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Abstract. This paper proposes a generally applicable technique for the control of
analytic systems with no drift. The method is based on the generation of "nonsingular
loops" that allow linearized controllability. One can then implement Newton and/or
gradient searches in the search for a control. A general convergence theorem is proved.
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1. Introduction. This paper concerns itself with the (approximate)
path-planning problem for systems without drift:

(1.1) x = G(x)u,

where G is analytic. That is, one wishes to find, for any given initial
and target states ~o and ~F in JRn, a time T > °and· a control u defined
on the interval [0, T], so that u steers ~o to ~F (or close to it), for the
above system. This is a question that has attracted much interest, being
motivated in part by the study of nonholonomic mechanical systems, and
powerful techniques have been developed for this purpose (see e.g. [1], [10],
[11], and [8]). Our approach, based on a "transversality" theorem which
ensures that certain rich classes of controls exist (and are in a sense generic)
requires no special structure on the controllability Lie algebra of the system,
and can be implemented in principle with little effort.
Some of the intermediate results will be valid for more general analytic

systems

(1.2) x = f(x,u) ,

(but the main results are for the special case shown above). We assume
that (1.2) describes a system with Euclidean state space, that is, states
x(t) evolve in JRn. Controls u(·) are JRm-valued measurable and essentially
bounded, f is continuously differentiable (later we assume analyticity). In
general, given a state ~o E JRn and a control u : [0,T] -+ JRm so that the
solution x : [0, T] -+ JRn of the equation (1.2) with this control and the
initial condition x(o) = ~o is defined on the entire interval [0,T]" we say
that u is admissible for x and denote the state x(t) at time t E [0, T] as
¢>(t, ~o, u).
This paper presents the "generic loop" approach and establishes a gen

eral convergence theorem. The latter relies on a new result proving the
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existence of such loops with good controllability properties. This approach
was largely motivated by related work on time varying feedback laws by [4]
and [12]. As with any general procedure, ours may be expected to perform
poorly in comparison with techniques that make use of structural informa
tion about the system being controlled. One possible application might be
in the design of large control actions, bringing the system into regions of the
state space where the asumptions required for the more refined techniques
hold.

1.1. A review of gradient and Newton methods. Recall that we
wish, for any given initial and target states ~o and ~F in ~n , to find a time
T > °and a control u defined on the interval [0,T], so that u steers ~o

to ~F, that is, so that ¢(T, ~o, u) = ~F, at least in an approximate sense.
After a change of coordinates, we will assume without loss of generality
that ~F = 0. Numerical techniques for this problem (see e.g. the classic
reference [3]) start with a guess of a control, let us say u : [0,T] --+ ~m , and
iteratively improve upon this initial candidate. That is, with the notation

x = ¢(·,eo,u) ,

if the obtained final state x(T) is already zero, or is sufficiently near zero,
the problem has been solved; otherwise, we search for a perturbation D.u
so that the new control u + D.u brings us closer to the origin.
One obtains different algorithms depending on the choice of the pertur

bation. The two most classical ones are as Newton and gradient descent.
Newton's method proceeds as follows. For any fixed initial state eo, we let

a(u) := ¢(T, eo, u) .

This is understood as a partially defined map from .c: (0, T) into ~n , which
is continuously differentiable (see e.g. [17], Theorem 1). Expanding to first
order, we have:

a(u + v) = a(u) + a*[u](v) + o(v)

for any control v for which a(u +v) is defined. (We use "*" as a subscript
to denote differentials.) Assume that we are able to pick v so that

(1.3)

It then follows that, for small enough h > 0, (with the perturbation D.u :=

hv, °< h « 1),

(1.4) a(u + hv) = (1 - h)a(u) + o(h)

will be smaller than the state a(u) reached with the initial guessed U.
One must then solve equation (1.3) for v. The operator

(1.5)
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provides the solution of the variational equation

153

(1.6)

where

and

for each t, that is,

i = A(t)z + B(t)v z(O) = 0,

A(t) := :~ (x(t), u(t))

B(t) := :~ (x(t), u(t))

Lv = IT 4l(T, s)B(s)v(s) ds ,

where 41 denotes the fundamental solution associated to X = A(t)X. The
operator L : £~(O, T) ~ jRn is onto when (1.6) is a controllable linear
system on the interval [0, T]. In that cse, we say that u is a control non
singular for ~o relative to the system (1.2). That is, ontoness of L = a*[u]
is equivalent to first-order controllability of the original nonlinear system
along the trajectory corresponding to the initial state ~o and the control u.
One of the main points of this paper lies in showing that it is not difficult
to generate useful nonsingular controls for systems with no drift.
There is in general more than one solution to (1.3). Because of its use

in (1.4) where a small v is desirable, and in any case because it is the most
natural choice, it is reasonable to pick the least squares solution, that is
the unique solution of minimum norm,

