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Abstract

It is shown that the existence of a continuous control-
Lyapunov function (CLF) is necessary and sufficient
for null asymptotic controllability of nonlinear finite-
dimensional control systems. The CLF condition is ex-
pressed in terms of a concept of generalized derivative
that has been studied in set-valued analysis and the the-
ory of differential inclusions with various names such as
“upper contingent derivative.” This result generalizes
to the non-smooth case the theorem of Artstein relating
closed-loop feedback stabilization to smooth CLF’s. It
relies on viability theory as well as optimal control tech-
niques. A “non-strict” version of the results, analogous
to the LaSalle Invariance Principle, is also provided.

1. Introduction

We deal with systems of the general form
ẋ(t) = f(x(t), u(t)) (1)

where the states x(t) take values in a Euclidean space
X = Rn, the controls u(t) take values in a metric space
U , and f is locally Lipschitz. A widely used technique
for stabilization of this system to x=0 relies on the use
of abstract “energy” or “cost” functions that can be
made to decrease in directions corresponding to possi-
ble controls. This approach is based on having a “Lya-
punov pair” (V,W ), consisting of two positive definite
functions V,W : X → R≥0, with V continuously dif-
ferentiable and proper (“radially unbounded”) and W
continuous, so that for each state ξ ∈ X there is some
control-value u=uξ with

Df(ξ,u)V (ξ) ≤ −W (ξ) . (2)
Here, DvV (ξ) = ∇V (ξ).v is the directional derivative
of V in the direction of the vector v. This property
guarantees that for each state ξ there is some control
u(·) such that, solving the initial-value problem (1) with
x(0) = ξ, the resulting trajectory satisfies x(t)→0 as
t→+∞. The argument is standard; see for instance the
textbook [9]. A function V which is part of a Lyapunov
pair is generically called a control-Lyapunov function,
henceforth abbreviated “CLF.”

The CLF paradigm is extremely powerful. It suggests
the search for stabilizing inputs by iteratively solving a
static nonlinear programming problem: when at state ξ,
∗Supported in part by US Air Force Grant F49620-95-1-0101
†Supported in part by NSF Grant DMS92-02554
‡Full version of paper available by electronic mail.

find u such that Equation (2) holds. The idea underlies
feedback control design (see the references in [10], and
e.g. the many examples in Section 3.6 of the textbook
[8]), the optimal control approach of Bellman, “artificial
intelligence” techniques based on position evaluations in
games and “critics” in learning programs, and can be
found in “neural-network” control design (see e.g. [6]).
An obvious fundamental question arises: is the existence
of a continuously differentiable CLF equivalent to the
possibility of driving every state asymptotically to zero?

If the question is stated in this form, then it is well-
known that the answer is negative. For instance, if con-
trols are in Rm, and f(x, u) = f0 +

∑m
i=1 uifi(x) is affine

in u, the existence of a CLF would imply that there is
some feedback law u=k(x) so that the origin is a glob-
ally asymptotically stable state for the closed-loop sys-
tem ẋ = f(x, k(x)) and k is continuous on Rn \ {0}.
(This was proved by Artstein in [1]; cf. also [4, 7, 11]).
But continuous feedback may fail to exist, even for very
simple controllable systems (see e.g. [9], Section 4.8).

The first main result of this paper —Theorem 1—
says that the question has a positive answer provided
that we relax the differentiability assumption on V to
merely continuity and we re-interpret the directional
derivative appearing in Equation (2) as a generalized di-
rectional derivative, well-known in the literature of Set-
Valued Analysis and Differential Inclusions, under vari-
ous names such as the “upper contingent derivative,” or
“contingent epiderivative”. (For technical reasons, one
must allow derivatives in directions in the closed convex
hull of the velocity set f(ξ, U).) In §2 we present the pre-
cise definitions of asymptotic controllability and CLF,
and state and prove the equivalence between asymptotic
controllability and existence of a continuous CLF in the
sense of generalized derivatives. The proof follows im-
mediately by combining the main result in [10], which
gave a necessary condition expressed in terms of Dini
derivatives of trajectories, with results from [2].

Thus, asymptotic controllability implies the existence
of a “Lyapunov function” in the strict sense that deriva-
tives are negative for nonzero states. In analogy with
ordinary differential equations, one may ask when the
existence of a “weak CLF,” for which W is only required
to be nonnegative, suffices for the converse. We answer
this with a control theory version of the LaSalle Invari-
ance Principle, stated in §3 — Theorems 2 and 3— and
proved in §5, using two technical lemmas about the rela-
tionships between local and global decrease, given in §4.



2. Asymptotic Controllability and CLF’s

Throughout this paper, we write R≥0={r ∈ R : r≥0},
and use I to denote the set of all subintervals I of
R≥0 such that 0∈I; thus, I∈I iff either (i) I=R≥0, or
(ii) I=[0, a) for some a>0, or (iii) I=[0, a] for some a≥0.
If µ is a map, we will use D(µ) to denote the domain of
µ, and µ|S to denote the restriction of µ to a subset S
of D(µ). For any subset S of Rn, we use co(S) to denote
the closed convex hull of S.

