
State-Space and I /0  Stability 

for Nonlinear Systems 

Eduardo D. Sontag* 
Department of Mathematics 

Rutgers University, New Brunswick, NJ 08903 ? 

Abs t r ac t  

This paper surveys several alternative but equivalent definitions of 
"input to state stability" (ISS), a property which provides a natural frame- 
work in which to formulate notions of stability with respect to input per- 
turbations. Relations to classicM Lyapunov as well as operator theoretic 
approaches, connections to dissipative systems, and applications to stabi- 
lization of several cascade structures are mentioned. The particular case 
of linear systems subject to control saturation is singled-out for stronger 
results. 

1 I n t r o d u c t i o n  

George Zames has long been a proponent of input~output approaches to the 
analysis of control systems. Among his many  deep contributions, he pioneered 
the use of operator  techniques for determining the stabili ty of feedback con- 
figurations. These techniques focus on the est imation of bounds on solutions, 
expressed in terms of bounds on forcing functions, and allow powerful tools to 
be applied, such as small-gain theorems. Conceptually, the main compet ing 
variants of the notion of stability are based on state-space ideas, which concen- 
t rate  on the asymptot ic  stability of equilibria (or of more general a t t ractors)  
in the absence o f - - o r  subject to only s m a l l - -  external "disturbance" inputs. 
It  is the purpose of this paper to briefly survey various links between these two 
alternative paradigms of stability, through the systematic  use of the notion of 
"input to state stability" (Iss). 

Mathematically,  the state-space theory is grounded on classical dynamical  
systems; Lyapunov functions and geometric methods play a central role. In 
contrast, i npu t /ou tpu t  stability has classically had a more operator- theoret ic  
flavor and developed independently. The latter notion is arguably the most  

*Supported in part by US Air Force Grant AFOSR-91-0346 
tE-mail: sontag@hilbert .rutgers. edu 



216 

useful in many control applications, since it permits the natural quantification 
of performance bounds and it is well-behaved under operations such as cas- 
cading of systems. In addition, i /o stability provides a framework in which to 
study the classification and parameterization of dynamic controllers. It is also 
the most natural notion to consider in the context of building observer-based 
controllers. 

Based on linear systems intuition, where all notions coincide, it is perhaps 
surprising that  state-space and i /o stability are not automatically related. Even 
for feedback linearizable systems, this relation is more subtle than might ap- 
pear: if one first linearizes a system and then stabilizes the equivalent lin- 
earization, in terms of the original system one does not in general obtain a 
closed-loop system that  is input/output  stable in any reasonable sense. How- 
ever, it is always possible to make a choice of a --usually different-- feedback 
law that achieves such stability, in the linearizable case as well as for all other 
smoothly stabilizable systems. This paper presents a brief and informal survey 
of such results, and discusses precise definitions of input to state stability, non- 
linear gains, and stability margins which lend themselves to useful theoretical 
analysis. 

One important source of inspiration for our approach is the pioneering work 
of Willems ([27]), who introduced an abstract concept of energy dissipation in 
order to unify i /o and state space stability, and in particular with the purpose 
of understanding conceptually the meaning of Kalman-Yakubovich positive- 
realness (passivity), and frequency-domain stability theorems such as those 
due to Zames, in a more general nonlinear context. His work was continued by 
many authors, most notably Hill and Moylan (see e.g. [5, 6]). 

However, although extremely close in spirit, technically our work does not 
make much contact with the existing dissipation literature. Mathematically it 
is grounded instead in more classical converse Lyapunov arguments in the style 
of Massera, Kurzweil, and Zubov, 

The results reported here regarding equivalences between different notions 
of input to state stability originate with the paper [14], but the definitive con- 
clusions were obtained in recent work jointly carried out with with Yuan Wang 
in [20], which in turn built upon research with Wang and Yuandan Lin in [9] and 
[18]; the input-saturated results are based on joint papers with Wensheng Liu 
and Yacine Chitour ([10]) as well as Sussmann and Yang ([21]). Some recent 
and very relevant results by Jiang, Praty, and ]?eel ([7]) are also mentioned. 

In the interest of exposition, the style of presentation in this survey is 
informal. The reader should consult the references for more details and, in 
some cases, for precise statements. 

Acknowledgements. I wish to especially thank Yuan Wang and Zhong Ping 
Jiang for a careful reading of this manuscript and many suggestions for its 
improvement, as well as Andy Teel for suggestions concerning Theorem 2. 
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Preliminaries 

This paper deals with continuous time systems of the standard forrn 

: f ( x , u ) ,  (1) 

where x(t)E ]~n and u(t)E I~ "~. (Since global asymptotical stability will be of 
interest, there is no reason to consider systems evolving in more general mani- 
folds than Euclidean space. For undefined terminology from control theory see 
[17].) It is assumed that  f : ~ "  x ~'~--~ ~'~ is locally Lipschitz and satisfies 
f(O, 0)--0. Controls or inputs are measurable locally essentially bounded func- 
tions u : ~_>0--+1~ m. The set of all such functions is denoted by L~o,e, and one 
denotes [[u[[oo = (ess) sup{[u(t)[, t>0} < oc; when this is finite, one obtains the 
usual space n~o, endowed with the (essential) supremum norm. (Everywhere, 
[. [denotes Euclidean norm in the appropriate space of vectors, and [['H induced 
norm for matrices, while [['[[oo is used for sup norm.) For each xo E ~'~ and 
each u E L~,  x(t, xo, u) denotes the trajectory of the system (1) with initial 
state x(0) = x0 and input u. This is a priori defined only on some maximal 
interval [0, T~0,u ), with T~0,~ _< +o0. If the initial state and input are clear 
from the context, one writes just x(.) for the ensuing trajectory. The system is 
(forward-) complete if Tx0,u--+c~ for all Xo and u. 

