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HÉCTOR J. SUSSMANN†

DEPT. OF MATHEMATICS
RUTGERS UNIVERSITY

NEW BRUNSWICK, NJ 08903

EMAIL: SUSSMANN@HAMILTON.RUTGERS.EDU

Abstract. The main result of this paper establishes the equivalence between null asymptotic
controllability of nonlinear finite-dimensional control systems and the existence of continuous
control-Lyapunov functions (clf’s) defined by means of generalized derivatives. In this manner,
one obtains a complete characterization of asymptotic controllability, applying in principle to a
far wider class of systems than Artstein’s Theorem (which relates closed-loop feedback stabiliza-
tion to the existence of smooth clf’s). The proof relies on viability theory and optimal control
techniques.

1. Introduction. In this paper, we study systems of the general form

ẋ(t) = f(x(t), u(t))(1)

where the states x(t) take values in a Euclidean space X = Rn, the controls u(t)
take values in a metric space U , and f is locally Lipschitz. A common approach
for stabilization of this system to x = 0 relies on the use of abstract “energy”
or “cost” functions that can be made to decrease in directions corresponding to
possible controls. In this methodology, one starts with a “Lyapunov pair” (V,W ),
consisting of two positive definite functions

V,W : X→ R≥0 ,

with V continuously differentiable and proper (“radially unbounded”) and W con-
tinuous, so that for each state ξ ∈ X there is some control-value u = uξ with

Df(ξ,u)V (ξ) ≤ −W (ξ) .(2)

We are denoting by DvV (ξ) = ∇V (ξ).v the directional derivative of V in the
direction of the vector v. This property guarantees that for each state ξ there is
some control u(·) such that, solving the initial-value problem (1) with x(0) = ξ,
the resulting trajectory satisfies

x(t)→ 0 as t→ +∞ ;
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see for instance the textbook [11]. A function V which is part of a Lyapunov pair
is generically called a control-Lyapunov function, henceforth abbreviated “clf.”
Thus, existence of a clf implies null asymptotic controllability.

Besides its intrinsic theoretical interest, the clf paradigm is extremely useful
in practice, as it reduces the search for stabilizing inputs to the iterative solution
of a static nonlinear programming problem: when at state ξ, find u such that
Equation (2) holds. The idea underlies feedback control design (see the references
in [12], and more recently the textbook [7]), the optimal control approach of Bell-
man, “artificial intelligence” techniques based on position evaluations in games
and “critics” in learning programs, and can even be found in “neural-network”
control design (see e.g. [8]).

An obvious fundamental question arises: is the existence of a continuously
differentiable clf equivalent to the possibility of driving every state asymptotically
to zero? In other words, is this the only way, in principle, to stabilize systems?

It is the purpose of this paper to answer this question in the affirmative. But
first, the definition of clf must be reformulated in a slightly weaker form, since
otherwise the answer would be negative. To see why a weakening is necessary,
consider as an illustration the class of systems affine in control, that is, systems
for which controls are in Rm and

f(x, u) = f0(x) +
m∑
i=1

uifi(x)

is affine in u. For such systems, it is well-known that the existence of a clf in the
manner defined above would imply that there is some feedback law u = k(x) so
that the origin is a globally asymptotically stable state for the closed-loop system
ẋ = f(x, k(x)) and k is continuous on Rn \ {0}. This is the content of Artstein’s
Theorem ([1]). More explicitely, and taking for simplicity the case m=1, one has
the following “universal” formula for computing feedback laws (cf. [13] and also
the recent textbooks [4, 9, 7] and the survey [5]): denote a(x) := ∇V (x).f0(x) and
b(x) := ∇V (x).f1(x), for the given clf. Then the clf property is equivalent to:

b(x) 6= 0 ⇒ a(x) < 0

and the following feedback law:

k(x) := −a(x) +
√
a(x)2 + b(x)2

b(x)

(with k(x) := 0 when b(x) = 0) stabilizes the system (along closed-loop trajecto-
ries, dV/dt = −