We consider systems as in (1) and assume that a dis-
tinguished element called “0” has been chosen in the
metric space U . We let Uρ denote, for each ρ ≥ 0, the
ball {u | d(u, 0) ≤ ρ}, and assume also that each set Uρ is
compact. (Typically, U is a closed subset of a Euclidean
space Rm and 0 is the origin.) The map f : X×U → Rn
is assumed to be locally Lipschitz with respect to (x, u)
and to satisfy f(0, 0) = 0. (The Lipschitz property with
respect to u can be weakened, but we will need to quote
results from [10], where this was made as a blanket as-
sumption.) A control is a bounded measurable map
u : Iu → U , where Iu ∈ I. We use ‖u‖ to denote the
essential supremum norm of u. i.e.

‖u‖ = inf{ρ |u(t) ∈ Uρ for almost all t ∈ Iu} .
To avoid confusion with the sup norm of the controls,
we will use |ξ| to denote the Euclidean norm of vectors
ξ in the state space X.

We let S denote the class of all systems (1) that satisfy
the above conditions. For a system in S, if ξ ∈ X and u
is a control u, we let φ(t, ξ, u) denote the value at time t
of the maximally defined solution x(·) of (1) with initial
condition x(0) = ξ. Then φ(t, ξ, u) is defined for t in
some relatively open subinterval J of Iu containing 0,
and either J = Iu or limt→sup J |φ(t, ξ, u)| = +∞.

The next definition expresses the requirement that
for each state ξ there should be some control driving ξ
asymptotically to the origin. As for asymptotic stability
of unforced systems, we require that if ξ is already close
to the origin then convergence is possible without a large
excursion. In addition, for technical reasons, we rule
out the unnatural case in which controlling small states
requires unbounded controls.

Definition 2.1 The system (1) is (null-)asymptotically
controllable (henceforth abbreviated “AC”) if there exist
nondecreasing functions θ, θ̃ : R≥0 → R≥0 such that
limr→0+ θ̃(r) = 0, with the property that:

• For each ξ ∈ X there exist a control u : R≥0 → U
and corresponding trajectory x(·) : R≥0 → X such
that x(0) = ξ, x(t) → 0 as t → +∞, ‖u‖ ≤ θ(|ξ|),
and sup{|x(t)| : 0 ≤ t <∞} ≤ θ̃(|ξ|).

Remark 2.2 A routine argument involving continuity
of trajectories with respect to initial states shows that
the requirements of the above definition are equivalent
to the following much weaker pair of conditions:

1. For each ξ ∈ X there is a control u : R≥0 → U that
drives ξ asymptotically to 0 (i.e. x(t) := φ(t, ξ, u) is
defined for all t ≥ 0 and x(t)→ 0 as t→ +∞);

2. there exists ρ > 0 such that for each ε > 0 there is a
δ > 0 such that for each ξ ∈ X with |ξ| ≤ δ there is
a control u : R≥0 → Uρ that drives ξ asymptotically
to 0 and is such that |φ(t, ξ, u)| < ε for all t ≥ 0.

We point out, however, that Definition 2.1, as stated,
makes sense even for the more general class S∗ of sys-
tems (1) in which f is completely arbitrary (i.e. not nec-
essarily locally Lipschitz or even continuous), and the
set of control values is state-dependent, i.e. an additional
requirement u ∈ Û(x) is imposed, where Û : X → 2U is
a multifunction with values subsets of U . This includes
in particular the situation when U = X and f(x, u) = u,
in which case the system (1) is a differential inclusion
ẋ ∈ F (x). On the other hand, the formulation in terms
of Conditions 1 and 2 above does not make sense for
general systems in S∗ (since φ(t, ξ, u) need not be well
defined), and the equivalence between the two formula-
tions depends on the fact that each fixed control gives
rise to a flow, which is true for systems in S but not for
systems in S∗.

Throughout the paper, systems of the form (1) are as-
sumed to be in S unlesss otherwise stated, so we will use
indistinctly the two forms of the definition of AC. The
only exception is the end of Section 4, where we will
want to compare systems in S with differential inclu-
sions —which belong to S∗ but not necessarily to S—
so we will have to use Definition 2.1 as stated rather
than Conditions 1 and 2.

We now introduce an object widely studied in Set-
Valued Analysis (cf., for instance, [2], Def. 1 and Prop.
1 of Section 6.1, where it is called the “upper contingent
derivative.”)

Definition 2.3 For a function V : Rn → R ∪ {+∞},
a ξ ∈ Rn such that F (ξ) < +∞, and a v ∈ Rn, the
directional subderivative of V in the direction of v at ξ
is

D−v V (ξ) := lim inf
t→ 0+
w → v

1
t

[V (ξ + tw)− V (ξ)] .

(The notations D+V (ξ)(v) and D↑V (ξ)(v) are used in
[2, 5] and [3] respectively, with the same meaning as our
D−v V (ξ).)

For each fixed ξ, the map v 7→D−v V (ξ) is lower semi-
continuous as an extended-real valued function (cf. [2],
page 286); thus {v|D−v V (ξ) ≤ α} is a closed set for any
α. Observe that if V is Lipschitz continuous then this
definition coincides with that of the classical Dini deriva-
tive, that is, lim inft→0+[V (ξ + tv)− V (ξ)]/t. However,
in our results we will not assume that V is Lipschitz, so
this simplification is not possible. Notice also that in the
Lipschitz case D−v V (ξ) is automatically finite, but for a
general function V with finite values it can perfectly
well happen that D−v V (ξ) = +∞ or D−v V (ξ) = −∞.
Naturally, D−v V (ξ) is the usual directional derivative
∇V (ξ).v if V is differentiable at ξ.