The questions to be studied relate to the "stability," understood in an 
appropriate sense, of the input to state mapping (xo, u(-)) ~ x(-) (or, in the 
last section, when an output is also given, of the input to output mapping 
~-~ y(-)). "Ib appreciate the type of problem that  one may encounter, consider 
the following issue. Suppose that in the absence of inputs the trivial solution 
x _-- 0 of the differential equation 

= f0(x) = f (x ,0)  (2) 

is globally asymptotically stable (for simplicity, in such a situation, we'll simply 
say that  (1), or equivalently the zero-input restricted system (2), is GAS). Then 
one would like to know if, for solutions of (1) associated to nonzero controls, it 
holds that 

u ( . ) ~ 0  ~ x( . ) ,=~0 

(the "converging input converging state" property) or that  

u(.) bounded ~ x(-) bounded 

(the "bounded input bounded state" property). Of course, for linear systems 
k = Ax + Bu these implications are always true. Not only that,  but one has 
explicit estimates 

where 

I (t)t 

~0 °° = o a n d  = [[BII Ile  ll 
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for any Hurwitz matrix A, where ut is the restriction of u to [0, t], though of as 
a function in L ~  which is zero for s>t .  From these estimates both properties 
can be easily deduced. 

These implications fail in general for nonlinear systems, however, as has 
been often pointed out in the literature (see for instance [26]). As a trivial 
illustration, take the system 

= - x  + (x 2 + 1)u (3) 

and the control u(t) -= (2 t+2)  -1/2. With x0 -= vf2 there results the unbounded 
trajectory x(t)  -= (2t + 2) 1/2. This is in spite of the fact that  the system is 
GAS. Thus, the converging input converging state property does not hold. Ever 
worse, the bounded input u - 1 results in a finite-time explosion. This example 
is not artificial, as it arises from the simplest case of feedback linearization 
design. Indeed, given the system 

= x + ( x  ~ + l ) u ,  

the obvious stabilizing control law (obtained by first cancelling the nonlinearity 
and then assigning dynamics x - - - x )  is 

- 2 x  
u . - - - + v  

x 2 + l  

where v is the new external input. In terms of this new control (which might 
be required in order to meet additional design objectives, or may represent the 
effect of an input disturbance), the closed-loop system is as in (3), and thus is 
ill-behaved. Observe, however, that if instead of the obvious law just given one 
would use: 

- 2 x  
u . -  x 2 + l  x + v ,  

then the closed-loop system becomes instead 

= - 2 z - x  3 + (x ~ + 1)u. 

This is still stable when u = 0, but in addition it tolerates perturbations far 
better, since the term - x  3 dominates u(x 2 + 1) for bounded u and large x. The 
behavior with respect to such u is characterized qualitatively by the notion of 
"Iss" system, to be discussed below. More generally, it is possible to show that 
up to feedback equivalence, GAS always implies (and is hence equivalent) to the 
Iss property to be defined. This is one of many motivations for the study of the 
Iss notion, and will be reviewed after the precise definitions have been given. 

Besides being mathematically natural and providing the appropriate frame- 
work in which to state the above-mentioned feedback equivalence result, there 
are several other reasons for studying the Iss property, some of which are briefly 
mentioned in this paper. See for instance the applications to observer design 
and new small gain theorems in [24], [25], [7], and [12]; the construction of 
coprime stable factorizations was the main motivation in the original paper 
[14] which introduced the ISS concept, and the stabilization of cascade systems 
using these ideas was briefly discussed in [15]. 
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2 T h e  P r o p e r t y  ISS 

Next, four natural definitions of input to state stability are proposed and sep- 
arately justified. Later, they turn out to be equivalent. The objective is to 
express the fact that states remain bounded for bounded controls, with an ulti- 
mate bound which is a function of the input magnitude, and in particular that 
states decay when inputs do. 

2 . 1  F r o m  GAS t o  ISS - -  A F i r s t  P a s s  

The simplest way to introduce the notion of Iss system is as a generalization 
of GAS, global asymptotic stability of the trivial solution x -- 0 for (2). The 
GAS property amounts to the requirements that  the system be complete and 
the following two properties hold: 

1. (Stability): the map x0 ~-+ x(.) is continuous at 0, when seen as a map 
from IR ~ into C ° ([0, +ec) ,  IR~), and 

2. (Attractivity): lim ix(t, x0)l=0. 
~ + ~  

Note that,  under the assumption that 1. holds, the convergence in the second 
part is automatically uniform with respect to initial states xo in any given 
compact. By analogy, one defines the system (1) to be input to state stable 
(Iss) if the system is complete and the following properties, which now involve 
nonzero inputs, hold: 

1. the map (x0, u) ~+ x(.) is continuous at (0, O) (seen as a map from max  Lo~ 
to c o ([0, and 

2. there exists a "nonlinear asymptotic gain" 7E/C so that  

lira Ix(t, x0, u)l < 7(ilulloo) (4) 
t ~ + o e  

uniformly on x0 in any compact and all u. 

(The class /C consists of all functions 7 : IR_>0 -+ IR>0 which are continuous, 
strictly increasing, and satisfy 7(0) = 0. The uniformity requirement means, 
explicitly: for each r and g positive, there is a T > 0 so that  Ix(t, Xo, u)l <_ 
c +  7(HuH~) for all u and all [Xo[<_r and t >_ T.) 