√
a2 + b2 < 0) and is smooth away from the origin. But, for most

systems, even affine in control and with m = 1, continuous feedback may fail to
exist, even for very simple controllable systems (see e.g. [11], Section 4.8, and [5]).
This means that unless one weakens the definition of clf, the converse implication
“asymptotic controllability implies existence of clf” will be false.
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The main result of this paper provides such a reformulation. The critical
step is to relax the differentiability assumption on V to merely continuity . Of
course, one must then re-interpret the directional derivative appearing in Equa-
tion (2) as a generalized directional derivative of an appropriate sort. For this
generalization, we borrow from the literature of set-valued analysis and differen-
tial inclusions, using the concept known there as “upper contingent derivative” or
“contingent epiderivative.” Once this generalization is allowed (and, for technical
reasons, allowing derivatives in directions in the closed convex hull of the velocity
set f(ξ, U)), the main result, Theorem 4.1, says that existence of clf’s is indeed
equivalent to asymptotic controllability. This general result helps in interpreting
some of the constructions for particular classes of systems which involve nondif-
ferentiable clf’s; see for instance [10]. The proof follows easily by combining the
main result in [12], which gave a necessary condition expressed in terms of Dini
derivatives of trajectories, with results from [2].

Remark 1.1. Our result shows that asymptotic controllability implies the
existence of a “Lyapunov function” in the strict sense that derivatives are negative
for nonzero states. In analogy with ordinary differential equations, one may ask
when the existence of a “weak CLF,” for which W is only required to be non-
negative, suffices for the converse. It is indeed possible to provide control theory
versions of the LaSalle Invariance Principle; see [14] for details.

2. Asymptotic Controllability and CLF’s. Throughout this paper, we
write R≥0 = {r ∈ R : r ≥ 0}, and use I to denote the set of all subintervals I of
R≥0 such that 0 ∈ I; thus, I ∈ I iff either (i) I = R≥0, or (ii) I = [0, a) for some
a > 0, or (iii) I = [0, a] for some a ≥ 0. If µ is a map, we will use D(µ) to denote
the domain of µ, and µ|S to denote the restriction of µ to a subset S of D(µ). For
any subset S of Rn, we use co(S) to denote the closed convex hull of S.

We consider systems as in (1) and assume that a distinguished element called
“0” has been chosen in the metric space U . We let Uρ denote, for each ρ ≥ 0, the
ball {u | d(u, 0) ≤ ρ}, and assume also that each set Uρ is compact. (Typically, U
is a closed subset of a Euclidean space Rm and 0 is the origin.) The map

f : X× U → Rn

is assumed to be locally Lipschitz with respect to (x, u) and to satisfy f(0, 0) = 0.
(The Lipschitz property with respect to u can be weakened, but we will need to
quote results from [12], where this was made as a blanket assumption.) A control
is a bounded measurable map u : Iu → U , where Iu ∈ I. We use ‖u‖ to denote
the essential supremum norm of u. i.e.

‖u‖ = inf{ρ |u(t) ∈ Uρ for almost all t ∈ Iu} .

To avoid confusion with the sup norm of the controls, we will use |ξ| to denote the
Euclidean norm of vectors ξ in the state space X.

We let S denote the class of all systems (1) that satisfy the above conditions.
For a system in S, if ξ ∈ X and u is a control u, we let φ(t, ξ, u) denote the
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value at time t of the maximally defined solution x(·) of (1) with initial condition
x(0) = ξ. Then φ(t, ξ, u) is defined for t in some relatively open subinterval J of
Iu containing 0, and either J = Iu or limt→sup J |φ(t, ξ, u)| = +∞.

3. Asymptotic Controllability. The next definition expresses the require-
ment that for each state ξ there should be some control driving ξ asymptotically
to the origin. As for asymptotic stability of unforced systems, we require that if ξ
is already close to the origin then convergence is possible without a large excur-
sion. In addition, for technical reasons, we rule out the unnatural case in which
controlling small states requires unbounded controls.