We are now ready to define what it means for a func-
tion V to be a CLF. Essentially, we want the directional
derivative D−v V (ξ) in some —ξ-dependent— control di-
rection v to be negative for each nonzero state ξ. More
precisely, we will require D−v V (ξ) to be bounded above
by a negative function of the state and, in the noncon-
vex case, we will allow v to belong to the convex closure
of the set of control directions.

A function V : X→ R≥0 is positive definite if V (0) =
0 and V (ξ) > 0 for ξ 6= 0, and proper if V (ξ) → ∞ as
|ξ| → ∞.

Definition 2.4 A Lyapunov pair for the system (1) is
a pair (V,W ) consisting of a continuous, positive def-
inite, proper function V : X → R and a nonnegative
continuous function W : X → R, for which there exists
a nondecreasing ν : R≥0 → R≥0 with the property that
for each ξ ∈ X there is a v ∈ co(f(ξ, Uν(|ξ|))) such that

D−v V (ξ) ≤ −W (ξ) . (3)

Remark 2.5 For the special but very common case
when the set of velocities f(ξ, Uρ) is convex for all ρ (for
example if U is a closed convex subset of Rm and the
system (1) is affine in the control), the condition of Def-
inition 2.4 reduces to asking that for each ξ 6= 0 there be
some control value u ∈ Uν(|ξ|) such that D−f(ξ,u)V (ξ) ≤
−W (ξ). If V is differentiable at ξ, then this amounts to
requiring that minu∈Uν(|ξ|) [∇V (ξ)f(ξ, u)] ≤ −W (ξ).

Definition 2.6 A control-Lyapunov function (CLF) for
the system (1) is a function V : X→ R such that there
exists a continuous positive definite W : X → R with
the property that (V,W ) is a Lyapunov pair for (1).

Our first main result is as follows:

Theorem 1 A system Σ of the form (1) is AC if and
only if it admits a CLF.

We prove Theorem 1 in the rest of this section. In
the next section, we provide a far more general set of
results dealing with Lyapunov pairs for which W is not
necessarily positive definite.

2.1. A Previous Result with Relaxed Controls
We first recall the standard notion of relaxed control. If
ρ≥0, a relaxed Uρ-valued control is a measurable map
u : Iu → P(Uρ), where Iu ∈ I and P(Uρ) denotes the
set of all Borel probability measures on Uρ. An ordi-
nary control t 7→ u(t) can be regarded as a relaxed con-
trol in the usual way, using the embedding of the space
Uρ into P(Uρ) that assigns to each w ∈ Uρ the Dirac
Delta measure at w. For u ∈ P(Uρ), we write f(x, u) for∫
Uρ
f(x,w) du(w). As for ordinary controls, we also use

the notation φ(t, ξ, u) for the solution of the initial value
problem that obtains from initial state ξ and relaxed
control u, and we denote ‖u‖ = inf{ρ |u(t) ∈ P(Uρ) for
almost all t ∈ Iu}. The first ingredient in the proof is
the following restatement of the main result in [10].

Fact 2.7 A system Σ of the form (1) is AC if and
only if there exist two continuous, positive definite
functions V,W : X→R, V proper, and a nondecreasing
ν: R≥0→R≥0 so that the following property holds: for
each ξ ∈ X there are a T > 0 and a relaxed control
ω: [0, T )→P(Uν(|ξ|)), so that x(t) := φ(t, ξ, ω) is defined
for all 0 ≤ t < T and

V (x(t))− V (ξ) ≤ −
∫ t

0

W (x(τ)) dτ for t ∈ [0, T ). (4)

Proof. If there are such V , W , and ν, then for each ξ we
may pick a ω so that (4) holds; this implies the inequal-
ity lim inft→0+ t

−1[V (x(t)) − V (ξ)] ≤ −W (ξ), which is
the sufficient condition for AC given in [10]. Conversely,
if the system is AC, then that reference shows that there
exist V , W , and ν as above and such that

V (ξ) = min
{∫ ∞

0

W (φ(τ, ξ, ω)) dτ + max{‖ω‖−k, 0}
}

where the minimum is taken over the set of all relaxed
controls ω: [0,∞)→P(Uν(|ξ|)), and k is a constant which
arises from the function θ in the definition of AC. (Here
we take W (x)=N(|x|), where N : R≥0→R≥0 from [10] is
a strictly increasing, continuous function satisfying also
N(0) = 0 and limr→+∞N(r) = +∞, i.e. a function of
class K∞. The main point of the proof was to construct
an N so that the value function V is continuous and for
which optimal controls exist.)

This implies property (4), in fact even with T = +∞.
Indeed, pick ξ and a minimizing ω. Let x(·) := φ(·, ξ, ω)
and pick any t ≥ 0. We may consider the new ini-
tial state x(t) and the control ω̃ obtained by restrict-
ing ω to the interval [t,∞). Then V (x(t)) is bounded
above by the cost when using ω̃, that is, V (x(t)) ≤∫∞
t
W (x(τ))dτ + max{‖ω̃‖−k, 0} ≤

∫∞
t
W (x(τ))dτ +

max{‖ω‖−k, 0} = V (ξ)−
∫ t

0
W (x(τ))dτ.

2.2. A Previous Result on Differential Inclusions
Next we recall some concepts from set-valued analysis.
We consider set-valued maps (or “multifunctions”) be-
tween two Hausdorff topological spaces X and Y . A
map F from X to subsets of Y is upper semicontinuous
(abbreviated USC) if for each open subset V ⊆ Y the
set {x |F (x) ⊆ V } is open. If U is a compact topological
space and f : X × U → Y is continuous, then the set
valued map F (x) := F (x,U) = {f(x, u), u ∈ U} is USC
(see for instance [2], Prop. 1 in Section 1.2).