In the language of robust control, the inequality (4) is an "ult imate bound- 
edness" condition. Note that this is a direct generalization of at t ract ivi ty to 
the case u ~ 0; the "lim sup" is now required since the limit need not exist. 

2 . 2  F r o m  L y a p u n o v  t o  D i s s i p a t i o n  - -  A S e c o n d  P a s s  

A potentially different concept of input to state stability arises when generaliz- 
ing classical Lyapunov conditions to certain classes of dissipation inequalities. 

A storage or energy function is a V : IR~--+ lR>0 which is continuously 
differentiable, proper (that is, radially unbounded) and positive definite ( that  
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is, V(0) = 0 and V(x) > 0 for x # 0). A (classical) Lyapunov function for the 
zero-input system (2) is a storage function for which there exists some function 
c~ of class/Coo - - t h a t  is, of class/C and so that also a(s)  ~ +co as s --+ + c o - -  
so that  

f0( ) _<_ 

holds for all x E ~n.  This means that, dV(x(t))/dt < -~ ( Iz ( t ) l )  along all 
trajectories. 

By analogy, when nonzero inputs must be taken into account, it is sensible 
to define an Iss-Lyapunov function as a storage function for which there exist 
two class/Coo functions c~ and 0 such that 

Vy(x) .  f(x, <_ o(lul )  - (5) 

for all x E l~ '~ and all u E ~m. Thus, along trajectories one now obtains the 
inequality dV(x(t))/dt < tg(lu(t)l ) - ~(Ix(t)l). 

A smooth Iss-Lyapunov function is a V which satisfies these properties 
and is in addition infinitely differentiable. Smoothness is an extremely useful 
property in this context, as one may then use iterated derivatives of V along 
trajetories for various design as well as analysis questions, in particular in so- 
called "backstepping" design techniques. 

In the terminology of [27, 6], (5) is a dissipation inequality with stor- 
age function V and supply function w(u, x) = 0(lul) - ~(Ixl). (In the con- 
text  of dissipative systems one often postulates the equivalent integral form 
V(x(t, Xo, u)) - V(xo) <_ f2 w(u(s), x(s))ds, which must hold along all trajec- 
tories, and no differentiability is required of V. Moreover, outputs y=h(x) are 
used instead of states in the estimates, so the present setup corresponds to the 
case h(x)=x.) The estimate (5) is a generalization of the one used by Brockett 
in [1] when defining "finite gain at the origin;" in that paper, the function 0 is 
restricted to be quadratic, and the concepts are only defined locally, but the 
ideas are very similar. 

2 . 3  G a i n  M a r g i n s  - -  A T h i r d  P a s s  

Yet another possible approach to formalizing input to state stability is moti- 
vated both by the classical concept of total stability and as a generalization of 
the usual gain margin for linear systems. 

In [20], a (nonlinear) stability margin for system (I) is defined as any func- 
tion p E/coo with the following property: for each admissible ---possibly non- 
linear and/or  t ime-varying--  feedback law k bounded by p, that  is, so that  

< p(l l) 

for all (t, x), the closed-loop system 

= f(x,k(t ,  x)) (6) 

is GAS, uniformly on fv. (More precisely, an admissible feedback law is a mea- 
surable func t ionk  : ~>0 x ~n~l l~ r" for which (6) is well-posed; that  is, for each 
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initial state x(0) there is an absolutely continuous solution, defined at least for 
small times, and any two such solutions coincide on their interval of existence. 
Uniformity in k means that  all limits in the definition of GAS are independent 
of the particular ~v, as long as the inequality [k(t, z)[ _< P(I~I) holds.) A system 
is said to be robustly stable if there exists some such p. 

Observe that  for arbitrary nonlinear GAS systems, in general only small 
perturbations can be tolerated (cf. total stability results). The requirement 
that p6/(;oo is thus highly nontrivial: it means that  for large states relatively 
large perturbations should not affect stability. 

2 . 4  E s t i m a t e s  - -  F o u r t h  P a s s  

A final proposed notion of input to state stability can be introduced by means 
of an estimate similar to that which holds in the linear case: 

( 5 )  ix(t, x0,u)l < Ile'Alllx01 + IIBl l  [le'A[[ds [[u, l L .  

It is first necessary to review an equivalent - - i f  somewhat less widely known- -  
definition of GAS. This is a characterization in terms of comparison functions. 
Recall that  a function of class/CE is a 

# : ~ > o X ~ _ > o ~ _ > o  

so that  #(., t) is of class /C for each fixed t > 0 and #(s, t) decreases to 0 as 
t --+ oo for each s _> 0 (example of relevance to the linear case: ce-a*s, with 
a > 0 and a constant c). It is not difficult to prove (this is essentially in [4]; see 
also [14]) that  the system (2) is GAS if and only if there exists a f lEE / :  so that  

Ix(t, xo)l < #(lxol,t) (7) 

for all t, x0. (Note that  sufficiency is trivial, since forward completeness follows 
from the fact that  trajectories stay bounded, the estimate Ix(t, Xo)I</3(tXo h 0) 
provides stability, and [x(t, Zo)] _< #(Ixoh t) --+ 0 shows attractivity. The con- 
verse is established by formulating and solving a differential inequality for 
Ix(t, xo)l.) 