(1.7)

where L# denotes the pseudoinverse operator (see e.g. [17], Section 3.5, for
details; we are using the canonical inner product on jRn, and L 2 norm in
£~ (0, T), and induced norms for elements and operators). This technique
is well-known in numerical control; for instance, the derivation in pages
222-223 of [3], when applied to solving the optimal control problem having
the trivial cost criterion J(u) = 0 and subject to the final state constraints
x = '¢(x) = 0, results in formula (1.7), and is derived in the same manner
as here.
Instead of solving (1.3) for v via (1.7), one might instead use the steep

est descent choice

(1.8) v := -L*a(u)

where L* is the adjoint of L. Formula (1.8) also results from the above
derivation in [3], now when applied using the quadratic cost J(u) = Ila(u)1I2
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but relaxing the terminal constraints (t/J == 0). In place of (1.4), now one
has

(1.9) a(u + hv) = (I - hLL*)a(u) + o(h),

where I is the identity operator. If again L is onto, that is, if the control u
is nonsingular for ~o, then the symmetric operator LL* is positive definite,
so 0 < h « 1 will give a contraction as earlier. An advantage in using L*
instead of L # is that no matrix inversion is required in this case.
One may also combine these techniques with line searches over the

scalar parameter h or, even more efficiently in practice, with conjugate
gradient approches (see for instance [9]). Line search corresponds to leaving
v fixed and optimizing on the step size h, only recomputing a variation v
when no further improvement on h can be found. (The control applied at
this stage is then the one for the "best" stepsize, not the intermediate ones
calculated during the search.)
There are many reasons for which the above classical techniques may

in principle fail: the initial guess u may be singular for ~o, the iteration
may fail to converge, and so forth. The main point of this paper is to show
that, for a suitable class of systems, a procedure along the above lines can
be guaranteed to work. The systems with which we will deal here are often
called "systems without drift" and are those expressed as in Equation (1.1).
A result given below shows that for such systems (assuming analytic G)
rather arbitrary controls provide the desired nonsingularity, and can hence
be used as the basis of the approach sketched above.
The next section describes the basic iterative procedure and proves a

convergence result assuming that nonsingular controls exist. After that,
we state the existence theorem for nonsingular controls in the analytic case
(a proof is given in an Appendix), and explain the application to systems
without drift. Several remarks are also provided in the last section, and
relationships to time-varying feedback design are briefly discussed.

2. Justification of the iterative method. Here we prove the con
vergence of the algorithm consisting of repeatedly applying a control to
obtain a nonsingular trajectory, at each step perturbing this control by
means of a linear technique. As a preliminary step, we establish a few
results in somewhat more generality.

LEMMA 2.1. Let B be a compact subset of JRn, and let H > O. Assume
given

F : B x [0, H] -t JRn

and a continuous matrix function
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so that D(x) is symmetric and positive definite for each x. Assume further
that the function

g(x, h) := F(x, h) + hD(x)x - x

is o(h) uniformly on x, that is, for each £ > 0 there is a 8 > 0 so that

(2.1) h < 8 ~ IIg(x, h) II < c:h for all x E l3 .

Then the following conclusion holds, for some constant ,X > 0: For each
15 > 0 there is some 8 > 0 so that, for each h E (0,8) and each x E l3,

(2.2) IIF(x, h) II < max{ (1 - 'xh) IIxli ,c:} .

Proof As D(x) is continuous on x, its singular values also depend
continuously on x (see e.g. [17], Corollary A.4.4). Let 2,X > 0 be a lower
bound and let X be an upper bound for the eigenvalues of D(x). Pick a
k > 2 so that k,X > 2X. Next fix any 15 > O. Thus there is a 0 < 8 < I/X
such that, for each 0 < h < 8,

(2.3)
X£h 15

IIg(x,h)1I < T < k

for all x E l3 and all the eigenvalues of hD(x) are in the interval (0,1).
Pick any h E (0,8) and any x E l3. Since the eigenvalues of the

symmetric matrix I - hD(x) are all again in (0,1), this matrix must be
positive definite, so its norm equals its largest eigenvalue. Hence:

III - hD(x)1I ::; 1 - 2,Xh .

