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Abstract
This paper deals with the computational complexity,

and in some cases undecidability, of several problems in
nonlinear control. The objective is to compare the the-
oretical difficulty of solving such problems to the corre-
sponding problems for linear systems. In particular, the
problem of null-controllability for systems with satura-
tions (of a “neural network” type) is mentioned, as well
as problems regarding piecewise linear (hybrid) systems.
A comparison of accessibility, which can be checked
fairly simply by Lie-algebraic methods, and controlla-
bility, which is at least NP-hard for bilinear systems, is
carried out. Finally, some remarks are given on analog
computation in this context.

1. Introduction

It is obvious that many control problems are in gen-
eral easier to solve for linear systems than for arbitrary,
not necessarily linear, ones. An interesting and worthy
area of research deals with the attempt to make math-
ematically precise the increases in difficulty that may
arise when passing to the nonlinear case.

By obtaining such precise statements, one gains an
understanding of which analysis and/or design problems
may be expected to be intractable. For instance, even
for apparently mildly nonlinear systems it becomes im-
possible to check if a state ever reaches the origin. More
interestingly perhaps, one also can then explain in what
sense some variants of problems are easier than others
for nonlinear systems. An example of this later aspect
is given by comparing the characterization of the acces-
sibility property (being able to reach a set of states with
full degree of freedom) to the characterization of control-
lability; for some classes of nonlinear systems, these two
properties (which coincide for linear systems) diverge in
complexity: one can be checked as easily as for linear
sytems, but the other becomes intractable.

In this talk, I will briefly touch upon a number of
known results on comparing complexity of some control
problems for linear and nonlinear systems, mentioning
in passing a few open problems/conjectures. I pick sim-
ple controllability-type problems to illustrate the issues
that arise. Due to space limitations, the discussion will
be somewhat informal, but precise bibliographical refer-
ences are provided to the source of the results, and all
details can be found in the respective papers.
∗Supported in part by US Air Force Grant AFOSR-94-0293

2. Null-Controllability, Saturated Linear Systems

Assume given a discrete-time control system

x(t+ 1) = P (x(t), u(t)) (1)

with states x(t) evolving in a space X which contains
a special element to be called “0” (typically, of course,
X = Rn and 0 is the origin). As usual, a state ξ ∈ X
is null-controllable is there is some some nonnegative
integer k and some input sequence u(0), . . . , u(k− 1) so
that, solving (1) with initial state x(0) = ξ, and this
particular, input sequence, the solution satisfies x(k) =
0. One of the first questions one asks in control problems
is if there is some algorithm so that, given a system (1)
and a state x ∈ X, one can determine if this state null-
controllable. For linear systems, answering this question
is trivial (see below).

Stated in this generality, the null-controllability ques-
tion is not very interesting. First of all, one may play
“logic tricks” with the statement and make the prob-
lem too difficult simply by making too abstract the pre-
cise meaning of the words “given a system and a state”
and allowing an arbitrary recursive-function specifica-
tion (see for instance the proposed solution in [1] to
Arnold’s famous open question regarding the analogous
problem of asymptotic stability). Second, and more rel-
evant to some of the arguments to be given later in this
paper, the problem is not too interesting as posed be-
cause it subsumes the general problem of solving an ar-
bitrary nonlinear equation φ = 0: given a map φ, just
look at the system x(t+ 1) = φ(u(t)); then φ has a zero
if and only if 0 (or any other given element of X) is null-
controllable. The literature on computational complex-
ity provides an abundant source of examples of classes
of maps φ (and consequently, classes of systems (1)) for
which such problems are hard to solve. (It is often trivial
to encode an NP-complete problem such as 3-SAT into
problems involving zeroes of functions, for example.)

Far more challenging is to study this property for a
class of systems which appears in the control literature
and for which the characterization of null-controllability
has been of interest, especially if this class superficially
seems to be “almost” linear.