We will henceforth use the abbreviations DI and
USCMCC for “differential inclusion” and “upper semi-
continuous multifunction with compact convex values,”
respectively.

Let X be a subset of Y = Rn. A solution of the DI
ẋ ∈ F (x) is by definition a locally absolutely continuous
curve x(·) : I → X, where I is an interval, such that
ẋ(t) ∈ F (x(t)) for almost all t ∈ I.

The second ingredient needed to prove Theorem 1 is
from the literature on differential inclusions and viabil-
ity theory. The relevant results are as follows. (We give



them in a slightly stronger form than needed, but still
not in full generality: in [2], the function “W” is allowed
to depend convexly on derivatives ẋ(t), and in some im-
plications less than continuity of V or W is required.)
Theorem 1 in Section 6.3 of [2] shows that 2 implies
1 (with T=∞ if X is closed and F (X) is bounded),
and Proposition 2 in Section 6.3 of [2] says that 1⇒2.
(Another good reference is [5]; see in particular Theo-
rem 14.1 there.)

Fact 2.8 Let F be an USCMCC from X into subsets of
Rn, where X is a locally compact subset of Rn. Assume
that V and W are two continuous functions X→R≥0.
Let Ṽ : Rn → R ∪ {+∞} be such that Ṽ ≡ V on X,
Ṽ ≡ +∞ on Rn\X. Then the following properties are
equivalent:
1. For each ξ ∈ X there are a T > 0 and a solution of
ẋ(t) ∈ F (x(t)) defined on [0, T ) with x(0) = ξ which is
monotone with respect to V and W , that is,

V (x(t))− V (x(s)) +
∫ t

s

W (x(τ))dτ ≤ 0 (5)

for all 0 ≤ s ≤ t < T .
2. For each ξ ∈ X there is some v ∈ F (ξ) such that
D−v Ṽ (ξ) ≤ −W (ξ).

Moreover, if X is closed and F (X) =
⋃
x∈X F (x) is

bounded, then one can pick T = +∞ in 2.

2.3. Proof of Theorem 1
Let Σ be a system of the form (1). Assume that Σ
is AC. We apply Fact 2.7, and obtain V , W , and ν.
Pick ξ∈X. Let T , ω, x(·) be as in Fact 2.7. Then
x(t) − ξ =

∫ t
0
f(x(s), ω(s))ds =

∫ t
0
f(ξ, ω(s))ds + o(t) ∈

t.co(f(ξ, Uν(|ξ|))) + o(t). So there is a sequence {tj}
such that tj > 0 and tj → 0, with the property
that, if vj = t−1

j (x(tj) − ξ), then vj → v for some
v ∈ co(f(ξ, Uν(|ξ|))). On the other hand, (4) implies
that lim inf t−1

j (V (ξ + tjvj) − V (ξ)) ≤ −W (ξ). So
D−v V (ξ) ≤ −W (ξ). Therefore (V,W ) is a Lyapunov
pair.

Conversely, assume that (V,W ) is a Lyapunov pair
with W continuous and positive definite, and let ν be
as in the definition of Lyapunov pair. For ξ ∈ X, let
Xξ be the sublevel set {x |V (x) ≤ V (ξ)}, and write
ν̂(ξ) = ν(r(ξ)), where r(ξ) = sup{|x| : x ∈ Xξ}. Then
let ν̂(s) = sup{ν̃(ξ) : |ξ| ≤ s} for s ≥ 0. For x ∈
Xξ, define Fξ(x) := co(f(x,Uν̂(|ξ|))), and let Ṽξ(x) =
V (x) for x ∈ Xξ, Ṽξ(x) = +∞ for x /∈ Xξ. Then it
is clear that Fξ is an USCMCC. If x ∈ Xξ, then Def.
2.4 implies that there is a v ∈ co(f(x,Uν(|x|))) such that
D−v V (x) ≤ −W (x). Since |x| ≤ r(ξ), we have ν(|x|) ≤
ν̃(ξ) ≤ ν̂(|ξ|). So v belongs to Fξ(x). If vj → v, tj > 0,
tj → 0, and t−1

j (V (x + tjvj) − V (x)) → w ≤ −W (x),
then V (x+ tjvj) must be finite for all large j. Therefore
V (x + tjvj) = Ṽξ(x + tjvj) for large j. So D−v Ṽξ(x) ≤
−W (x). This shows that Condition 2 of Fact 2.8 holds
with X = Xξ, F = Fξ, and Vξ = V |X in the role

of V . Fact 2.8 —together with standard measurable
selection theorems— then implies that there is a control
ω : [0,+∞) → P(Uν̂(ξ)) such that Equation (4) holds
with T = +∞, x(t) = φ(t, x, ω). Since this is true for
every ξ, we see that the condition of Fact 2.7 holds (with
ν̂ in the role of ν), so Σ is AC.