It follows that, for IIxli > £/2:

IIF(x, h) II < 11(1 - hD(x))xll + IIg(x, h) II
< (1 - 2'xh)lIxll + Xc:h/k

= (1 - 2,Xh + ~~~I) IIxli
< (1 - 'xh)lIxll ,

which implies the desired conclusion. IT instead IIxli < £/2, then

IIF(x, h) II ::; III - hD(x)lIl1xll + IIg(x, h) II < £/2 + £/k < £ ,

so the conclusion holds in that case as well. 0
LEMMA 2.2. Let l3 be a closed ball in IRn , centered at the origin, and

let H > O. Assume given a map

F : l3 x [0, H] -+ IRn ,
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with F(x,O) = x for all x, so that F is continuously differentiable with
respect to h E [0, H], with ~~ continuous on (x, h), and

of
oh (x,O) = -D(x)x,

where D : B ---t IRnxn is a continuous matrix function satisfying that D(x)
is symmetric positive definite for each x. Denote Fh := F(·, h). Then the
following property holds: For each c > 0, there is some ~ > 0 so that, for
each 0 < h < ~ there is some positive integer N = N (h) so that

11Ft'(B) II < c,
where Ft' denotes the Nth iterate of Fh .

Proof. We wish to use Lemma 2.1. For that purpose, we must verify
that in the expansion F(x, h) = x - hD(x)x + g(x, h) the last term is o(h)
uniformly on x. But (Lagrange formula):

of [1
g(x, h) = F(x, h) - F(x, 0) - oh (x, 0) h = 1

0
G(x, h, t)hdt

where

of of
G(x, h, t) := oh (x, th) - oh (x,O)

and ~~ (x, h) is continuous by hypothesis. On the compact set B x [0, H],
this function is uniformly continuous; in particular it is so at the points of
the form (x,O). Thus for each c > 0 there is some ~ > 0 so that whenever
h < ~ then IIG(x, h, t)1I < c for all x E B and all t E [0,1]. Therefore also
IIg(x, h)/1 < ch holds, and Lemma 2.1 can indeed be applied.
Since B is a ball, the iterates remain in B. So, for each I and each

x E B,

This gives the desired result. 0
For each ~ E IRn and each control u E .c~(O, T) admissible for ~, we

let L~.u be the linear operator .c~(O,T) ---t IRn defined as in (1.5), that is,
the reachability map for the time-varying linear system (1.6) that results
along the ensuing trajectory. Introducing the matrix functions

of of
A = A(x,u) = ox(x,u) and B = B(x,u) = ou(x,u) ,

we may consider the following new system (the "prolongation" of the orig
inalone):

(2.4)

(2.5)

:i;

i

f(x,u)

A(x, u)z + B(x, u)v
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seen as a system of dimension 2n and control (u, v) of dimension 2m. Ob
serve that L~,u(v) is the value of the z-coordinate of the solution that
results at time T when applying controls u, v and starting at the initial
state (~, 0). IT we add the equation

(2.6) Q= AQ + QA + BB*

(superscript * indicates transpose) to the prolonged system, the solution
with the above controls and initial state (~, 0, 0) has

Q(t) = I t

~(t, s)B(s)B* (s)~(t, s)* ds

so that (see e.g. [17], Section 3.5) ontoness of L~,u is equivalent to 'the
Grammian W = Q(T) being positive definite. Note that, by continuous
dependence on initial conditions and controls, W depends continuously on
~,u.

Similar arguments show that other objects associated to the lineariza
tion also depend continuously on ~, u, and any state q: application to q of
the adjoint, Ltuq, which is the same as the function B(t)*~(T, t)*q, and
of the pseudoinvers,e,

L# L*W-1
~,uq = q.

Choose now a control u and a closed ball B ~ IRn so that u is admissible
for all ~ E B, and denote L~,u just as L~. (This is the zero-initial-state
reachability map of the linearized system when applying u and starting
at the state ~j thus for each ~, L~ is a map from controls into states of
the linearized system.) In the next result, the map N~ plays the role of a
one-sided "approximate inverse" of L~ (for each state ~, N~ is a map from
states into controls).

COROLLARY 2.1. Assume that the control u is so that

¢(T,~,u) = ~ for all ~ E B.

