory,
the possibility is allowed that a decision is never made, corresponding to a
partially defined behavior. On the other hand, if for each input sequence w
there is a well-defined φ(w), and if there is a function on positive integers
T : IN → IN so that the response to each sequence w is computed in time
at most T (|w|), where |α1, . . . , αk| = k, then (Σ, ξ) computes in time T .

In the special case when φ is everywhere defined and φ : {−1, 1}+ →
{−1, 1}, that is, the length of the output is always one, one can think of φ
as the characteristic function of a subset L of {−1, 1}+, that is, a language
over the alphabet {−1, 1}.

Disregarding computation time, some of the main results can be sum-
marized as follows: Let φ : {−1, 1}+ → {−1, 1}+ be any partial function.
Then φ can be realized by some admissible pair. Furthermore, φ can be re-
alized by some rational admissible pair if and only if φ is a partial recursive
function.

Given T : IN → IN, the language L is computed in time T if the corre-
sponding characteristic function is, for some admissible pair that computes
in time T . It can be proved that languages recognizable in polynomial time
by rational admissible pairs are exacly those in the class P of polynomial-
time recursive languages. Using real weights, a new class, “analog P,”
arises. This class includes many languages not in P, but a theorem shows
that NP is most likely not included in analog P.

For the rational case, one shows how to simulate an arbitrary Turing
machine. In fact, the proof shows how to do so in linear time, and tracing
the construction results in a simulation of a universal Turing machine by a
recurrent network of dimension roughly 1000. The main idea of the proof
in the real case relies in storing all information about φ in one weight,
by a suitable encoding of an infinite binary tree. Then, π-operations are
employed, simulating a chaotic mapping, to search this tree. In both the
real and rational cases, the critical part of the construction is to be able to
write everything up in terms of π, and the use of a Cantor set representation
for storage of activation values. Cantor sets permit making binary decisions
with finite precision, taking advantage of the fact that no values may appear
in the “middle” range.

It is of course much more interesting to impose resource constraints, in
particular in terms of computation time. Restrict to language recognition,
for simplicity of exposition, but similar results can be given for computation
of more general functions. The main result is that the class of languages
recognized in polynomial time using recurrent nets with real weights, that

37

is, “analog P,” is exactly the same as a class also studied in computer
science, namely the class of languages recognized in polynomial time by
Turing machines which consult oracles, where the oracles are sparse sets.
This gives a precise characterization of the power of recurrent nets in terms
of a known complexity class. In summary, even though networks, as analog
devices, can “compute” far more than digital computers, they still give rise
to a rich theory of computation, in the same manner as the latter.

5.3 Identifiability

Finally, there are analogs for recurrent nets of the uniqueness questions
discussed earlier. Assume from now on that σ is infinitely differentiable,
and that it satisfies the following assumptions:

σ(0) = 0 , σ
′
(0) 6= 0 , σ

′′
(0) = 0 , σ(q)(0) 6= 0 for some q > 2 . (∗)

Let S(n,m, p) denote the set of all recurrent nets Σ(A,B,C, σ) with
fixed n,m, p. Two nets Σ and Σ̂ in S(n,m, p) are sign-permutation equiva-
lent if there exists a nonsingular matrix T such that T−1AT = Â, T−1B =
B̂, CT = Ĉ, and T has the special form: T = PD, where P is a permuta-
tion matrix and D = diag(λ1, . . . , λn), with each λi = ±1. The nets Σ and
Σ̂ are just permutation equivalent if the above holds with D = I, that is, T
is a permutation matrix.

Let Bn,m be the class of n ×m real matrices B for which: bi,j 6= 0 for
all i, j, and for each i 6= j, there exists some k such that |bi,k| 6= |bj,k|.
For any choice of positive integers n,m, p, denote by Scn,m,p the set of all
triples of matrices (A,B,C), A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n which
are “canonical” (observable and controllable, as in [33], section 5.5). This
is a generic set of triples, in the sense that the entries of the ones that
do not satisfy the property are zeroes of certain nontrivial multivariable
polynomials. Finally, let:

S̃(n,m, p) =
{

Σ(A,B,C, σ)
∣∣∣ B ∈ Bn,m and (A,B,C) ∈ Scn,m,p

}
.