One such class, which appears often in many different
contexts ranging from actuator saturation to the study
of hybrid systems, is given by systems of the following
form:

x(t+ 1) = sat (Ax(t) +Bu(t)) (2)



where the state space X = [−1, 1]n, for some positive
integer n, the controls u(t) take values in a space Rm,
the matrices A and B have sizes n×n and n×m respec-
tively, and sat (z), for a vector z, is the clipped linearity
or saturation of each component, that is, the ith compo-
nent of sat (z) is zi, the ith component of z, if |zi| < 1,
and equals the sign of zi otherwise. (One could take
X = Rn instead of [−1, 1]n, but nothing essential would
change, since after one step all state coordinates have
magnitude at most one anyway because of the satura-
tion.) See the recent book [3] for an exposition of many
control-theoretic questions for systems of the form (2);
see also [16].

Before proceeding further with this class, note for pur-
poses of comparison that if there would be no satura-
tion, we would be studying the standard class of linear
systems

x(t+ 1) = Ax(t) +Bu(t) (3)

(now with X = Rn), and for linear systems one can
determine null-controllability of a state ξ in a compu-
tationally simple manner. Indeed, ξ is null-controllable
for (3) if and only if the null-controllability property is
verified with k = n (this is a standard elementary fact;
see for instance Lemma 3.2.8 in [15]); thus a state ξ is
null-controllable if and only if Anξ is in the the reach-
ability space of (3), that is, the span of the columns
of B,AB, . . . , An−1B. This property can in turn be
checked by Gaussian elimination, so it can be checked
in a number of algebraic operations that is polynomial
in n and m (“strong polynomial time”). Alternatively,
we may ask the question of null-controllability in a bit-
computational (Turing-machine) model, assuming that
the entries of the matrices A and B, as well as the co-
ordinates of the state ξ, and all rational (as opposed to
arbitrary real) numbers, and are each given by speci-
fying pairs of integers in a binary basis, Then the fact
is that null-controllability of a state ξ for the system
(3) can be checked in a number of elementary Turning-
machine steps which is polynomial in the size of the
input data, that is, the total number of bits needed to
specify A,B, ξ. Thus, the problem is in the class “P” of
polynomial-time computable problems. (From now on,
I use the Turing machine model, to stay close to classical
computational complexity.)

Thus it is natural to ask if adding a saturation can
change matters in a fundamental way. The answer is
yes. In fact, the change is as big as it could be:
Theorem. For saturated linear systems (2), the null-
controllability question is recursively unsolvable.

In other words, there is no possible computer program
which, when given A,B, ξ with rational entries, can an-
swer after a finite amount of time “yes” if the state ξ is
null-controllable for the corresponding system, and “no”
otherwise. (In particular, there is no possible character-
ization in terms of rank conditions, such as was available
for linear systems, nor any characterization in terms of

checking higher-order algebraic conditions in terms of
polynomials constructible from the entries of the ma-
trices and vector in question.) The proof of this fact
relies upon the work on simulation of Turing machines
by devices such as (2), started in [5] and completed in
[6] and [8]. From that work it follows that there exists
a certain matrix A (with n approximately equal to 1000
in the construction given in [8], and most entries being
0, 1, or certain small rational numbers) for which there
is no possible algorithm that can answer the following
question: “Given ξ, is there any integer k so that the
first coordinate of the solution of

x(t+ 1) = sat (Ax(t)) , x(0) = ξ (4)