Assume given, for each ~ E B, a map N~ : IRn ~ L:~(O, T) so that Nd~)
depends continuously on ~ and so that the operator

is linear, and in the standard basis is symmetric positive definite and de
pends continuously on~. Pick an H > Oso that u - hNd~) is admissible
for each ~ E Band h E [0,H], and let

F(~, h) := ¢(T,~,u - hN~(~)) .

Then, for each f; > 0, there is some 8 > 0 so that, for each 0 < h < 8 there
is some positive integer N = N(h) so that

11Ft'(B) II < €,
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where Fh := F(·, h).

Proof Since 8q,(~~e,u) L=tr is the same as L{, we have that, in general,

8¢J(T,~,U-hNdq))1 = -D(Oq,
8h h=O

so in particular ~f (~, 0) = -D(~)~, as needed in order to apply Lemma
2.2. Note that ~f (~, h) is continuous, as it equals

and each of Land N are continuous on all arguments. 0
A H > 0 as needed in the statement always exists, by continuity of

solutions on initial conditions and controls.

3. Application to case of systems with no drift. We now spe
cialize to the vase of systems without drift (1.1). Rescaling if necessary, we
may assume that the system is complete (see next section). To apply the
numerical techniques just developed, one needs to find a control u which
leads to nonsingular loops:

• u is nonsingular for every state x in a given ball B, and
• ¢J(T, x, u) = x for all such x.

It is shown later that for analytic systems that have the strong accessibil
ity property, controls which are generic -in a sense to be made precise
are nonsingular for all states. (For analytic systems without drift, Chow's
Theorem states that the strong accessibility property is equivalent to com
plete controllability.) Starting from such a control w, defined on an interval
[0, T /2], one may now consider the control u on [0,T] which equals w on
[0, T /2] and is then followed by the antisymmetric extension:

(3.1) u(t) = -w(T - t), t E (T/2,T].

This u is as needed: nonsingularity is due to the fact that if the restriction
of a control to an initial subinterval is nonsingular for the initial state, the
whole control is, and the loop property is an easy consequence of the special
form (1.1) in which the control appears linearly.
In practice, one might try using a randomization technique in order to

obtain w, and from there u. More directly, one might use instead a finite
Fourier series with random coefficients:

(3.2)
I

u(t) = Laksinkt,
k=l

which automatically satisfies the antisymmetry property (3.1) on the time
interval [0,271-]. There is no theoretical guarantee that such a series will
provide nonsingularity, but in any case, experimentally, one may always
proceed assuming that indeed all properties hold.
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The first application is with N x = L~, the pseudoinverse discussed
earlier. Here D(x) = I is certainly positive definite and continuous on x.
The second application is with N x = L;, the adjoint operator, in which
case D(x) = W = Q(T), as obtained for the composite system (2.4)-(2.6),
and as remarked earlier this is also continuous on x (and positive definite
for each x, by nonsingularity).
We may summarize the procedure as follows. The objective is to trans

fer ~o to a neighborhood of ~F'
Step 1. Find an 'il that generates nonsingular loops, in the above sense.

Let ~:= ~o.

Step 2. Calculate the effect of applying 'il, starting at ~, and compute the
linearization along the corresponding trajectory, using this in turn
in order to obtain the variation that allows modifying 'il by hNe (~),

as described earlier.
Step 3. The original control 'il is not applied to the system (from state ~),

but the perturbed one is. Apply this new control to the system
and compute the final state f that results.

Step 4. If f is not close enough to ~F, let ~ := f, and go to Step 2.
Thus one has a guaranteed convergence in finite time to any arbitrary

neighborhood of the origin, for small enough stepsize. One might also
combine this approach with line searches, or even conjugate gradient al
gorithms, as discussed earlier. Such techniques are classical in nonlinear
control; see for instance [3], [9]. What appears to be new is the observation
that, for analytic systems without drift, generic loops provide nonsingular
ity. The techniques are also related to the material in [15], which relied on
control based on pole-shifting along nonsingular trajectories.

3.1. Rescaling: Obstacles and completeness. By means ofrescal
ing, we are able to deal with workspace obstacles and also to restrict at
tention to complete systems (no explosion times). The basic method is as
follows. Let {3 : IRn -+ IR be any smooth mapping, and consider the new
system without drift

(3.3) x = {3(x)G(x)u.