Definition 3.1. The system (1) is (null-)asymptotically controllable (hence-
forth abbreviated “AC”) if there exist nondecreasing functions

θ, θ̃ : R≥0 → R≥0

such that limr→0+ θ̃(r) = 0, with the property that, for each ξ ∈ X, there exist
a control u : R≥0 → U and corresponding trajectory x(·) : R≥0 → X such that
x(0) = ξ,

x(t)→ 0 as t→ +∞ ,

‖u‖ ≤ θ(|ξ|) ,

and

sup{|x(t)| : 0 ≤ t <∞} ≤ θ̃(|ξ|) .

Remark 3.2. A routine argument involving continuity of trajectories with
respect to initial states shows that the requirements of the above definition are
equivalent to the following much weaker pair of conditions:

1. For each ξ ∈ X there is a control u : R≥0 → U that drives ξ asymptotically
to 0 (i.e. x(t) := φ(t, ξ, u) is defined for all t ≥ 0 and x(t)→ 0 as t→ +∞);

2. there exists ρ > 0 such that for each ε > 0 there is a δ > 0 such that for
each ξ ∈ X with |ξ| ≤ δ there is a control u : R≥0 → Uρ that drives ξ
asymptotically to 0 and is such that |φ(t, ξ, u)| < ε for all t ≥ 0.

We point out, however, that Definition 3.1, as stated, makes sense even for
the more general class S∗ of systems (1) in which f is completely arbitrary (i.e.
not necessarily locally Lipschitz or even continuous), and the set of control values
is state-dependent, i.e. an additional requirement u ∈ Û(x) is imposed, where Û :
X→ 2U is a multifunction with values subsets of U . This includes in particular the
situation when U = X and f(x, u) = u, in which case the system (1) is a differential
inclusion ẋ ∈ F (x). On the other hand, the formulation in terms of Conditions 1
and 2 above does not make sense for general systems in S∗ (since φ(t, ξ, u) need
not be well defined), and the equivalence between the two formulations depends on
the fact that each fixed control gives rise to a flow, which is true for systems in
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S but not for systems in S∗. Throughout the paper, systems of the form (1) are
assumed to be in S, so we will use indistinctly the two forms of the definition of
AC. However in Section 8 below, and in more detail in [14], we compare systems
in S with differential inclusions —which belong to S∗ but not necessarily to S—
and there one uses Definition 3.1 as stated rather than Conditions 1 and 2.

4. Directional Derivatives. We now introduce an object widely studied in
Set-Valued Analysis (cf., for instance, [2], Def. 1 and Prop. 1 of Section 6.1, where
it is called the “upper contingent derivative.”)

Definition 4.1. For a function V : Rn → R ∪ {+∞}, a ξ ∈ Rn such that
F (ξ) < +∞, and a v ∈ Rn, the directional subderivative of V in the direction of
v at ξ is

D−v V (ξ) := lim inf
t→ 0+
w → v

1
t

[V (ξ + tw)− V (ξ)] .

(The notations D+V (ξ)(v) and D↑V (ξ)(v) are used in [2, 6] and [3] respectively,
with the same meaning as our D−v V (ξ).)

For each fixed ξ, the map v 7→ D−v V (ξ) is lower semicontinuous as an
extended-real valued function (cf. [2], page 286); thus {v|D−v V (ξ) ≤ α} is a closed
set for any α. Observe that if V is Lipschitz continuous then this definition co-
incides with that of the classical Dini derivative, that is, lim inft→0+[V (ξ + tv)−
V (ξ)]/t. However, in our results we will not assume that V is Lipschitz, so this
simplification is not possible. Notice also that in the Lipschitz case D−v V (ξ) is
automatically finite, but for a general function V , even if finite-valued, it can per-
fectly well be the case that D−v V (ξ) = +∞ or D−v V (ξ) = −∞. Naturally, D−v V (ξ)
is the usual directional derivative ∇V (ξ).v if V is differentiable at ξ.

We are now ready to define what it means for a function V to be a clf.
Essentially, we want the directional derivative D−v V (ξ) in some —ξ-dependent—
control direction v to be negative for each nonzero state ξ. More precisely, we will
require D−v V (ξ) to be bounded above by a negative function of the state and, in
the nonconvex case, we will allow v to belong to the convex closure of the set of
control directions.