Remark 2.9 The proof actually shows that in the AC
case one has trajectories, corresponding to relaxed con-
trols, which are monotone with respect to V and W , and
are defined on the entire [0,+∞). (Observe that the cost
function used in [10] is not additive, because of the term
“max{‖ω‖−k, 0}”, so the dynamic programming princi-
ple does not apply, and hence we cannot conclude that
optimal trajectories are monotone. If desired, this situa-
tion could be remedied by redefining the optimal control
problem as follows: drop the term max{‖ω‖−k, 0} but
instead add a state-dependent control constraint forcing
u(t) to be bounded by θ(x(t)).) 2

3. Non-Strict Lyapunov Functions

We now state two theorems that, together, general-
ize LaSalle’s Invariance Theorem to our control situ-
ation. This requires that we first define the concept
of a DBCBP (“decreasing with bounded control and
bounded peaking”) Lyapunov pair.

Definition 3.1 A Lyapunov pair (V,W ) for the system
(1) is DBCBP if there are nondecreasing functions σ:
R≥0 → R≥0, τ : R≥0 → R≥0, such that lims→0+ τ(s) =
0, and

• For each nonzero ξ∈X such that W (ξ)=0,
there exist an a>0 and a control u: [0, a]→U
such that ‖u‖≤σ(|ξ|), V (φ(a, ξ, u))<V (ξ), and
V (φ(t, ξ, u))≤τ(V (ξ)) for 0≤t≤a.

A weak control-Lyapunov function (WCLF) for the sys-
tem (1) is a function V such that there exists W for
which (V,W ) is a DBCBP Lyapunov pair. 2

(Notice that (V,W ) is automatically DBCBP if W is
positive definite. Therefore, every CLF is a WCLF.)

Theorem 2 If (V,W ) is a Lyapunov pair for a system
Σ of the form (1), then Σ is AC if and only if (V,W ) is
DBCBP.

Theorem 3 The following three conditions are equiva-
lent for a system Σ of the form (1): (i) Σ is AC, (ii) Σ
admits a CLF, (iii) Σ admits a WCLF.

Of course, the equivalence between (i) and (ii) was
the content of Theorem 1.

4. Some Technical Lemmas and Remarks

We now state —without proof— two key lemmas that
will be used to derive Theorems 2 and 3, and make some
observations on the precise reasons for our various tech-
nical assumptions. The lemmas deal with the question



whether “local decrease implies global decrease,” i.e.
whether it is true, given a family A of arcs in a space
X and a proper nonnegative “height” function V on X,
that if from every ξ ∈ X with positive height one can
“go down” by some positive amount by following arcs
in A, then one can actually approach the bottom, i.e.
find for each ξ an A-trajectory from ξ that approaches
the set K = V −1(0). We discuss this question in a more
general abstract setting than that of our control theory
situation, where the results will eventually be applied.
Wo do this so as to better understand exactly why the
technical hypotheses of this paper are needed for all the
parts of the theory (that is, the lemmas of this section
and Fact 2.7) to work simultaneously. It turns out that
1. Fact 2.7 (“infinitesimal implies local”) requires that
we take X ⊆ Rn, but applies to a general DI defined by
an USCMCC.
2. The lemmas of this section, on the other hand, say
that “local implies global” in a fairly abstract setting,
where X is a metric space andA is a set of arcs closed un-
der concatenations and time translations, provided that
A has a “continuity property” defined below. This prop-
erty holds in particular for control systems, but can fail
for more general DI’s arising from USCMCC’s. In Re-
mark 4.3, we give an example of such a DI for which
local decrease does not imply global decrease.
3. The existence of a continuous strict Lyapunov func-
tion V also depends crucially on the fact that we are
dealing with control systems, as shown by Remark 4.4,
where we exhibit an AC DI arising from an USCMCC
for which such a V does not exist.
4. Great care is needed in the precise choice of defini-
tions, because some things that may appear obvious are
actually false. For example, M. Ortel has shown that
if a smooth, positive definite function V : Rn → R
is such that for every ξ 6=0 there is a smooth curve
x : [0, a] → Rn such that a > 0, x(0) = ξ, and V
is strictly decreasing along x, then it can happen that
there are points ξ from which there exists no continu-
ous curve approaching 0 along which V is nonincreasing.
(Ortel also proved that the above situation cannot arise
if V is real analytic.) This shows that, even when V
has the “strict local decrease property” (cf. below), one
may only be able to approach 0 via trajectories along
which V is not monotonic.

To state our lemmas, we first need some definitions.
An arc in a metric space X is a continuous curve γ in
X defined on a compact interval. If γ : [a, b] → X is
an arc, and x = γ(a), y = γ(b), then we say that γ
goes from x to y. The concatenation γ1 ∗ γ2 of two arcs
γj : [aj , bj ] → X, j = 1, 2, is defined if b1 = a2 and
γ1(b1) = γ2(a2), and in that case γ1 ∗ γ2 is the arc such
that Graph(γ1 ∗ γ2) = Graph(γ1)∪Graph(γ2). If t ∈ R,
the time t translate of an arc γ : [a, b] → X is the arc
τt(γ) with domain [a − t, b − t], defined by τt(γ)(s) =
γ(t + s). If A is a set of arcs, we call A closed under
concatenations if γ1 ∗ γ2 ∈ A whenever γj ∈ A, j =
1, 2, are such that γ1 ∗ γ2 is defined. We say that A

is closed under time translations if τt(γ) ∈ A whenever
γ ∈ A and t ∈ R. We say that A has the continuity
property if, whenever γ : [a, b] → X is in A, U is an
open set containing γ([a, b]), and W is a neighborhood
of γ(b), there exists a neighborhood Z of γ(a) such that
for every z ∈ Z there is a δ ∈ A —possibly with a
different domain— that goes from z to a point in W
and whose image is entirely contained in U .