In this context, it is then natural to consider the following "#+7" property: 
There exist fiE/(:/: and 7EK: so that,  for all initial states and controls, and all 
t>O: 

]x(t, Zo, u)l _< #(1~ol, t) + v(ll~,lt~). (8) 

(One could use a "max" instead of the sum of the two estimates, but the same 
concept would result. Also, it makes no difference to write lIu]too instead of the 
norm of the restriction Hu* Hoo-) This is a direct generalization of both the linear 
estimate and the characterization of GAS in terms of comparison functions. 
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2 .5  A l l  A r e  E q u i v a l e n t  

The following result was recently proved by Yuan Wang and the author: 

T h e o r e m  1 ([20]) For any system (1), the following properties: 

1. Iss (nonlinear asymptotic gain), 

2. there is an Iss-Lyapunov function (dissipativity), 

3. there is a smooth IsS-Lyapunov function, 

4. there is a nonlinear stability margin (robust stability), and 

5. there is some/3+7 estimate, 

are all equivalent. | 

The proof is heavily based on a result obtained by Wang, Lin, and the author 
in [9], which states essentially that a parametric family of systems ~b = f (x ,  d), 
with arbitrary time-varying "disturbances" d(t) taking values on a compact 
set D, is uniformly globally asymptotically stable if and only if there exists a 
smooth storage function V and an c~E/C~ so that 

V V ( x ) .  f (x ,d)  < -~(Ixl)  

for all x E ~ and values d E D. Note that the construction of a smooth V is 
not entirely trivial (this subsumes as particular cases several standard converse 
Lyapunov theorems). 

2 . 6  C h e c k i n g  t h e  Iss  P r o p e r t y  

Of course, verifying the Iss property is in general very hard --after  all, in 
the particular case of systems with no inputs, this amounts to checking global 
asymptotic stability. Nonetheless, the dissipation inequality (5) provides in 
principle a good tool, playing the same role as Lyapunov's direct method for 
asymptotic stability. Actually, even more useful is the following variant, which 
is the original definition of "Iss-Lyapunov function" in [14]. Consider a storage 
function with the property that  there exist two class/C functions c~ and X so 
that the implication 

lxl > x(lul) :* V V ( x ) - f ( x , u )  <_ -c~(Ix]) (9) 

holds for each state x E ~ and control value u E ~'~. It is shown in [20] 
that the existence of such a V provides yet another necessary and sufficient 
characterization of the ISS property. (Other variants are also equivMent, for 
instance, asking that  a be of class/Coo.) 

As an illustration, consider the following system, which will appear again 
later in the context of an example regarding the stabilization of the angular 
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momentum of a rigid body. The state space is ]~, the control value space is ~2, 
and dynamics are given by: 

= - x  3 +X2Ul - xu2 + u l u 2 .  (10) 

This system is GAS when u _-- 0, and for large states the term - x  a dominates, 
so it can be expected to be ISS. Indeed, using the storage function V ( x )  x2 /2  
there results 

provided that 3[ul I_< txl and 3[u21 _<x 2. A sufficient condition for this to hold 
is that lu l_  v(Ixl) , where t , ( r ) : - -  mAn(r/3, r2/3}. Thus V is an Iss-Lyapunov 
function as above, with •(r) -- (2/9)r  4 and X -- ~ - 1  

Another example is as follows. Let SAT : ]~--+]1~ be the standard saturation 
function: SAT[r] -- r if lrl_< 1, and SAT[r] ---- sign(r) otherwise. Consider the 
following one-dimensional one-input system: 

~: ----- -- SAT[x + U]. (11) 

This is an ISS system, as will be proved next by showing that 

x 2 
V ( x )  := Izl3 + - -  (12) 

3 2 

is an Iss-Lyapunov function. Observe that  V is once differentiable, as required. 
This is a very particular case of a more general result dealing with linear systems 
with saturated controls, treated in [10]; more will be said later about the general 
case (which employs a straightforward generalization of this V). 

To prove that  V satisfies a dissipation inequality, first note that,  since I r -  
SAT[r]I ~ r SAT[r] for all r, 

IX -- SAT[X÷U][ < IX--[-U-- SAT[x÷U][ + lul _< (X'4"U)SAT[x÷u] ÷ lUI(13) 

for all values x E ~  and u E ~ .  It follows that 

--xSAT[X -{- U] ---- X(--X) -Jc X(X -- SAT[x -~ U]) 

< _ . 2  + f*l(x + ~)SAT[X + ~] + f*flur 

for all x, u. On the other hand, using that  SAT[r] ~ 1 for all r, 

--IxlxSXT[X + u] -- I~1 [ - ( x  ÷ U)SAT[x + u] -4- uSAT[x ÷ U]] 

< -Ixl(~ + U)SAT[~ + 4] + lxil~l- 

Adding the two inequalities, it holds that  

- (1 + I~t)~SAT[x + u ] <  _ , 2  + 21~llul (14) 

so that indeed 

x 2 
VV(x)  • f ( x ,  u) < - - - ~  + 2u 2 

as desired (note that  V V ( x )  = x(1 + Ixl)). 
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2.7 Relat ions  A m o n g  Est imates ,  Zero-State  Responses ,  
and Linear Gains 

There are many relationships among the various estimates which appear in the 
alternative characterizations of ISS. Two of them are as follows. 

Assume that V is a storage function satisfying the estimates in Equation (5): 

VY(x) -  f ( x ,  u) < ~4(lul) - ~3(Jxl) (15) 

for some/Coo functions O~ 3 and c~4. Since V is proper, continuous, and positive 
definite, there are as well two other class/Coo functions ~1 and a'2 such that  

~l(Ixl) _<_ V(x) < ~ ( l x l )  (16) 

for all x E It~ '~. It then holds that  one may pick an asymptotic gain 7 in 
Equation (4) of the form: 

7 = ~1-1°~2°~31°~4. (17) 

Moreover, if instead of (15) there holds a slightly stronger estimate of the form 

VV(x) -  f ( x , u )  < ~ ( l u l )  ~ 3 ( I x l ) -  ~(Izl) 

where c~ is any class/C function, then the 3' function in the "•+7" property (8) 
can also be picked as in Equation (17). These conclusions are implicit in the 
proofs given in [14] and [20]. 