has x1(k) = 1?” (Of course, (4) is a particular case
of (2), when B = 0.) Moreover, the matrix A is built
in such a manner that the above property is impossi-
ble to check even if ξ is restricted to be a vector with
the property that the solution of (4) has x1(t) ∈ {0, 1}
for all t = 0, 1, . . .. It is easy to convert the problem
“is x1(k) = 1 for some k?” to “is x(k) = 0 for some
k?” simply by changing each coordinate update equa-
tion xi(t+1) = sat (. . .) to xi(t+1) = sat (. . .− αx1(t)),
where α is a positive integer bigger than the possible
maximum magnitude of the expression “. . .”. While
x1(t) = 0 nothing changes, but if x1 ever attains the
value 1 then the next state is x = 0. So the null-
controllability question is also undecidable, even in the
case in which the system is this one particular system of
dimension about 1000 (which in the proof corresponds
to a simulation of a universal Turing machine, with the
initial condition ξ corresponding to the program for such
a machine). This negative result shows that adding a
saturation has changed the problem dramatically from
the linear case.

One may of course ask about related problems such
as observability. For instance, given a system (2) and
a linear output map y = Cx, one may ask for the de-
cidability of the problem, for a given state ξ: “is ξ in-
distinguishable from 0?” Again this is essentially trivial
for linear systems (just check if ξ is in the kernel of the
Kalman observability matrix), but the problem becomes
undecidable for saturated systems (take Cx := x1 and
use the above construction; as Cx(t) = x1(t) is always
zero or one, distinguishability from zero is equivalent to
determining if it is ever one).

It is not yet clear, however, if all reasonable problems
for (2) are undecidable. I am willing to conjecture, how-
ever, that stabilization problems will be hard. Observe
that for linear systems there are low-complexity tests
(e.g. Routh-Hurwitz) for asymptotic stability. I believe
that it will be impossible to find a test for saturated
systems (with no “cheating”: data is given as a rational
matrix A) and will risk the following:
Conjecture. To determine the global asymptotic stabil-
ity of the trivial solution x = 0 of (4) is an undecidable
problem.



3. Piecewise-Linear Systems

The paper [10] proposed the study of general discrete-
time interconnections of linear systems and automata, a
type of “hybrid” systems that would integrate linear sys-
tems theory and some areas of computer science. These
“piecewise linear systems” are defined by update equa-
tions (1) in which the state space X and the control-value
space are both Euclidean spaces, and the mapping P is
given by a finite number of linear functions, each defined
on some polyhedron.

Specifically, the idea in that paper was to propose a
logic-based approach based on the “language” of “piece-
wise linear algebra” developed in [11], in such a manner
that finite-horizon analysis and design problems can be
translated into decision problems for the corresponding
language, and more precisely solved by means of quanti-
fier elimination procedures. By “finite-horizon” I mean
a bounded-time question such as “is there a control
which brings the state ξ into 0 in 78 steps?” in contrast
to the unbounded-time problem of null-controllability
(“is there a number of steps k and a control so that
. . . ?”). Making the number of steps a variable in the
problem —that is, in logical terms, “quantifying over”
that variable— often makes problems undecidable, as
remarked in the previous section for systems (2), which
are a very special case of general piecewise linear sys-
tems. On the other hand, finite-horizon problems are in
principle decidable, as shown in [11, 10]. Thus it is of
interest to try to study the computational complexity
of such problems. Unfortunately, there is a rather neg-
ative result in that regard. To explain this result, given
in [12], it is necessary to review some basic terminology
from logic. I’ll try to do so in very intuitive terms.

Given a fixed piecewise-linear system, a problem like:

“Is there a control u on the interval [0, 78]
which steers the state (−2, 1, 5) to (0, 0, 0)?”