Then, in [1], the following result was proved: Assume that σ is odd and sat-
isfies property (*). Then Σ ∼ Σ̂ if and only if Σ and Σ̂ are sign-permutation
equivalent. An analogous result can be proved when σ is not odd, resulting
in simply permutation equivalence. Also, discrete-time results are available.

6 Acknowledgements

The author acknowledges extremely useful suggestions made by H. Trentel-
man and M. Vidyasagar, based on a preliminary version of this paper, as
well as many constructive comments by C. Darken, S. Hanson, and G.
Lafferriere.

38

References

[1] Albertini, F., and E.D. Sontag, “For neural networks, function deter-
mines form,” Neural Networks, to appear. See also Proc. IEEE Conf.
Decision and Control, Tucson, Dec. 1992, IEEE Publications, 1992,
pp. 26-31.

[2] Albertini, F., E.D. Sontag, and V. Maillot, “Uniqueness of weights for
neural networks,” in Artificial Neural Networks with Applications in
Speech and Vision (R. Mammone, ed.), Chapman and Hall, London,
1993, to appear.

[3] Anthony, M., and N.L. Biggs, Computational Learning Theory: An
Introduction, Cambridge U. Press, 1992.

[4] Aubin, J.-P., Mathematical Methods of Artificial Intelligence, to ap-
pear.

[5] Baker, W.L., and J.A. Farrell, “An introduction to connectionist learn-
ing control systems,” in [39].

[6] Barron, A.R., “Neural net approximation,” in Proc. Seventh Yale
Workshop on Adaptive and Learning Systems , Yale University, 1992,
pp. 69-72.

[7] Barto, A.G., “Connectionist learning for control: An overview,” in
[27].

[8] Baum, E.B., and D. Haussler, “What size net gives valid generaliza-
tion?,” Neural Computation 1(1989): 151-160.

[9] Blum, A., and R.L. Rivest, “Training a 3-node neural network is NP-
complete,” in Advances in Neural Information Processing Systems 2
(D.S. Touretzky, ed), Morgan Kaufmann, San Mateo, CA, 1990, pp.
9-18.

[10] Blumer, A., A. Ehrenfeucht, D. Haussler, and M. Warmuth, “Classi-
fying learnable geometric concepts with the Vapnik-Chervonenkis di-
mension,” in Proc. 18th. Annual ACM Symposium on Theory of Com-
puting , pp. 273-282, ACM, Salem, 1986.

[11] Carroll, S.M., and B.W. Dickinson, B.W., “Construction of neural nets
using the Radon transform,” in Proc. 1989 Int. Joint Conf. Neural
Networks , pp. I: 607–611.

[12] Chen, F.C., and H.K. Khalil, “Adaptive control of nonlinear sys-
tems using neural networks,” Proc. IEEE Conf. Decision and Control,
Hawaii, Dec. 1990, IEEE Publications, 1990.

[13] Cybenko, G., “Approximation by superpositions of a sigmoidal func-
tion,” Math. Control, Signals, and Systems 2(1989): 303-314.

[14] Darken, C., M. Donahue, L. Gurvits, and E. Sontag, “Rate of approx-
imation results motivated by robust neural network learning,” submit-
ted.

39

[15] Flick, T.E., L.K. Jones, R.G. Priest, and C. Herman, “Pattern classifi-
cation using projection pursuit,” Pattern Recognition 23(1990): 1367-
1376.

[16] Franklin, J.A., “Historical perspective and state of the art in con-
nectionist learning control,” Proc. IEEE Conf. Decision and Control,
Tampa, Dec. 1989, IEEE Publications, 1989.

[17] Haussler, D., “Decision theoretic generalizations of the PAC model for
neural net and other learning applications,” Information and Compu-
tation 100(1992): 78-150.

[18] Hertz, J., A. Krogh, and R.G. Palmer, Introduction to the Theory of
Neural Computation, Addison-Wesley, Redwood City, 1991.