For trajectories starting at the particular initial state Xo = 0, for any in- 
put function u, and assuming only that V satisfies (15)-(16), it holds that  
Ix(t, O, u)l_<7(llullo~) for all t>0 ,  not merely asymptotically, for the same 7 as 
in (17), that is, 

II (,0,u)llo  < 7(llull ). 

Thus the zero-state response has a "nonlinear gain" bounded by this 7. 
A particular case of interest is when both of (a l ,  c~2) and (a3, a4) are convex 

estimate pairs in the following sense: a pair of class /C functions (a, fl) is a 
convex estimate pair if a and/3  are convex functions and there is some real 
number k > 1 such that  /~(r) < ks(r)  for all r > 0. Note that  for any convex 
function a in/~ and any k > 1 it holds that  a- l (ka(r ) )< kr for all nonnegative 
r, from which it follows that a - l ( / ? ( r ) )  < kr if k is as in this definition. One 
concludes that  if each of (a l ,  a2) and (43, a4) is a convex estimate pair, then 
the gain 7 can be taken to be bounded by a linear function. In other words, 
the input to state operator, starting from x0 = 0, is bounded as an operator 
with respect to sup norms: 

0, u)ll  _< g Ilulloo • 

This is the standard situation in linear systems theory, where V is quadratic 
(and hence admits estimates in terms of oq and ¢~2 of the form cir 2, where cl 
and c~ are respectively the smallest and largest singular values of the associated 
form) and the supply function can likewise be taken of the form c41ul 2 - c31zl 2. 
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So finiteness of linear gain, that  is, operator boundedness, follows from con- 
vexity of the estimation functions. Somewhat surprinsingly, for certain linear 
systems subject to actuator saturation, convex (but not quadratic) estimates 
are also possible, and this again leads to finite linear gains. For example, this 
applies to the function V in Equation (12), as an Iss-Lyapunov function for 
system (11): there one may pick c~ = (~1 = (~ = r3/3 + r2/2, which is con- 
vex since all(r) = 2r + 1 > 0, while a3 and c~4 can be taken quadratic (cf. 
Equation (14)). 

, As an additional remark, note that,  just  from the fact that  V is nonnegative 
and V ( 0 ) =  0, and integrating the dissipation inequality (5), for x0 = 0 there 

results the inequality f : ~  a(Ix(t  , O, u)l)dt <_ f : ~  O([u(t)[)dt. In this manner,  
it is routine to use dissipation inequalities for proving operator boundedness in 
various pth norms (in particular, when a ( r ) = c l r  2 and O(r)=c~r 2 one is esti- 
mating "H ~ "  norms). But in the current context, more general nonlinearities 
than powers are being considered. 

It is also interesting to note that,  if V and a are so that  the estimate (9) is 
satisfied, then there is some 0 so that  the dissipation estimate (5) also holds, 
with these same V and a. 

3 I n t e r c o n n e c t i o n s  

It is by now well known, and easy to prove, that the cascade of two Iss systems 
is again lSS (in particular, a cascade of an ISS and a GAS system is GAS), It is 
interesting to observe that  this statement can be understood very intuitively 
in terms of the dissipation formalism, and it provides further evidence of the 
naturali ty of the ISS notion. In addition, proceeding in this manner, one obtains 
a Lyapunov function (with strictly negative derivative along trajectories) for 
the cascade. 

T h e o r e m  2 Consider the system in cascade form 

= : ( z ,  x) 
= g(x, u) [ - I I - I 

where f(O, O)= g(O, O)= O, the second equation is ISS, and the first equation is 
tss when x is seen as an input. Then the composite system is Iss. II 

The proof can be based on the following argument. First one shows that  it is 
possible to obtain storage functions V1 and V~ so that  V1 satisfies a dissipation 
estimate 

VV~(z) • f(z, x) <_ O(Ix[) - o~([z[) 

for the first subsystem, while V2 is a storage function for the x-subsystem so 
that  

vv (x). _<  (tul) - 2 o ( f x l ) .  



226 

Then V~(z) + V2(x) is a storage function for the compositesystem, which satis- 
fies the dissipation inequality with derivative bounded by O(lul)-O(Ixl)-o4izt).  

A beautiful common generalization of both the cascade result and the usual 
Small-Gain Theorem was recently obtained by Jiang, Teel, and Praly. We write 

~ 7 for two functions of class/C if there is some p E ~  so that ~ = ( I + p )  o 7. 

U:& v 
Figure 1: Composite Feedback Form 

T h e o r e m  3 ([7]) Consider a system, in composite feedback form (cf. Figure I): 

= g(z, x, v) 

= f (x ,  z, u) 

where u, v are the inputs to the composite system. Assume: 

• Each of ~ = f ( x , z , u )  and ~ = g (z ,x ,v )  is an ~SS system, when (z ,u)  
and (x, v) are considered as inputs respectively; let 71 and 72 denote the 
gains for the x and z subsystems, in the sense of the estimate of type (8). 

• The following small-gain condition holds: there are x/1 >.- 71 and z/2 ~- 72 
so that (z/1 o ~/2)(r) < r and (z/2 o z/1)(r) <_ r for all r>_O. 

Then, the composite system is Iss. | 

(Note that  in the special case in which the 7i(r) = gir, the small gain con- 
dition is satisfied iff glg~ < 1, thus generalizing the usual case.) It is important  
to note that the result in [7] is far more general; for instance, it deals with 
partially observed systems and with "practical stability" notions. Also, the 
small gain condition can be stated just in terms of the gains with respect to 
the z and x variables. Related to these results is previous work on small-gain 
conditions, also relying on comparison functions, in [13, 11]. 