Suppose that one has found a control u, defined on an interval [0,T], so
that the state ~o is transferred into the state ~F using this control, for
the system (3.3). Let x(·) be the corresponding trajectory. Then, the
new control v(t) := {3(x(t))u(t), when applied to the original system (1.1),
also produces the desired transfer. In other words, solving a controllability
problem for (3.3) provides immediately a solution to the corresponding
problem for the original system. (If one is interested in feedback design,
as opposed to open-loop control as in this paper, the same situation holds:
a feedback law u = k(x) for (3.3) can be re-interpreted as a feedback law
u = {3(x)k(x) for (1.1).)
Assuming that {3 never vanishes, the controllability properties of the
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original and the transformed systems are the same. This follows from the
above argument. Alternatively, one may see this from the fact that, for
any two vector fields gl, g2 and any two smooth scalar functions {J1, {J2,

This implies inductively that the Lie algebra generated by the columns
of {J(x)G(x) is included in the Coo-module generated by the Lie algebra
corresponding to the columns of G(x), so the accessibility rank condition
for the former implies the same for the latter (and viceversa, by reversing
the roles of {J(x)G(x) and G(x)).
This construction is of interest in two ways. First of all, one is often

interested in control of systems in such a manner that trajectories avoid a
certain subset Q of the state-space (which may correspond to "obstacles"
in the workspace of a robot, for instance). IT {J vanishes exactly on Q, then
control design on the complement ofQ can be done for the new system (3.3),
and controls can then be reinterpreted ·in terms of the original system, a
discussed above. Since {J vanishes on Q, no trajectories starting outside
Q ever pass through Q (uniqueness of solutions). Of course, in planning
motions in the presence of obstacles, the control variations should be chosen
so as to move in state space directions which do not lead to collisions. One
possible approach is to first design a polyhedral path to be tracked, and
then to apply the numerical technique explained in order to closely follow
this path.
Reparameterization also helps in dealing with possible explosion times

in the original system, a fact that had been previously observed in [8], page
2542. In this case, one might use an {J(x) so that {J(x)G(x) has all entries
bounded; for instance, {J(x) could be the chosen as (1+L:i,j glj(X))-l. This
means that the new system has no finite escape times, for any bounded
control.

3.2. Implementation. For complete systems systems without drift,
and using steepest descent variations, the explicit computations are as fol
lows. Start with any u(t), t E [0, T] that satisfies the antisymmetry condi
tion

(3.4) u(T - t) = -u(t).

If x(·) satisfies x = G(x)u then z(t) := x(T - t) satisfies the same equation;
thus from the equality z(T/2) = x(T/2) and uniqueness of solutions it
follows that z = x. In other words,

(3.5) x(T - t) = x(t)

for t E [0,T]. To distinguish the objects which depend explicitely on time
from those that depend on the current values of states and controls, use
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~agi
A(x, u) := L..J ax (X)Ui

.=1
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where gi is the ith column of G, Ui is the ith entry of the vector U E IRm ,

and the partial with respect to x indicates Jacobian. Note that A can be
calcuted once and for all as a function of the variables x, u, before any
numerical computations take place. For each u, and the trajectory x(·)
corresponding to this control and initial state (0, denote

A(t) := A(x(t), u(t)), B(t):= G(x(t)).

Note that if (3.4), and hence also (3.5), hold then

(3.6) A(T - t) = -A(t), B(T - t) =B(t)

hold as well. Consider next \l1(t) := ~(T, t), where ~ is the fundamental
solution as before, corresponding to a given u and x(·) as above.
So \l1 satisfies the matrix differential equation

~(t) = -\l1(t)A(t), \l1(T) = I.

Consider the function ~(t) := \l1(T - t). If u satisfies the antisymmetry
condition, then ~ satisfies the same differential equation as \l1, from which
the equality ~(T/2) = \l1(Tj2) implies ~ = \l1. Hence also

(3.7) \l1(T - t) = \l1(t)

and so \l1(0) = \l1(T) = I. The perturbed control to be applied is u+ hv =
u-hL*a(u) where a(u) = x(T) = x(O) = (0 uu satisfies the antisymmetry
condition. The adjoint operator is (L*(o}{t) = B(t)*\l1(t)*(o.
Summarizing, the control to be applied, which for small h should result

in a state closer to the origin than (0, is

lu(t) - hG(x(t))*\l1(t)*(o I t E [O,T]

where

x(t) = G(x(t))u(t), x(O) =(0
~(t) = -A(x(t), u(t)) \l1(t), \l1(0) = I.

The equations for the system evolution are as follows (the state variable is
now denoted by z in order to avoid confusion with the reference trajectory
x):

i(t) = G(z(t)) [u(t) - hG(x(t))*\l1(t)*(o]
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for t E [0,T], with initial condition z(O) = ~o. In a line-search implementa
tion, one would first compute z(T) for various choices of h; the control is
only applied once that an optimal h has been found. Then the procedure
can be repeated, using z(T) as the new initial state ~o.

