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Abstract 
This Paper discusses various 

continuity and incremental-gain properties for neutrally 
stable linear systems under linear feedback subject to 
actuator saturation. The results complement our previ- 
ous ones, which applied to the same class of problems 
and provided finite-gain stability. 

1 Introduction 
In this paper. we continue the study, started in [6], of 
operator stability properties for saturated-input linear 
systems. In the previous paper, we studied feedback 
systems of the form 

(E) z = Az + Ba(Fz  +U). 

Bere U denotes a vector of saturation-type functions, 
each of which satisfies mild technical conditions that 
are recalled later (at this point, it suffices to say 
that all reasonable “sigmoidal” maps such as U(.) = 
tanh(z) and the standard saturation function uo(t) = 
sign(t) min{ ItJ, 1) are included). The matrix A is as- 
sumed to be neutrally stable and one uses the standard 
passivity theory choice of feedback F that makes the ori- 
gin of the unforced closed-loop system k = Az+Bu(Fz)  
globally asymptotically stable. (For instance, if A has 
all eigenvalues in the imaginary axis and the pair (A, B) 
is controllable, F = - BT P ,  where P is a positive defi- 
nite matrix satisfying ATP + P A  = 0.) 

It is proved in [6] that this system is finite-P-gain 
stable, that is, the zero-initial state operator map 
ping input functions U ( . )  to solutions .(e) is a well- 
defined and bounded operator from L p ( [ O ,  oo), Rm) to 
P([O, oo), R”). The result is valid for each p in the 
range [l,m]. Estimates were provided of the operator 
nmms, in particular giving for p = 2 an upper bound 
expressed in terms of the HOO-norm of the same input- 
state map for the system in which the saturation U is not 
present. We also dealt with partially observed states, 
generalizing the result to the case where an observer is 
inserted in the feedback construction. The assumption 
of neutral stability is critical: we also obtained examples 
showing that the double integrator cannot be stabilized 

in this operator sense by any linear feedback, contra- 
dicting what may be expected from the fact that such 
systems are globally asymptotically stabilizable in the 
state-space sense. (Recently, Lin, Saberi, and Tee1 in [5] 
obtained related results, showing in particular that un- 
der the restriction that the input signals be bounded one 
can drop the stability assumption in obtaining finite- 
gain stability. See also [8, 101 and [9] for state-space 
stabilization of linear systems subject to saturation, un- 
der minimal conditions.) 

Finitagain stability, studied in the above-mentioned 
papers, means that the “energy” of inputs is amplified 
by a bounded amount when passing through the system. 
Another property which is extremely important in the 
context of feedback systems analysis is that of incre- 
mentally finate gain (“ifg”) stability. In mathematical 
terms, this latter property is the requirement that the 
operator be globally Lipschitz. That is to say, if 
ynOm is the output produced in response to a nominal 
input-U,,,, then a new input U,,,, + Au produces an 
output whose energy differs from that of yn0, by at 
most a constant multiple of the energy of the increment 
Au. This stronger notion measures sensitivity to input 
perturbations; for differentiable mappings, one would be 
asking that the derivative be bounded. In the context 
of stability, the usual formulations of the small-gain the- 
orem involve ifg stability, because fg stability by itself 
is not sufficient in order to guarantee the existence and 
uniqueness of signals (“well-posed“) in a closed-loop 
oystem; see [ll]. In the recent work [4], it is shown how 
to generalize the gap metric, so succeasful in robustness 
analysis of linear systems, to the context of ifg stabil- 
ity of nonlinear systems. Even stronger properties may 
sometimes be needed; for instance, the work in [3] re- 
quires what the author of that paper calls “differential 
stability,” which means that ifg stability holds and Fu,p 
is F’r6et differentiable as well. Motivated by this, we 
ask here if stronger properties hold for the feedback con- 
figuration studied in [SI. 

Our results can be summarized in informal terms as 
follows: 

1. The operator FOlp is continuous if p is finite, but is 
not in general continuous for p = 00. 

! 
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2. Fu,p is locally Lipschitz under additional assump- 
tions on the saturation (for p finite, a sufficient con- 
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dition is that the components of U be differentiable 
near the origin; for p = 00 one asks in addition 
that they be differentiable everywhere, with posi- 
tive derivative). A much stronger statement than 
the local Lipschitz property is established -which 
we call "semiglobal Lipschitx"- as incremental gains 
are shown to depend only on the norms of the con- 
trols; on the other hand, we also show by coun- 
terexample that these operators are not generally 
globally Lipschitz (so ifg stability does not hold). 