If A is a set of arcs in a metric space X, a forward A-
trajectory is a continuous curve γ : I → X, defined on
an interval I ∈ I, with the property that for every a ∈ I
there exists a b ∈ I such that a ≤ b and γ|[0, b] ∈ A.
(Notice that if I itself is compact, this just says that
γ ∈ A. If I is of the form [0, L) —with L ≤ +∞— then
γ /∈ A, but there has to exist a sequence {Lj} such that
Lj < L, Lj → L, and γ|[0, Lj ] ∈ A for each j.)

An arc system is a pair (X,A) such that X is a metric
space and A is a set of arcs in X which is closed under
concatenations and time translations.

If K is a compact subset of X, we write dK(x) =
min{dist(x, y) : y ∈ K}. If 0 < L ≤ +∞, then the
basin of L-attraction of K for (X,A) is the set BL(K)
of all points ξ ∈ X with the property that there exists
a forward A-trajectory γ : I → X such that γ(0) = ξ,
limt→sup I(dK(γ(t))) = 0, and dK(γ(t)) < L for all t ∈ I.
We just write B(K) for B+∞(K), and call B(K) the
basin of attraction of K for (X,A).

We call K an asymptotically stable attractor (ASA) of
the arc system (X,A) if

[ASA] for every ε > 0 there exists a δ > 0 such that
{x : dK(x) ≤ δ} ⊆ Bε(K).

An ASA K of (X,A) is a globally asymptotically stable
attractor (GASA) of (X,A) if B(K) = X.

If X is a metric space, a function of Lyapunov type on
X is a nonnegative, continuous function V : X→ R such
that {x : V (x) ≤ L} is compact for all L ∈ R.

We now consider a triple (X,A, V ) such that (X,A) is
an arc system and V is a function of Lyapunov type on
X. We write K = {x : V (x) = 0}, and seek conditions
in terms of V for K to be an ASA of (X,A).

Let us say that V has the weak local decrease property
(WLDP) along A from a point x ∈ X if there exist
a > 0 and γ ∈ A such that D(γ) = [0, a], γ(0) = x and
V (γ(a)) < V (x). If in addition γ can be chosen so that
the function t 7→ V (γ(t)) is nonincreasing (resp. strictly
decreasing) on [0, a], then we say that V has the strong
(resp. strict) local decrease property from x along A.

With X, A, V as above, write XVL = {x ∈ X : V (x) ≤
L}, AVL = {γ ∈ A : V (γ(t)) < L for all t ∈ D(γ)}.

Lemma 4.1 Let (X,A) be an arc system, let V be a
function of Lyapunov type on X, and write K=V −1(0).
Assume that A has the continuity property. Suppose
that 0<L<Λ≤∞ are such that V has the WLDP along
AVΛ from every x ∈ XVL\K. Then for every x ∈ XVL\K
and every L̃>0 there exist a>0 and γ ∈ AVΛ such that
D(γ) = [0, a], γ(0) = x and V (γ(a)) ≤ L̃.



We will say that the triple (X,A, V ) has the
D−stability property if for every ε > 0 there exists a
δ > 0 such that, whenever x ∈ X and V (x) ≤ δ, it fol-
lows that there exist a > 0 and an arc γ : [0, a]→ X in A
such that γ(0) = x, V (γ(a)) < V (x), and V (γ(t)) < ε
for all t ∈ [0, a]. (The “D” stands for “decreasing”:
D-stability is essentially neutral stability with the extra
proviso that V can actually be made to decrease strictly
without ever exceeding the bound V (ξ) < ε.)

Lemma 4.2 Let (X,A) be an arc system, let V be a
function of Lyapunov type on X, and let K = {x ∈ X :
V (x) = 0}. Assume that A has the continuity property.
Then: (i) if 0 < L < ∞, then K is an ASA of (X,A)
such that XVL ⊆ B(K) if and only if (X,A, V ) has the
D-stability property and V has the WLDP along A from
every x ∈ XVL\K; (ii) K is an ASA of (X,A) if and only
if (X,A, V ) has the D-stability property and there exists
L > 0 such that V has the WLDP along A from every
x ∈ XVL\K; (iii) K is a GASA of (X,A) if and only
if (X,A, V ) has the D-stability property and V has the
WLDP along A from every x ∈ X\K; (iv) if V has the
strong LDP along A from x for every x ∈ X\K, then K
is a GASA of (X,A).

Remark 4.3 In the above lemmas, the continuity prop-
erty of A is essential. In particular, Conclusion (iv) of
the Lemma 4.2 can fail if A is the set of arcs that are
solutions of a DI ξ̇ ∈ F (ξ) defined by an USCMCC F .