Remark. Regarding the number of steps that are needed in order to
converge to an e-neighborhood of the desired target state, an estimate is
as follows. For a fixed ball around the origin, and sufficient smoothness,
one can see that h =O(e) provides the inequality in (2.1), as required for
(2.3). Thus, the number of iterations N needed, using such a stepsize, is
obtained from (2.2):

(1 - cc)N < e

where c is a constant. Taking logarithms and using 10g(1 - x) = x + o(x)
there results the rough estimate

4. Review of universal inputs. In this Section, the systems con-
sidered will be of the type (1.2) where x(t) E X, u(t) E U, and:

• X ~ IRn is open and connected, for some n 2: 1;
• U ~ IRm is open and connected, for some m 2: 1;
• f : X x U -+ IRn is real-analytic.
A control is a measurable essentially bounded map w : [0,T] -+ Uj it

is said to be smooth (respectively, analytic) if it is infinitely differentiable
(respectively, real-analytic) as a function of t E [0,T]. As before, we denote
by 4>(t,x,w) the solution of (1.2) at time t with initial condition x and
control w. This is defined for all small t = t(x,w) > 0; when we write
4>(., x, w), we mean the solution as defined on the largest interval [0, T) of
existence.
Recall that the system (1.2) is said to be strongly accessible if for each

x E X there is some T > 0 so that

int R.T (x) f:. 0,

where as usual R7(x) denotes the reachable set from x in time exactly T.
Equivalently, the system must satisfy the strong accessibility rank condi
tion: dim.co(x) = n for all x, where .co is the ideal generated by all the
vector fields of the type {f(·,u) - f(·,v),u,v E U} in the Lie algebra.c
generated by all the vector fields of the type {f(·, u), u E U}; see [20]. For
systems affine in controls:

(4.1)
m

i; = f(x) +L Uigi(X)

i=1

the algebra .co is the Lie algebra generated by all vector fields ad}(gi),
k 2: 0, i =1, ... ,m.
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Given a state x, a control w defined on [0, T], and a positive To ~ T
so that {(t) = ¢(t, x, w) is defined for all t E [0, To]' we may consider the
linearization along the trajectory ({, w):

(4.2) i(t) = A(t)z(t) + B(t)u(t)

where A(t) .- U({(t),w(t)) and B(t) := ~({(t),w(t)) for each t. A
control w will be said to be nonsingular for x if the linear time-varying
system (4.2) is controllable on the interval [0, To]' for some To > 0. When
u is analytic, this property is independent of the particular To chosen, and
it is equivalent to a Kalman-like rank condition (see e.g. [17], Corollary
3.5.17). Nonsingularity is equivalent to a Frechet derivative of ¢(To,x,·)
having full rank at w.

If w is nonsingular for x E X, and To is as above, then nTo(x) has a
nonempty interior. This is a trivial consequence of the Implicit Function
Theorem (see for instance [17], Theorem 6). Thus, if for each state x
there is some control which is nonsingular for x, then (1.2) is strongly
accessible. The converse of this fact is also true, that is, if a system is
strongly accessible then for each state x there is some control which is
nonsingular for x. This converse fact was proved in [16] (the result in that
reference is stated under a controllability assumption, which is not needed
in the proof of this particular fact; in any case, we review below the proof).
The main purpose here is to point out that w can be chosen independently
of the particular x, and moreover, a generic w has this property. We now
give a precise statement of these facts.
A control w : [0, T] ~ U will be said to be a universal nonsingular

control for the system (1.2) if it is nonsingular for every x E X.
THEOREM 4.1. If (1.2) is strongly accessible, there is an analytic

universal nonsingular control.
Let Coo ([0, T], U) denote the set of smooth controls w : [0,T] ~ U,

endowed with the Coo topology (uniform convergence of all derivatives). A
generic subset of Coo([O, T],U) is one that contains a countable intersection
of open dense sets.

THEOREM 4.2. If (1.2) is strongly accessible, the set of smooth uni
versal nonsingular controls is generic in Coo ([0, T], U), for any T > 0.
A proof of this fact was originally given [18]. A proof is also given in an

Appendix, in order to make this paper self-contained. The proof is heavily
based on the universal input theorem for observability. (The theorem for
observability is due to Sussmann, but the result had been successively
refined in the papers [7,13,19]; see also [21] for a different proof as well
as a generalization involving inputs that are universal even over the class
of all possible analytic systems. There is also closely related recent work
of Coron ([5]) on generalizations of these theorems.)