3. Assume that CY is continuously differentiable. For 
p = 00, we show that FPlp is Frkhet differentiable 
(under the assumption that U' is always positive), 
but this may fail for finite p .  In the latter case, 
however, we can prove that directional derivatives 
always exist. 

2 Preliminaries 
Before stating our results, first we recall some definitions 
and basic results from [6], including those of "saturation 
function" and finite gain LP-stability. 

By a saturation function ("S-function" for short) we 
mean any U : R -+ R which satisfies the following p rop  
erties: 

U is locally Lipschitz and bounded; 

ta( t )  > 0 if t # 0; 

liminft-0 +! > 0; 

0 limsup,,, +! < 30 and liminfitl-.oo la(t)l > 0. 

We remark that the locally Lipscbitz assumption on U is 
not really needed in establishing Theorem (FG) below. 
This purpose of this condition is only to guarantee that 
system (1) in Theorem (FG) has uniqueness of solutions 
for any input U. 

All the interesting saturation functions found in usual 
systems models, including the standard saturation func- 
tion ao(t) = sign(t)min{ Itl, 1) as well as the functions 
arctan(t) and tanh(t) are S-functions. 

We say that U is an R*-vaIued S-function if U = 
! C J ~ .  . . . . CJ,,)~, where each component ~i is an S-function 
and 

for 3: = ( z l  , . . . .  z,,)~ E Et". (Here we use 
denote the transpose of the vector (. - .).) 
be introduced for any initialized control system 

U(.) '2' (gl(zl), . . - 1  Un(zn>)T 

to 

We now turn to the stability definitions. These can 

3: = f(z, U ) ,  z(0) = 0 . (E) 

The state z and the control U take values in Et" and 
IR" rcispectively. With appropriate assumptions on f 

(for example f : IR" x R"' --* IR" is globally Lipschitz 
with respect to its argument (2, U)), the solution 2 of (E) 
corresponding to any input U E P([O, oo), Bm) for 1 I 
p 5 00 is well defined for all t E [O,m). When defined 
for all t E IO,m), we denote this solution 2, which is 
a priori just a locally absolutely continuous (1.a.c for 
short) function, as F ( ~ ( u ) .  

For any 1 5 p 5 00 and any vector function 2 E 
L P ( [ O ,  CO), R"), we consider the standard LP-norm 

IlXllLC- := ess ~UPo~t<ooll"(t)ll . 
(For vectors in R" we use Euclidean norm 11(11 = 

(C:=l(;)t. We use the same notation for ma- 
trices, that is, llSll is the Frobenius norm equal to 
the square root of the sum of squares of entries, i.e. 
11 ,911 =n( Sfl )l/', where Tr denotes trace.) 

We define the LP-gain of a system (E) as the norm of 
the operator F(c) that maps inputs to solutions, assum- 
ing a zero initial state. That is, the LP-gain of (E), to 
be denoted by G,, is the infimum (possibly +m) of the 
numbers M so that 

l l F ( C ) ( 4 l l L ~  I M I I 4 l L P  
for all U E LP([O1oo),Rm). (If is iindefined for 
any U E L P ( [ O ,  oo), Em). we also write Gp = x.) When 
this number is finite, we say that the operator is finite 
gain LP-itable (in more usual mathematical terms, it is 
a bounded operator). 

The main result in [6] concerns the finiteness of the 
LP-gain of (E) for a specific class of input-satiirateti lin- 
ear systems. We quote this result next. 
Theorem (FG) Let A,  B be n x n, n x rn matricea rv- 
spectively and let U be an IRm-valucd S-function. Aa- 
sume that A is neutrally stable. Then there ccists an 
m x n matriz F such that the system 

(1) 
2 = A Z + B U ( F Z + U ) ,  

.w z(0) = 0 .  

as finite gain LP-stable for all 1 5 p 5 m. 
By neutral stability, we mean a.. usual that the origin 

of the differential equation x = A z  is stable in the sense 
of Lyapunov (not necessarily asymptotically stable, of 
course; otherwise the result would he trivial from linear 
systems theory); equivalently, there is a symmetric pos- 
itive definite matrix Q which provides a solution of the 
Lyapunov matrix inequality AT& + Q A  5 0. 