For an example of this, we define a set-valued function
F from R2 to R2 as follows. Let E+ ⊆ R be the union
of the intervals [k + 2−2m−1, k + 2−2m] for k, m non-
negative integers, and define E− ⊆ R to be the union
of the intervals [−k− 2−2m−1,−k− 2−2m−2], also for k,
m nonnegative integers. For (x, y) ∈ R2, let f(x, y)
be the vector (y,−x). Define F (x, y) = {f(x, y)} if
either (i) y 6= 0 or (ii) y = 0, x ≥ 0, x /∈ E+, or
(iii) y = 0, x ≤ 0, x /∈ E−. Also, let F (x, y) be the
convex hull of f(x, y) and (−1, 0) if y = 0, x ∈ E+, and
F (x, y) = co(f(x, y), (1, 0)) if y = 0, x ∈ E−. Then F
is an USCMCC. Let A be the set of all arcs that are
solutions of ξ̇ ∈ F (ξ). Let V (x, y) = x2 + y2. Then V
has the strong LDP along A from every point, but there
is no forward A-trajectory approaching the origin from
any point ξ ∈ R2 such that |ξ| > 1. (In fact, there are
no finite-length trajectories going from any point with
|ξ| > 1 to any point with |ξ| < 1.) 2

Remark 4.4 We conclude this section by comparing
our results for systems in S with the corresponding facts
for DI’s arising from USCMCC’s.

Notice first that, as explained in Remark 2.2, the sys-
tems corresponding to such DI’s are in S∗, so the concept
of asymptotic controllability given by Def. 2.1 makes
sense for them. Moreover, there are obvious definitions
of CLF and WCLF in this case as well. It is easy to see
that the implications (ii) ⇒ (i) ⇒ (iii) of Theorem 3
still hold. (Indeed, the proof of the “if” part of Theo-
rem 1 applies in this case as well, so (ii) ⇒ (i). Def-
inition 2.1 clearly implies that if a system is AC then

the function V (ξ) = |ξ| is a WCLF —with W ≡ 0—
so (i) ⇒ (iii).) We now show that the implications
(iii) ⇒ (i) and (i) ⇒ (ii) can fail. In the example of
Remark 4.3, V is a WCLF but the system is not AC,
so (iii) ⇒ (i) fails. So all we need is an example of an
AC system for which there is no CLF. (It is proved in
[5] that an AC DI arising from an USCMCC always has
a lower semicontinuous “CLF.” Our definition requires
the CLF to be continuous.)

We let f : R2 → R2 be given by f(x, y) = (−y, x).
Let S = R≥0 × {0}. Define an USCMCC F on R2 by
letting F (x, y) = {f(x, y)} if (x, y) /∈ S, and F (x, y) =
co({f(x, y), (−1, 0)}) if (x, y) ∈ S. Then for every p ∈
R2 we can construct a trajectory γp : [0, Tp] → R2 of
the DI ξ̇ ∈ F (ξ) such that γ(0) = p, γ(Tp) = 0, and
t 7→ |γp(t)| is nonincreasing. So our DI is AC. However,
there is no continuous function V : R2 → R such that
infv∈F (ξ)D

−
v V (ξ) < 0 for all ξ 6= 0. (Indeed, let V be

such a function. Then D−f(x,y)V (x, y) < 0 if (x, y) /∈ S.
If r > 0, then Fact 2.8 —with W ≡ 0— easily implies
that the function [0, 2π] 3 t 7→ hr(t) = V (r cos t, r sin t)
is nonincreasing on (0, 2π). Since V is continuous, and
hr(0) = hr(2π), we conclude that hr is constant. So V
is in fact a radial function, i.e. V (ξ) = V̂ (|ξ|) for some
continuous V̂ : R≥0 → R. Given r > 0, let ξ = (0, r),
so that f(ξ) = (−r, 0), and find wn → (−r, 0), hn →
0+, such that V (ξ + hnwn) − V (ξ) ≤ −chn for some
c > 0. Let rn = |ξ + hnwn|. Then |rn − r| = o(hn)
as n → ∞. Pick any L > 0, and define kn = hn

L .
Write rn = r + knsn. Then sn → 0, kn → 0+, and
V̂ (r + knsn) − V̂ (r) ≤ −cLkn. Therefore D−0 V̂ (r) ≤
−cL. So D−0 V̂ (r) = −∞. Since this is true for all
r > 0, Fact 2.8 —with W ≡ −1— yields the existence,
for each r, of an a > 0 and a solution ρ : [0, a] → R of
ρ̇ = 0, such that ρ(0) = r and V̂ (ρ(a)) < V̂ (r). Since
ρ(a) = r, we have reached a contradiction.) 2

5. Proof of Theorems 2 and 3

The implication (ii)⇒(iii) of Theorem 3 is trivial, and
the implication (iii)⇒(i) follows from Theorem 2. The
implication (i)⇒(ii) of Theorem 3 was proved in §2. So
all we need to prove is Theorem 2.

Assume first that Σ is AC and (V,W ) is a Lyapunov
pair. Choose θ, θ̃ as in Definition 2.1. Let σ ≡ θ. Define

ψ(r) = sup{|ξ| : V (ξ) ≤ r} ,

τ(r) = sup{V (ξ) : |ξ| ≤ θ̃(ψ(r))} .

It is clear that 0 < τ(r) < ∞ for each r > 0, and
limr→0+ τ(r) = 0.

By construction, given any ξ there is a control u:
[0,∞)→U for which ‖u‖≤σ(ξ), such that V (φ(t, ξ, u)) ≤
τ(V (ξ)) for all t ≥ 0, and limt→∞ φ(t, ξ, u) = 0. If ξ 6= 0,
then we can choose a>0 such that V (φ(a, ξ, u)) < V (ξ).
So all the conditions of Definition 3.1 are satisfied. This
completes the proof that asymptotic controllability of Σ
implies that every Lyapunov pair is DBCBP.