A different cascade form, with an input feeding into both subsystems, is 
of interest in the context of stabilization of saturated linear systems (using 
an approach originally due to Teel, cf. [22]) and in other applications. This 
provides yet another illustration of the use of ISS ideas. The structure is (cf. 
Figure 2): 

= f ( z ,  x, u) 

= g ( x ,  

First assume that  a (locally Lipschitz) feedback law k can be found which 
makes the system ~ = f ( z ,  x, k(z)) GAS uniformly on x, that  is, f(0,  x, k (0) )=0 
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Figure 2: Special Cascade Configuration 

for all x and an estimate as in (7), Iz( t ) l~f l ( Iz(O)l , t )  holds, which is indepen- 
dent of x(t) .  Suppose also that  the x subsystem is Iss. Then, the feedback law 
u = k(z )  gives closed-loop equations i = f ( z ,  x, k(z)) ,  k = g(x,  k(z)); because 
x is essentially irrelevant in the first equation, these equations behave just  as 
a cascade of a GAS system (the z-system) and an Iss one, so the GAS property 
results as before. (More precisely, this is because it is still possible to find a 
Lyapunov function which depends only on z for the z-subsystem, due to the 
assumed uniformity property; see [9].) The interesting fact is the same global 
conclusions hold under more local assumptions on the z-subsystem. Assume: 

• The z-subsystem is stabilizable with small feedback, uniformly on x small, 
meaning that  for each 0 < c < s 0  there is a (locally Lipschitz) feedback law 
k~ with Ik~(z)t_~s for all z so that  i = f ( z ,  x, k~(z)) is GAS uniformly on 
lx l_~e0; further, under the feedback law u =  k~(z) the composite system 
is forward complete (solutions exist for all t :> 0). 

• The x subsystem is ISS. 

(Later we discuss an interesting class of examples where these properties are 
verified.) Then, the claim is that, for any small enough c > 0, the composite 
system under the feedback law u = ke(z) is GAS. Stability is clear: for small 
x and z, trajectories coincide with those that  would result if uniformity would 
hold globally on x (eft the previous case). We are left to show that  every 
solution (x(.), z(-)) satisfies x(t)  --* 0 and z(t)  --* 0 as t -+ +oo. 

To establish this fact, pick any ~ as follows. Let 7 be a "nonlinear asymptot ic  

gain" as in Equation (4), so that lira Ix(t, xo, u)l < 7(llulloo) for all inputs and 

initial conditions. Now take any 0<~<¢0 so that 7(c)<s0.  Pick any k~ so that  
]k~(z)l < c for all z. Consider any solution (x(.), z(.)). Seeing v(t) = k~(z(t))  
as an input to the x-subsystem, with Ilvtloo <¢, the choice of 7 means that  for 
some T, t _>T implies Ix(t)l < ~0. It follows that z(t)  --+ O. Now the second 
equation is an Iss system with an input v(t) --+ O, so also x( t )  --~ 0, as required. 

4 A n  Example  

As a simple illustration of the use of the ISS concept, we may consider the 
oft-studied problem of globally stabilizing to zero the angular momentum of a 
rigid body which is controlled by means of two external torques applied along 
principal axes, and suggest an alternative way of achieving this objective using 
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lss ideas. (This may represent a model of a satellite under the action of a 
pair of opposing jets.) The components of the state variable w = (wl,w2,w3) 
denote the angular velocity coordinates with respect to a body-fixed reference 
frame with origin at the center of gravity and consisting of the principal axes. 
Letting the positive numbers I1 , /2 , /3  denote the respective principal moments 
of inertia (positive numbers), this is a system on ~3, with controls in ~2 and 
equations: 

Iw = S(03)I~ + B u ,  (18) 

where I is the diagonal matr ix  with entries I1,/2, I3 and where B is a matr ix in 
]R 3×2 whose columns describe the axes on which the control torques apply. Since 
it is being assumed that the two torques act along two principal axes, without 
loss of generality the columns of B are (0, 1,0)' and (0, 0, 1)' respectively. The 
matr ix  S(03) is the rotation matr ix  (0 --('g2 

S(03)= -03a 0 
032 --031 

Dividing by the I j ' s ,  and applying the obvious feedback and coordinate trans- 
formations, there results a system o n  ]~3  of the form: 

X l  ~ X2X3 

x2 = ul 

X3 : n 2  

where ul and u2 are the controls. 
To globally stabilize this system, and following the ideas of [1] for the cor- 

responding local problem, one performs first a change of coordinates into new 
coordinates (x, zl, z2), where x = xl  and 

X2 ~-~ - - X l  ~ Z l ,  X3 : X 2--[- z 2 .  

The system is now viewed as a cascade of two subsystems. One of these is 
described by the x variable, with zl and z2 now thought of as inputs, and the 
second one is the zl, z2 subsystem. The first subsystem is precisely the one 
in example (10), and it is therefore ISS. Since a cascade of an ISS and a GAS 
system is agMn GAS, it is only necessary to stabilize the zl, z~ subsystem. In 
other words, looking at the system in the new coordinates: 

= - x  3 + x 2 z l  - x z 2  + z l z 2  

~ = n~ + ( - x  + ~)  (x ~ + z~) 

~ = u2 - 2~ ,  ( - ~  + z l )  (x  ~ + z2) , 

any feedback that  stabilizes the last two equations will also make the composite 
system GAS. One may therefore use 

i l l  "-" - - X l  - -  X2 ~ X2X3 , U2 : - -X3  Jv X 2-~" ~ X l X 2 X 3  , 
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which renders the last two equations 41 = - z l  and 42 = - z ~ .  As a remark, note 
that a conceptually different approach to the same problem can be based upon 
zero dynamics techniques ([2, 23]). In that context, one uses Lie derivatives 
of a Lyapunov function for the x-subsystem in building a global feedback law; 
see the discussion in [17], Section 4.8. For the present rigid body stabilization 
problem, the feedback stabilizing law obtained using that approach would be 
as follows ([2]): 

ul = - - x l - - x 2 - - x 2 x 3 - - 2 x l x 3 ,  u~ = - - x a + 3 x ~ + 2 x l x 2 x 3 .  