is said to be a purely-existential problem, or a “∃” prob-
lem, for the language of piecewise linear algebra, because
it is possible to write a logical formula of the type “there
exists u so that Φ(u)” which is true if and only if the
property holds (and Φ does not involve any free variables
besides u; Φ is simply the set of equations that state
that the composition of the dynamics 78 times, using
this control, land the state at zero when starting from
(−2, 1, 5)). Other (still finite-horizon) problems in con-
trol cannot be put in ∃ form. For instance, to ask if the
whole system is controllable to zero in 78 steps would re-
quire a formula of ∀∃ type, namely a formula that reads
“for all x there exists u such that Φ(x, u)” whose truth
is equivalent to null-controllability (and now Φ has the
initial state x represented by a variable as well as the
control). Another variant appears in design problems.
For instance, given a parametric form for a closed-loop
controller, say P (λ), asking that some value of the pa-
rameter result in a feedback law which controls each

state to zero in 78 steps would be given by an ∃∀ formula
(“there is some parameter λ so that, for each initial state
state x, Φ(x, u)”). Even more alternations of quantifiers
might appear. For example, in the context of “control
Lyapunov functions” one might ask there is a value for
a parameter λ so that a scalar “energy” function Vλ(x)
decreases along suitable trajectories, giving rise to a ∃∀∃
formula (“there is a λ so that, for each x, there is some
u so that either x = 0 or Vλ(P (x, u)) < Vλ(x)”). In the
same manner, one can define of course ∃∀ . . . ∃ types of
problems, for all finite sequences of quantifiers.

Roughly stated, the “polynomial hierarchy” in logic
and computer science is obtained in this same way when
the basic quantifier-free formulas Φ are propositional
formulas, and the variables over which one quantifies
are Boolean-valued. Problems are in the class NP (non-
deterministic polynomial time) if they can be described
by just ∃ formulas, and in P (polynomial time) if they
can be described with no quantifiers at all. It is widely
believed, and one of the most important open problems
in theoretical computer science to prove, that the var-
ious levels are very different in complexity. Thus, not
only should P be different from NP, but problems whose
definition requires ∀∃ should be much harder to solve
than those in NP, and so forth going “up” along the hier-
archy. The result in [12] was that problems in any given
level, such as for instance ∃∀∃, for piecewise linear sys-
tems are of the exact same complexity as problems in the
corresponding level of the polynomial hierarchy. Thus
one has a complete understanding of complexity for such
problems modulo the same understanding for the classi-
cal hierarchy. Unfortunately, this means that, not only
are ∃ problems in general NP-hard but more alternation
of quantifiers make the problems harder. (On the pos-
itive side, advances in understanding of the polynomial
hierarchy then allow better understanding of piecewise
linear systems.)

4. Continuous-Time Bilinear Systems

When asking about the complexity of controllability
questions for continuous time systems one makes contact
with a rich area of study. I will now sketch some of the
ideas that arise in that context.

One of the fundamental problems for continuous-time
systems

ẋ = f(x, u) (5)

is that of finding necessary and sufficient conditions for
deciding when a such a system is (locally or globally)
controllable. The ultimate goal is to have some type
of generalization of the classical Kalman controllability
rank condition. An early success of this line of research
was achieved with the characterization of the accessi-
bility property : there is a Lie-algebraic rank condition
for deciding if it is possible to reach a full-dimension set
from a given initial state. When this accessibility rank
condition does not hold, all trajectories must remain in



a lower-dimensional submanifold of the state space. It is
known that local controllability can also be in principle
checked in terms of linear relations between Lie brackets
of the vector fields defining the system ([17]), and recent
research has succeeded in isolating a number of neces-
sary as well as a number of sufficient explicit conditions
for controllability. The literature regarding this ques-
tion is very large; see for instance [18] and the references
there. No complete characterization is yet available,
however. In [13], a result was presented which shows
that the problem is intrinsically hard from a computa-
tional point of view. It is shown that the controllability
problem is NP-hard for a class of systems, bilinear sys-
tems, for which the accessibility property can be checked
in polynomial time. In this sense, accessibility, which
for linear systems is equivalent to controllability, is no
more complex to check, in a precise quantifiable sense,
for nonlinear systems. On the other hand, controllabil-
ity is harder, also in a precise mathematical measure of
difficulty.