The results in this paper will refer to the specific f ed -  
hack F that is found in the proof of the above-cited re- 
sult. In order to understand the dioice of F (which is the 
most natural choice of feedback to use in this context), 
we need to recall the preliminary steps in the proof of 
Theorem (FG). The first step consisted of the observa- 
tion that one can assume without loss of generality that 
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the pair (A. B) is controllable. because the trajectories 
lie in the controllability space R( A, B). Next we applied 
a change of basis to reduce A to the block-diagonal form 

where AI  is an r x r Hurwitz matrix and Az is an 
(71-r) x (n- T )  skew-symmetric matrix. (Recall that A 
is assumed to be neutrally stable.) Thus one only needs 
to obtain tiriite gain LP-stability of the subsystem cor- 
responding to A?; then feeding-back a function of these 
variables doesn't affect the finite gain LP-stability of the 
first subsystern. Since A2 is skew-symmetric and the 
pair ( Az ,  B2) is controllable, the non-saturated closed- 
loop matrix A := A2 - BzBf is Hurwitz. Therefore, the 
proof of Theorern (FG) is reduced to showing that the 
following system: 

i = Az + Bu(-BTz  + U), ~ ( 0 )  = 0 (3) 

is finite gain LP-stable for every-1 I p 5 00, provided 
that A is skew-symmetric and A = A - BBT is Hur- 
witz. This. except for two coordinate changes (first to 
restrict to the controllability space and then to exhibit 
the h o v e  tdock structure), the F used in the proof of 
Theorerii (FG) is F = - B T .  This is the standard choice 
of feedback suggested by the passivity approach to con- 
trol -for a discussion and references see [6]. 

(For completeness, we point out that, after these triv- 
ial preliminary steps, the proof of Theorem (FG) then 
centers upon the hard part, which consists of finding a 
suitable "storage function" V, and establishing for it a 
"dissipation inequality" of the form 

for z = F(x) (u ) ,  where now (E) is the system in Equa- 
tion (1) and IC, > 0 is some constant. Surprisingly, a 
nonsmooth V, is needed.) 

In conclusion, we will denote by 

the (nonlinear) input/state operator F(x)  for system (1) 
when the feedback F is chosen as in the above discus- 
sion, for any fixed U and any fixed p. 

3 ,  Regularity Properties of 
Now we are able to give the precise statement of the reg- 
ularity properties of F,,,, such as continuity, incremental 
gains, differentiability, which we will study in this paper. 

3.1 Statement of the Incremental Gain 
Results 

Recall that a K-function g : IR+ -+ IR+ is one that is 
continuous, strictly increasing, and satisfies g(0) = 0. 

Definition 1 The operator Fa,, satisfies the generul- 
ked incremental gain property (with respect to P) if 
(GIG,) there exists a K-function y such that for all U.  

v in LP([O, m), IRm), 

It is obvious that FU,, satisfies the GIG, property if 
and only if it is uniformly continuous, i.e. iff for any 
given E > 0, there exists a 6 > 0 such that IIF,,,,(u) - 
Fu,,(v)I(~p 5 E whenever 11u - ~ 1 1 ~ .  5 6. Note that if y 
is linear, this is the standard "finite incremental gain" 
property, or in mathematical terms, a global Lipschitz 
property. 

It turns out that GIG, is a very strong property. 
For most S-functions, even smooth ones, the operator 
F,,,, does not satisfy the GIG, property. For general S- 
functions U, FU,- even fails to be continuous. However. 
for restricted classes of S-functions, more precisely the 
classes C(0, and C'i+ defined below, F,,,, satisfies the fol- 
lowing SLP, property (semiglobal Lipschitz property): 

(SLP,) there exist a K-function g and a constant c > 0 
so that, for all u , v  in D'([O,oo),IR".), 

I I ~u , , (~ ) -~u ,p (~ ) I IL .  I ( c  + g(11ullL.)) 11~--2LIlL. . 

This property clearly implies the continuity of F,,,,. 
The class C(0) is defined as the class of functions U : 

R --+ IR which are globally Lipschitz, differentiable at  0 
and satisfy 

t#. 

An Rm-valued Sfunction U belongs to C(0) if each of its 
components belongs to C(o). 