[19] Hornik, K., “Approximation capabilities of multilayer feedforward net-
works,” Neural Networks 4(1991): 251-257.

[20] Hunt, K.J., D. Sbarbaro, R. Zbikowski, and P.J. Gawthrop, “Neural
networks for control systems: A survey,” Automatica 28(1992): 1083-
1122.

[21] Judd, J.S., Neural Network Design and the Complexity of Learning ,
MIT Press, Cambridge, MA, 1990.

[22] Leshno, M., V.Ya. Lin, A. Pinkus, and S. Schocken, “Multilayer feed-
forward networks with a non-polynomial activation function can ap-
proximate any function,” Neural Networks, 1993, to appear.

[23] Livstone, M.M., J.A. Farrell, and W.L. Baker, “A computationally
efficient algorithm for training recurrent connectionist networks,” in
Proc. Amer. Automatic Control Conference, Chicago, June 1992.

[24] Macintyre, M., and E.D. Sontag, “Finiteness results for sigmoidal ‘neu-
ral’ networks,” in Proc. 25th Annual Symp. Theory Computing , San
Diego, May 1993, to appear.

[25] Matthews, M., “A state-space approach to adaptive nonlinear filter-
ing using recurrent neural networks,” Proc. 1990 IASTED Symp. on
Artificial Intelligence Applications and Neural Networks, Zürich, pp.
197-200, July 1990.

[26] McBride, L.E., and K.S. Narendra, “Optimization of time-varying sys-
tems,” IEEE Trans. Autom. Control , 10(1965): 289-294.

[27] Miller, T., R.S. Sutton, and P.J. Werbos (eds.), Neural networks For
Control , MIT Press, Cambridge, 1990.

[28] Niranjan, M. and F. Fallside, “Neural networks and radial basis func-
tions in classifying static speech patterns,” Computer Speech and Lan-
guage 4 (1990): 275–289.

[29] Pisier, G., “Remarques sur un resultat non publiè de B. Maurey,”
in Seminaire d’analyse fonctionelle 1980-1981 , Ecole Polytechnique,
Palaiseau, 1981.

[30] Polycarpou, M.M., and P.A. Ioannou, “Neural networks and on-line
approximators for adaptive control,” in Proc. Seventh Yale Workshop
on Adaptive and Learning Systems, pp. 93-798, Yale University, 1992.

40

[31] Siegelmann, H.T., and E.D. Sontag, “Some results on computing with
‘neural nets’,” Proc. IEEE Conf. Decision and Control, Tucson, Dec.
1992, IEEE Publications, 1992, pp. 1476-1481.

[32] Slotine,J.-J., and R.M. Sanner, “Neural networks for adaptive con-
trol and recursive identification: a theoretical framework,” in Perspec-
tives In Control (H.L. Trentelman and J.C. Willems, eds.), Birkhauser,
Boston, 1993.

[33] Sontag, E.D., Mathematical Control Theory: Deterministic Finite Di-
mensional Systems, Springer, New York, 1990.

[34] Sontag, E.D., “Feedforward nets for interpolation and classification,”
J. Comp. Syst. Sci. 45(1992): 20-48.

[35] Sontag, E.D., “Feedback stabilization using two-hidden-layer nets,”
IEEE Trans. Neural Networks 3 (1992): 981-990.

[36] Sontag, E.D., and H.J. Sussmann, “Backpropagation separates where
perceptrons do,” Neural Networks, 4(1991): 243-249.

[37] Sussmann, H.J., “Uniqueness of the weights for minimal feedforward
nets with a given input-output map,” Neural Networks 5(1992): 589-
593.

[38] Vapnik, V.N., Estimation of Dependencies Based on Empirical Data,
Springer, Berlin, 1982.

[39] White, D.A., and D.A. Sofge (eds.), Handbook of Intelligent Control:
Neural, Fuzzy and Adaptive Approaches, Van Nostrand Reinhold, NY,
1992.

[40] Weiss, S.M., and C.A. Kulikowski, Computer Systems That Learn,
Morgan Kaufmann, San Mateo, CA, 1991.

41