5. Remarks. It is worth mentioning certain relations between the
results in this paper and recent work on time-varying feedback laws for
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systems without drift, especially the results in [4] and [12].
In [4], Coron proves, for controllable smooth systems with no drift,

that there is a smooth feedback law u = k(t,x), periodic on t and with
k(t,O) == 0, such that the closed-loop system:i; = G(x)k(t,x) is uniformly
globally asymptotically stable. The critical step in his proof is to obtain a
smooth family of controls {uz (-), x E IRn }, where each U z is defined for all
t E lR, so that the following properties are satisfied:

1. uz(t + 1) = uz(t) "'Ix, t,
2. uz(1- t) = -uz(t) "'Ix, t,
3. uz(t) is Coo jointly on (x, t),
4. for each x i- 0, U z is nonsingular for x,
5. Uo == 0, and
6. </>(t, x, uz ) is defined for all t 2:: 0.

Observe that the second and last properties imply that </>(1, x, uz ) = x for
all x. Thus, applying the control U z with initial state x results in a periodic
motion, </>(t + 1, x, uz ) = </>(t, x, uz ). These properties are used in deriving
stabilizing feedbacks in [4].

It is possible to obtain a family of controls as above -at least in the
analytic case-- using Theorem 4.1. A sketch follows. First note that one
may take the system to be complete, as discussed in Section 3, so the last
property will be satisfied for any choice of U z .

Assume that w is a control which is analytic and universal nonsingular,
defined on the interval [0, I]. As the system being considered in this case
has no drift, it follows that for each nonzero constant c the control cw(ct),
defined on the interval [O,I/c], is again universal nonsingular. (Indeed, if
~o as any initial state and x(t) = </>(t,~o,w) then x(ct) is the trajectory cor
responding to this new control, and the linearization along this trajectory
is controllable, because, with the notations in [17], Corollary 3.5.17 and
using superscript c to denote the dependence on c, A(c)(t) = cA(ct) and
B~c) (t) = ci B(ct) for i =0,1,2, .... ) Assume that c < 1, so that cw(ct) is
defined on [0, I]. Since the system and the control are both analytic, the
restriction of cw(ct) to the interval [0,1/6] is again universal and nonsin
gular. Observe that, by definition of analytic function on a closed interval,
this means that cw(ct) is in fact defined on some larger interval of the form
(-€, 1), for some € > 0. Let (3 : IRn --t IR be a smooth function which is
positive for x i- 0, vanishes at the origin, and is bounded by 1.
Consider now, for each xi- 0, the control uz(t) which is defined on the

interval [0,1/2] as follows. On the subinterval [1/6,1/3]' this equals

(3(x) w((3(x)(t - 1/6)).

Extend U z smoothly to [0,1/6] in such a manner that all derivatives van
ish at O. Similarly, extend in the other direction, to [0,1/2], so that all
derivatives also vanish at 1/2. Note that U z is still a universal nonsingular
control, because its restriction to the subinterval [1/6,1/3] is. Also, these
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extensions can be done in such a manner that u'" depends smoothly on
x and is bounded by a constant multiple of j3(x). Finally, it is trivial to
extend by antisymmetry to [0, 1] and then periodically to all t E lR, so that
all the desired properties hold.

6. An illustration. Though very simple, it is worth understanding
our method in the case of the simplest possible example of a system with no
drift which is controllable but for which no possible smooth stabilizer exists.
This example is due to Brockett ([2]) and appears in most textbooks in
some variant or another (see e.g. [17], Example 4.8.14); it is closely related,
under a coordinate change, to the "unicycle" or "knife edge" example. The
system in question has dimension 3 and two controls; the equations are as
follows:

x U

iJ = v
i = xv

(we write x, y, z for the coordinates of the state and u, v for the input
coordinates, in order to avoid subscripts). As suggested earlier, periodic
controls on intervals [0,211"] symmetric about 11" are natural. In this case, in
particular, the input u defined by u(t) == 0, v(t) = sin(t) on this interval
is already a universal nonsingular control (as shown next), so we use u.
Nonsingularity is shown as follows. Given any initial state ~ = (xo, Yo, zo),
the trajectory that results is

x(t)

y(t)

z(t)

= Xo

= Yo - cost

= Zo + xot .