The class C'i+ is defined as the class of functions 
CT : R + IR which are continuously differentiable and 
satisfy that U' is everywhere positive. An Rm-valued 
a n c t i o n  U belongs to C'*+ if each of its components 
belongs to C19+. 

The main results of this paper are summarized in the 
next theorem: 

Theorem 1 Let U be an lRm-valued S-function and let 
1 5 p 5 00. We have 

(A) For each 1 I p < 00, the following conclusions 
hold: 

(i) F,,,, is continuous, but in general does not sat- 
isfy the SLP, property. 

(ti) Assume that U belongs to C(0). Then F,,,, sat- 
isfies SLP,. 

(iii) Even for smooth non-decreasing saturation 
functions U, F,,,, does not in general satisfy 
the GIG, property. 



(B) F o r  p = 00, the following conclusions hold: 

(i') In general? Fe,, as not continuous. 
(ai') Assume that each component of U is non- 

decreasing. Then for  n = 1, Fe,oo i s  globally 
Lipschitz. If n > 1, even for m = 1 and U 

non-decreasing, need not be continuous. 
(iii') Assume that U belongs to C'y+. Then Fe,, 

satisfies SLP,. 
(iv') Even for a smooth U E Cl,+, Fe,m need not 

satisfy the GIG, property. 

3.2 Statement of the Differentiability 

We can also discuss the differentiability properties of 
Fe,p. First if U is an R"-valued S-function, we say that 
c is of class C' if each component of U is of class C', i.e. 
continuously differ entiable. We have 

Theorem 2 

Results 

1. For p = 00 and U E Cl,+, is 
Fre'chet-difierentiable. 

2. For 1 5 p < 30 and U of class C' and globally 
Lipschitz. Fe,, i s  Gdteauz-differentiable. 

We give an example in [l] to show that F,,J need not be 
FrCchet-differentiable even for smooth U. 

If U E C'*+ and U ,  v E Lm([O, ea), R"), we will use 
DF,.,( u).w to denote the differential of at ZL ap- 
plied to v. For each 1 5 p < 00 and U of class C', we use 
D ,  Fa+( U)  to denote the Giiteaux-differential of at 
U E Lp([0, m),R") in the direction U. It is well known 
that both DF,,.m(u).v and DuF,,,p(u) are given by the 
linearization of (E) along the trajectory z of (E) corre- 
sponding to U (cf. [7]). In other words, DF,,,m(u).v and 
D, F,,.p(u) are the respective solutions of the following 
time-varying initialized systems 

( C . ( p .  6.11)) ( = A[+Bu'(Fz+u)(F(+.n), ((0) = 0 ,  

where F is the m x n matrix given in the proof of The- 
orem (FG) and if U = (a1 ,...,U,), z E R", then 
-'(z\ = diag(u;(zl), . . . , &(z,,,)). 

(6) 

4 Proof of Theorem 1 (A) (ii) 
and (iii) 

In this section, we will give the complete proof of (A) (ii) 
in Theorem 1 in order to illustrate the methods used to 
establish the above mentioned results. Furthermore, in 
example (E). we will provide a smooth non-decreasing 
saturation function for which the corresponding Fa,p 
fails to satisfy the GIG, property. All the other posi- 
tive statements in Theorems 1 and 2 together with the 
counterexamples illustrturating the negative results in 
these theorerns are given in details in [l]. 

Let us start with the proof of (A) (ii). From the sketch 
of the proof of Theorem (FG) we can assume with no 
loss of generality that A is skew-symmetric a d  (A, U! 
is controllable. 

Fix now U ,  v in LP([O, co), R") with 1 5 p < 00. We 
may assume that 

I IV - U l l L P  I II4ILP 7 ( 7) 

because if IIv - ~ 1 1 ~ ~  > I ~ u I I L ~ ,  by the finite gain LP- 
stability of Fa,p we would have 

I IFU,P(V> - FU,P(U)IILP 5 IIFe,P(v)llL. + IIFU,P(~)llLP 
I Gp(llvIIL. + IlUllLP) 
5 G P ( I b  - 4 L P  + 211~11LP) 
< 3Gpllv - ~ I ) L P  9 

and we would be done. 
define b as the diagonal matrix 

diag(u;(O), . . . , uL(0)) and A as the Hurwitz matrix A- 
BI)B=.  Let P > o satisfy 

If U = (61, . . . , 

P A + A T P =  -I. (8) 

Let Amor and Am,,, be respectively the largest arid small- 
est eigenvalue of P and let 

Since U belongs to C(o), there exists an cy > 0 such that, 
for 191 5 c y ,  It1 5 (1 and t # s:  

Fix U and v in P([O, x), Rm) for which (7) holds. As 
in the proof of (iii'), letting z = F ( u )  and y = F ( I P ) .  
then z, y satisfy 

x = A l : + B a ( - B ' z + r ~ ) .  
= A y + B a ( - B T g + 1 ~ ) .  