5 Linear Systems  wi th  Actuator  Saturat ion 

For linear systems subject to actuator saturation, more precise results regarding 
stabilization can be obtained. The objective is to study control problems for 
plants P that can be described as in Figure 3, where W indicates a linear 
transfer matrix. For simplicity, we consider here just the state-observation 

.I I .I w(s) I ! 
-I / I -I I i 

P ,  
! 

t .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  d 

Figure 3: Saturated-Input Linear System 

case, that is, systems of the type 

= Ax + BSAT[u] . (19) 

By an Lp-stable system one means that the zero-initial state response induces 
a bounded operator Lp --* Lp. The following result was recently obtained by 
W. Liu, Y. Chitour, and the author (see also [3] for related results on input to 
state dependence for such systems): 

T h e o r e m  4 ([10]) Assume that the pair (A, B) is controllable and that A is 
neutrally stable (i.e., there is some symmetric positive definite Q so that ATQ+ 
QA <_ 0). Then, there exists a matrix F so that the system 

~c = Ax + BSAT[Fx + u] 

is Lp-stable for each 1 < p < co. • 

The fact that  GAS can be achieved for such systems is a well-known and 
classical application of dissipation ideas, and a quadratic Lyapunov function 
suffices; obtaining the ISS property, and in particular operator stability, is far 
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harder. Not surprisingly, the proof involves establishing a dissipation inequality 
involving a suitable storage function. What  is perhaps surprising is that  the 
storage function that  is used is only of class C I, in general not smooth: V is of 
the form x I P z +  ]xl 3, for some positive definite P.  One establishes by means of 
such a V that the system is ISS. Since the used V admits convex estimates (in 
the sense discussed in Section 2.7), stronger operator stability conclusions can 
be obtained. The second example given in Section 2.6 (system (11) and storage 
function (12)) illustrates the detailed calculations in a very simple case. 

The hypotheses in Theorem 4 can be relaxed considerably. For instance, 
controllability can be weakened, and the result is also valid if instead of SAT 
one uses a more general bounded saturation function ~r which satisfies: (1) near 

the origin, c~ is in a sector [nl, ~2]: 0<Xl_< a--~<n2 for all 0 < l r l < l  , and (2) 
s i gn ( r ) c r ( r )>x>0  if l r l> l .  

A different line of work concerns linear systems subject to control saturation 
in the case in which the matrix A is not stable, but still has no eigenvalues with 
positive real part. This is the case, for instance, if A has a Jordan block of 
size at least two corresponding to an eigenvalue at the origin (the multiple 
integrator). In that  case, Lp stabilization is not possible, but, since the system 
is open-loop null-controllable (assuming as in Theorem 4 that  the pair (A, B) 
is controllable, or at least stabilizable as a linear pair), it is realistic to search 
for a globally stabilizing feedback. 

A first result showing that a smooth globally stabilizing feedback always 
exists was given in work by Sussmann and the author ([19]). A remarkable 
design in terms of combinations of saturations was supplied by Teel ([22]), for 
the particular case of single-input multiple integrators, and a general construc- 
tion based on Teel's ideas was completed recently in work of Sussmann, Yang, 
and the author ([21]). For simplicity, call a function IR '~ ~ IR ~ each of whose 
coordinates has the form 

~lX + O~1 SAT[~2X + 012SAT[... SAT[~s_lX "+" O:s_ 1 SAT[~sX]]...]] 

for some s and some real numbers ai and linear functionals Ti a cascade of 
saturations, and one for which coordinates have the form 

~1 SAT[~lX] "~ Ol2 SAT[~2X] + . . -  "~ Ols SAT[wsx] 

a superposition of saturations. (In the terminology of artifieiM neural networks, 
this last form is a "single hidden layer net.") There are two results, one for 
each of these controller forms: 

T h e o r e m  5 ([21]) Consider the system (19), where the pair (A, B)  is sta- 
bilizable and A has no eigenvalues with positive real part. Then there ex- 
ist a cascade of saturations k and a superposition of saturations ~ so that 

= Az + BSAT[k(z)] and x = Ax  + BSAT[g(X)] are both GAS. | 

(The coefficients o~i in the second case can be chosen arbitrarily small, which 
means that  the second result could Mso be stated as stability of x = A x + B g ( x )  
since the saturation is then irrelevant.) 
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For cascades of saturations, this design proceeds in very rough outline as 
follows (the superposition case is similar). A preliminary step is to bring the 
original system (19) to the following composite form: 

= Alz  + B I ( - F x +  SAT[U]) 

= A2x -Jr B2 SAT[U], 

where F is a matr ix  which has the property that  the system ~ = A2x + 
B2sAw[Fx + u] is Iss. (An example of such F is provided by the case x = 
--saw[x + u], shown earlier to be Iss, and more generally the case treated in 
Theorem 4.) Further, it is assumed that  for each e > 0 sufficiently small there 
is a (locally Lipschitz) feedback law k~ with IkE(z)l < c for all z and so that  