Along this trajectory, the linearized system has matrices

(
0 0 0)

A(t) = 0 0 0
sint 0 0

and B(t) = (~ ~)
o Xo

Let Bo := Band B 1 := ABo - Bb (= AB since B is constant). Since

(
1 0 0 0)

(BoBd = 0 1 0 0
o Xo sint 0

has rank 3 generically, this shows that the linearized system is controllable
(see e.g. [17], Corollary 3.5.17).
Newton's method is even simpler in this case (using the above nonsin

gular control). Indeed, since the first two equations are linear in controls,



166 EDUARDO D. SONTAG

and the system over all is quadratic in a suitable sense, Newton's method
results in exact convergence to zero in just two passes. We prove this fact
next. With the above control iL, the pseudoinverse of the reachability map
is as follows (letting (xo, Yo, zo) be the coordinates of the initial state):

# ( 1/2 + cos(t)
L = (1/1r)

o

so the net control applied is

-xo cos(t) cos(t)

1/2 0

(
-~ C20 + Xo cos(t) - Xo cos(t)yO + COS(t)zo)) .

. hyo
sm(t) - ~

A Newton step is obtained by solving the corresponding differential equa
tions with step size h; this gives the new states: Xh = Xo - xoh, Yh =
Yo - hyo, and Zh = (h/2)( -2xoyo + hxoyo - 2zo) + zo0 The stepsize h = 1
gives zero values for the first two coordinates after one step, while the
last coordinate becomes, under this choice of h, -xoyo/2. But any state
of the form (0,0, z) gets mapped to the origin in one step under the same
iteration. In summary, all states are mapped in two iterations to the origin.

APPENDIX

A. Appendix: Proof of nonsingularity result. We first recall the
fact, mentioned above, that for each x there is a control nonsingular for x.
This can be proved as follows. Pick x, and assume that the system (1.2) is
strongly accessible. Let y be in the interior of R7(x), for some T > O. It
follows from [14), Lemma 2.2 and Proposition 2.3, that there exists some
real number 0 > 0 and some positive integer k so that y is in the interior
of the image of

F: Uk -+ X, (Ul, ... ,Uk) t-t exp (ofu,) ... exp (ofu.)(x) ,

where we are using the notation exp (ofu)(z) = ¢>(o, z, w) for the control
w == U on [0,0). This map F is smooth, so by Sard's Theorem it must
have full-rank Jacobian at some point (u~, ... ,uV. This implies that the
piecewise-constant control w, defined on [0, kO) and equal to the values u?
on consecutive intervals of length 0, is nonsingular for the given state x, as
desired.
We next need what is basically a restatement of the main results in

[19):
PROPOSITION A.I. Consider the (analytic) system (1.2) and assume

that h : X -+ ~ is a real-analytic function. Let G be the set of states x so
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that, for some control w = w(x), h(¢(·,x,w)) is not identically zero. Then,
there exists an analytic control w* so that, for every x E G, h(¢(" x, w*))
is not identically zero; moreover, for each T > 0, the set of smooth such
controls is generic in COO([O,T],U).

Proof. We consider the extended system (with state space X x IR):

x = f(x,u)

i = °
y zh(x) ,

which is an analytic system with outputs. Consider two states of the form
(x,O) and (x, 1), with x E X. A control w distinguishes these states if and
only if h(¢(·,x,w)) is not identically zero.
Let w* be a control for the extended system which is universal with

respect to observability. There are analytic such controls, and the desired
genericity holds, by Theorems 2.1 and 2.2 in [19]. Now pick any x in the set
G. Then (x,O) and (x,l) are distinguishable, and hence w* distinguishes
among them. This means that h(¢(·,x,w*)) is not identically zero, as
desired. 0
We now prove Theorems 4.1 and 4.2. Let (1.2) be given, and take the

composite system consisting of (2.4) and (2.6) with output h(x, Q) = detQ,
This is seen as a system with state space X x IRnxn . For an initial state of
the form z = (x, 0), and a control w, the solution ¢ of the larger system at
time t, if defined, is so that

h(¢(t,z,w)) = det (It
<P(t,S)B(S)B*(S)<P(t,S)*dS)

(where <p denotes the fundamental solution of the linearized equation), so
w is nonsingular for x precisely when h(¢(t, (x,I,O),w)) is not identically
zero.
By the remarks made earlier, strong accessibility guarantees that every

state of the form (x, I, 0) is in the set G defined in Proposition A.l (for the
enlarged system); thus our Theorems follow from the Proposition. •
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