We now prove the converse. We assume that (V,W ) is
a DBCBP Lyapunov pair, and begin by defining certain
arc systems, in order to apply the lemmas of §4.

Given α > 0, let Aαo (resp. Aαr ) be the set of all arcs
x : [a, b] → X that are trajectories for ordinary (resp.
relaxed) controls u such that ||u|| ≤ α. Then (X,Aαo )
and (X,Aαr ) are arc systems. Moreover, the theorems
on continuous dependence of solutions of O.D.E.’s with
respect to the initial condition imply that both Aαo and
Aαr have the continuity property.

We will find an ᾱ > 0 and a nondecreasing function
[ᾱ,+∞) 3 α 7→ L̂(α) ∈ (0,∞) such that

I For α ≥ ᾱ, {0} is an ASA of the arc system (X,Aαo ),
with basin of attraction containing the set XV

L̂(α)
;

II. limα→+∞ L̂(α) = +∞.

This will clearly imply our conclusion. Indeed, define
θ(s)=1+inf{α∈[ᾱ,∞) : V (ξ)≤ L̂(α) for all ξ3|ξ|≤s}.
Then every ξ ∈ X lies in the basin of attraction of {0} for
(X,Aθ(|ξ|)o ), and this implies that Condition 1 of Remark
2.2 holds. Moreover, since θ(s) ≥ ᾱ for all s, and {0} is
an ASA of (X,Aᾱo ), Condition 2 holds as well.

Now, let ν, σ, τ be the functions given by Definitions
2.4 and 3.1. Define θ̂(s) = max{ν(s), σ(s)}. Also, define
µ̂(s) = max{2V (ξ) + τ(V (ξ)) : |ξ| ≤ s}. For L > 0,
let β̂(L) = 2 max{|ξ| : V (ξ) ≤ L}, θ̌(L) = θ̂(β̂(L)),
µ(L) = µ̂(β̂(L)). Notice that lims→0+ µ̂(s) = 0 and
lims→0+ µ(s) = 0.

For α > 0, let Fα(ξ) = co(f(ξ, Uα)). Then Fα is an
USCMCC, and Aαr is exactly the set of arcs that are
solutions of ξ̇ ∈ Fα(ξ). For β > 0, write Ωβ = {ξ : |ξ| <
β}.

Fix a β > 0, and take α = θ̂(β). Then ν(β) ≤ α and
σ(β) ≤ α.

Let ξ ∈ Ωβ be such that W (ξ) 6= 0. Then Fact 2.8
implies that there exist a > 0 and an arc x : [0, a]→ Ωβ

which belongs to Aαr and satisfies x(0) = ξ, V (x(a)) <
V (ξ), and V (x(t)) ≤ V (ξ) for 0 < t ≤ a. Using the
well known theorems on approximation of relaxed tra-
jectories by ordinary ones, we can then find an ordinary
control u : [0, a] → Uα such that V (φ(t, ξ, u)) ≤ 2V (ξ)
for 0 ≤ t ≤ a and V (φ(a, ξ, u)) < V (ξ).

Next, suppose that ξ ∈ Ωβ , ξ 6= 0, but W (ξ) = 0.
Definition 3.1 gives us a control u : [0, a]→ U for which
||u|| ≤ σ(β), such that V (φ(t, ξ, u)) ≤ τ(V (ξ)) for 0 ≤
t ≤ a and V (φ(a, ξ, u)) < V (ξ).

So in both cases we have shown that if ξ ∈ Ωβ and
ξ 6= 0, then there exist a > 0 and a control u : [0, a]→ U
such that ||u|| ≤ α, V (φ(t, ξ, u)) ≤ µ̂(β) for 0 ≤ t ≤ a
and V (φ(a, ξ, u)) < V (ξ).

Now let L > 0, and take β = β̂(L). Then XVL ⊆ Ωβ ,
so the preceding conclusion holds in particular for every
ξ ∈ XVL . In other words, we have proved that

[#] if L>0, and we let β=β̂(L), then V has the
WLDP along (Aθ̌(L)

o )Vµ(L) from every ξ ∈ XVL .

Given ε > 0, choose β > 0 such that µ(β) < ε. Then
choose α > θ̌(β), and find δ such that XV

δ ⊆ Ωα. Then
V has the WLDP along (Aαo )Vε from every ξ ∈ XVδ , Since
such a δ exists for every ε, we conclude that (X,Aαo , V )
has the D-stability property. In particular, if we let ᾱ be
the α that corresponds to ε = 1, we see that (X,Aαo , V )
has the D-stability property for every α ≥ ᾱ.

Now, given L > 0, choose α̂(L) = θ̌(L) + ᾱ. Then
V has the WLDP along Aα̂(L)

o from every ξ ∈ XVL , and
(V,Aα̂(L)

o ) has the D-stability property. Lemma 4.2 then
implies that {0} is an ASA of (V,Aα̂(L)

o ) with basin of
attraction containing XVL .

Given α ≥ ᾱ, we define L̂(α) = 1
2 sup{L : α̂(L) ≤ α}

Then {0} is an ASA of (V,Aαo ) with basin of attraction
containing XV

L̂(α)
, so [I] holds. It is clear that L̂ is non-

decreasing. Finally, given any L > 0, let α = α̂(2L+ 1).
Then L̂(α) > L. So [II] holds as well. 2
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