= A l z  + Bike(z)  is has .  Now the feedback law 

u = F z + k ~ ( z )  

is so that for small x and g the z-equation is GAS independently of x (in fact, 
the x variable is completely cancelled out), and hence the discussion given in 
connection with Figure 2 applies. Thus the composite system is stabilized, 
assuming only that the z-subsystem can be stabilized with small feedback. 
Moreover, Fx  + Ice(z) has a cascade form provided that  ke be a saturation of a 
cascade. These assumptions can be in turn obtained inductively, by decompos- 
ing the z equation recursively into lower dimensional subsystems. (More pre- 
cisely, instead of SAT one may use a scaled version with smaller lower bounds, 
SATe[r] --~ ~SAT[r/(~], and the proof is the same. This provides the small feed- 
back needed in the inductive step.) See [21] for details as well as a far more 
general result, which allows many other saturation functions ~r instead of SAT. 

6 Feedback Equivalence 

As mentioned earlier, with the concept of Iss, it is possible to prove a general 
result on feedback equivalence. Consider two systems 

5 ¢ = f ( x , u )  and x = g ( x , u )  

with the same state and input value spaces (same n, m). These systems are 
feedback equivalent if there exist a smooth ~v : ~n---~I~ m, and an m × m matr ix  
F consisting of smooth functions having det F(x) ¢ 0 for all x, such that  

g(x, u) -=- f (x ,  ~v(x) + F(x)u) 

for all x and u (see Figure 4). The systems are strongly feedback equivalent if 
this holds with 17 = I (see Figure 5). 

Strong equivalence is the most interesting concept when studying actua- 
tor perturbations, while feedback equivalence is a natural concept in feedback 
linearization and other design techniques. 
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Figure 4: Feedback Equivalence 

U 

Figure 5: Strong Feedback 
Equivalence 

The system (1) is stabilizable if there exists a smooth function g, (with 
fv(0)=0) so that  

= f ( x , k ( z ) )  

is GAS. Equivalently, the system is strongly feedback equivalent to a GAS 
system. It is Iss-stabilizable if it is feedback equivalent to an ms system. 

T h e o r e m  6 ([14, 16]) The following properties are equivalent, for any system: 

• The system is stabilizable. 

• The system is Iss-stabilizable. 

For systems affine in controls u (that is, f ( x ,  u) is affine in u) the above are 
also equivalent to strong feedback equivalence to ISS .  | 

7 Input/Ouput Stability 0os) 
Until here, only input to state stability was discussed. It is possible to give an 
analogous definition for input/output  operators. This will be done next, and 
a result will be stated which shows that  this property is equivalent to internal 
stability under suitable reachability and observability conditions, just as with 
linear systems (cf. for instance Section 6.3 in [17]). 

An i/o operator is a causal map F : L~,~ ~ L~,e. (More generally, partially 
defined operators can be studied as well, but since only the stable case will be 
considered, and since stability implies that F is everywhere defined, there is no 
need to do so here; see [14] for more details.) 

The i/o operator F is input/output stable 0os)  if there exist two functions 
flEK£ and 7E/C so that 

for all pairs 0 < T < t (a.e.) and all u E L~,+. Here ut denotes as earlier the 
restriction of the input u to [0, t] and u t denotes its restriction to It, +c¢), in 
both cases seen as elements of L~,  e having zero value outside of the considered 
range. This notion is well-behaved in various senses; for instance, it is closed 
under composition (serial connection), and u ~ 0 implies F(u)  --* O. 
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Consider now a control system x = f (x ,  u) with outputs 

y = h(x) (20) 

where h : ~'~---~P is continuous and satisfies h(0)=0.  With initial state x0=0,  
this induces an operator 

F(u) ( t )  := h(x(t, O, u)) 

(a priori only partially defined). The system (1)-(20) is called Ios if this oper- 
ator is. 

The system with outputs (1)-(20) is well-posed observable ("strongly" ob- 
servable in [14]) provided that  the following property holds: there exist two 
functions a l , a 2  of class )~ such that ,  for each triple of state, control, and 
output  functions on t >__ 0 

(x(.), y(.)) 

satisfying the equations, the norms of these functions necessarily satisfy 

JJxllo~ < ~l(liuJl~) + ~(l lyli~).  (21) 

Analogously, one has a notion of a well-posed reachable system (1). This is a 
system for which there is a function a3 of class ~ with the following property: 
for each x 0 E ~  n there exists a time T > 0  and a control u so that  

and so that  x(T, O, u)=xo.  
For linear systems, these properties are equivalent to observability and 

reachability from zero respectively. In general, the first one corresponds to the 
possibility of reconstructing the state trajectory in a regular fashion ---similar 
notions have been studied under various names such as "algebraic observabil- 
ity" or "topological observability" - -  and the second models the situation where 
the energy needed to control from the origin to any given state must be in some 
sense proportional to how far this state is from the origin. The proof of the 
following result is a routine argument, and is quite similar to the proofs of 
analogous results in the linear case as well as in the dissipation literature: 

T h e o r e m  7 ([14]) / f  (1) is Iss, then (1)-(20) is IOS. Conversely, if (1)-(20) 
is IOS, well-posed reachable, and well-posed observable, then (1) is ISS. | 

Many variants of the notion of IOS are possible, in particular in order to 
deal with nonzero initial states ([8, 7]), or to study notions of practical stability, 
in which convergence to a small neighborhood of the origin is desired. Also of 
interest, is the study of the Ios (or even ms) property relative to at t ract ing 
invariant sets, not necessarily the origin and not even necessarily compact; see 
([8, 9]) for instance. 
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