T z(0) = y(0) = 0 .  

Write z = y - 2, h = 7) - U and let i;, ij;, t., clenote 
respectively the z-th component of BTz. B'y, B T z .  We 
have 

where 

D(t )  'kf diag(dl(t), . . . , d , ( t ) )  , 
%f di ( t )  - a:(-&(t) + % ( t ) )  - a(-.a(t) + s ( t ) )  

-E,(t)  + h,(t)  

(If & ( t ) - h , ( t )  = 0 we just let d , ( t )  = a:(O).) Let K > 0 
be a Lipschitz constant for a (more precisely, let K be 
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a Lipschitz constant for each component of 0) .  Then 
IldillL- 5 K .  S o  IlD(t)ll 5 6 K .  

Let 
E = Uzl { t Ild,(t) - r:(0)1 > p }  . 

Clearly 

U { t I Ijii(t) - vi(t)l> a}} * 

Therefore. by Tchebychev's inequality we get 

P I  I m4lL + Il.IIL) 3 

for sotiit: constant C > 0 independent of U and W .  Notic- 
ing(7) we have IEl I CIIuIIPLP, where C > Oisaconstant 
ixidepenclent of U! v. 

If we let V ( z )  = z T P z  for z E R", where P is defined 
in (8). we get along the trajectories of (9): 

V ( z ( t ) )  = -Il.t(t)l12 
- 2z(t)'PB [ ( D ( t )  - B)BTz( t )  - D(t)h( t ) ]  

I - [ 1 - 211BllllP~ll I l W  - m] llz(t)1I2 

+ 2~KIIPBIl l l~(t) l l  Ilh(t)ll- 
Therefore, along the trajectories of (9), V satisfies the 
differential inequality 

W)) I 2A(t)V(z(t)) + 2Clv1/2(~(t))l lh(t)l I  I 

V(0 )  = 0 ,  
(10) 

where 

and the constants C1, C2 and CJ are respectively equal 
to 

Let A( t )  = Jot A(s)ds. From ( l o ) ,  if W(t )  = 
e-2A(t)V (z(t,> , we obtain 

@(t )  5 2C1W'/2(t)e-A(')llh(t)(lI 

and then 

which gives 

for some I'(lluIIL,) > 0. Then the proof of (A) (ii) is 
complete. 

Let us turn now to example (E). Let U be a smooth 
non-decreasingsaturation function that satisfies the fol- 
lowing condition. There exists a 6 > 0 such that a(t) = t 
if It1 5 6 and u(t) = sign(t) if It1 >_ 1 + 6. Consider the 
1-dimensional system 

(12) 
2 = - u ( z + u ) ,  

z(0) = 0 .  

Let 1 I p < 00 be a real number. Let a > 1 + 6 .  
0 < E < 6 be two real numbers. Take two inputs U. v E 
P([O, oo), R) as follows: 

u(t) = w ( t )  = -t - 1 - 6 ,  if 0 5 t 5 a: 
u(t) = -a, 

u ( t ) '  = - E ( t - a a ) - a - ~ ,  if a < t < a + l ,  

u(t) = u(t) = 0 ,  if t > a + 1. 

Let z, y be the solutions of (12) corresponding to U. w 
respectively. Then we have for a 5 t 5 U + 1, 

z(t)  = a, y(t) = a + E(t - a).  

and 
z( t )  = 2a+ 1 - t ,y ( t )  = 2a+ E + 1 - t  

f h a + l s t 5 2 a - 6 .  Therefore 

SO, Ily - zllm 2 €(a - 1 - 6 ) l / P .  On the other hand. 

Noticing that a and E could be almost arbitrary, we 
have shown that for any a, P > 0, there exist u,w in 
-tp([O, oo), R) such that 
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