To summarize some of the results in [13] and [14] (this
latter reference contains some results which were not in
the journal paper), consider the class of “polynomial”
systems (5), defined as follows. The state-space X is
a nonsingular n-dimensional algebraic subset of some
space RN (that is, a set with well-defined tangent space
at each point, and described by polynomial equations,
e.g. the state space used SO(3) used to described orien-
tations of rigid bodies, or Euclidean space RN itself),
the controls u(t) take values on an Euclidean space
Rm, and f is polynomial. An explicit representation
of X by equations is assumed given as part of the data,
that is, a set of l polynomials with rational coefficients
φi(x1, . . . , xN ), i = 1, . . . , l such that the Jacobian of
(φ1, . . . , φl)′ has constant rank N −n. Let R(x) be the
set of states reachable from x. The system Σ is accessi-
ble if the interior of the set R(x) is nonempty, for each
x ∈ X. It is controllable if R(x) = X for all x.

We remarked in [14]:
Proposition. Accessibility is decidable for the class of
polynomial systems.

Of course, this begs the question of more accu-
rately characterizing the computational complexity of
the problem. In a recent preprint, Gabrielov ([2]), ex-
tending work of Risler, showed that it is enough to con-
sider brackets of order at most

(n− 1)
(
23n−53d3

)2n−2

where d is a bound on the degree of the polynomials
defining the system. This helps in bounding the com-
plexity, but the precise characterization seems to be still
unknown. The following conjeture was in [14], and, as
far as I am aware, is still open:
Conjecture. Controllability is undecidable for the class
of polynomial systems, but the class of all controllable
polynomial systems is recursively enumerable.

It is not difficult to prove the undecidability of re-
stricted versions of this problem, such as asking if an
output ever achieves a desired value, by means of an en-
coding of nonlinear diophantine equations; this is related
to papers in the logic literature dealing with the non-
decidability of theories involving certain transcendental
functions which can be obtained from solving differential
equations, but in the above manner the problem seems
harder.

To state a somewhat more interesting result, take next
the subclass of bilinear subsystems, that is, polynomial
systems with equations describable as

ẋ =

(
A+

m∑
i=1

uiGi

)
x+Bu ,

in terms of rational matrices of appropriate sizes, as
before evolving on an algebraic submanifold X. In [13]
the following result is shown:
Theorem. For the class of bilinear subsystems, acces-
sibility can be decided in polynomial time but controlla-
bility is NP-hard.

The proof in [13] used systems with at least two
control channels and with unbounded controls. Sub-
sequently, the result was improved so as to show that
the problem is hard even for single-input (and bounded
control) systems by Kawski in [4].

5. Analog Computation

Finally, I wish to make some comments on the issue
of analog computation. The complexity and undecid-
ability results surveyed above are all stated in terms of
classical models of computation, that is, Turing machine
(serial and digital computing) models. It is a priori con-
ceivable that newer and conceptually different models
(neural networks, cellular automata, analog computers
of various types, or quantum machines) may be powerful
and might allow the solution of analysis and synthesis
questions for nonlinear systems, overcoming the current
limitations. In the papers [7, 9], however, it is shown
that a reasonable model of analog computing (evolving
in discrete time, but a similar result is possible in contin-
uous time) is still subject to strong limitations. Roughly
speaking, it is shown there that general dynamical sys-
tems of the type (1) (assuming that the right-hand side
is Lipschitz continuous, which does not allow inclusion
of Blum-Shub-Smale machines), while far more powerful
in principle than Turing machines (because of the possi-
ble use of unbounded precision real numbers in compu-
tations) cannot compute in polynomial time problems in
NP unless the complete polynomial hierarchy collapses
to the class ∀∃, a highly unlikely fact according to cur-
rent knowledge in theoretical computer science. It is
interesting, in the context of this paper, that the most
general such analog computers can be simulated by sat-
urated systems (2), now using real matrices A and B
(with rational matrices one obtains just classical digi-



tal computation). This is yet another indication of the
richness of that model.
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