A function V : X → R≥0 is positive definite if V (0) = 0 and V (ξ) > 0 for
ξ 6= 0, and proper if V (ξ)→∞ as |ξ| → ∞.

Definition 4.2. A Lyapunov pair for the system (1) is a pair (V,W ) con-
sisting of a continuous, positive definite, proper function V : X → R and a non-
negative continuous function W : X → R, for which there exists a nondecreasing
ν : R≥0 → R≥0 with the property that for each ξ ∈ X there is a

v ∈ co(f(ξ, Uν(|ξ|)))

such that

D−v V (ξ) ≤ −W (ξ) .(3)
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Remark 4.3. For the special but very common case when the set of velocities
f(ξ, Uρ) is convex for all ρ (for example if U is a closed convex subset of Rm and
the system (1) is affine in the control), the condition of Definition 4.2 reduces to
asking that for each ξ 6= 0 there be some control value u ∈ Uν(|ξ|) such that

D−f(ξ,u)V (ξ) ≤ −W (ξ) .

If in addition V is differentiable at ξ, then this amounts to requiring that

min
u∈Uν(|ξ|)

[∇V (ξ)f(ξ, u)] ≤ −W (ξ) .

Definition 4.4. A control-Lyapunov function (clf) for the system (1) is a
function V : X→ R such that there exists a continuous positive definiteW : X→ R
with the property that (V,W ) is a Lyapunov pair for (1).

Our main result is as follows:

Theorem 4.1. A system Σ in S is AC if and only if it admits a clf.

5. A Previous Result with Relaxed Controls. We first recall the stan-
dard notion of relaxed control. If ρ ≥ 0, a relaxed Uρ-valued control is a measurable
map u : Iu → P(Uρ), where Iu ∈ I and P(Uρ) denotes the set of all Borel proba-
bility measures on Uρ. An ordinary control t 7→ u(t) can be regarded as a relaxed
control in the usual way, using the embedding of the space Uρ into P(Uρ) that
assigns to each w ∈ Uρ the Dirac Delta measure at w. For u ∈ P(Uρ), we write
f(x, u) for

∫
Uρ
f(x,w) du(w). As for ordinary controls, we also use the notation

φ(t, ξ, u) for the solution of the initial value problem that obtains from initial state
ξ and relaxed control u, and we denote

‖u‖ = inf{ρ |u(t) ∈ P(Uρ) for almost all t ∈ Iu} .
The first ingredient in the proof is the following restatement of the main result in
[12].

Fact 5.1. A system Σ of the form (1) is AC if and only if there exist two
continuous, positive definite functions V,W : X→ R, V proper, and a nondecreas-
ing ν : R≥0 → R≥0 so that the following property holds: for each ξ ∈ X there are
a T > 0 and a relaxed control ω : [0, T ) → P(Uν(|ξ|)), so that x(t) := φ(t, ξ, ω) is
defined for all 0 ≤ t < T and

V (x(t))− V (ξ) ≤ −
∫ t

0

W (x(τ)) dτ for t ∈ [0, T ).(4)

Proof. If there are such V , W , and ν, then for each ξ we may pick a ω so
that (4) holds; this implies the inequality lim inft→0+ t

−1[V (x(t))−V (ξ)] ≤ −W (ξ),
which is the sufficient condition for AC given in [12]. Conversely, if the system is
AC, then that reference shows that there exist V , W , and ν as above and such
that

V (ξ) = min
{∫ ∞

0

W (φ(τ, ξ, ω)) dτ + max{‖ω‖−k, 0}
}
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where the minimum is taken over the set of all relaxed controls

ω : [0,∞)→ P(Uν(|ξ|)),

and k is a constant which arises from the function θ in the definition of AC. (Here
we take W (x) = N(|x|), where N : R≥0 → R≥0 from [12] is a strictly increasing,
continuous function satisfying also N(0) = 0 and limr→+∞N(r) = +∞, i.e. a
function of class K∞. The main point of the proof was to construct an N so that
the value function V is continuous and for which optimal controls exist.)

This implies property (4). Indeed, pick ξ and a minimizing ω. Let x(·) :=
φ(·, ξ, ω) and pick any t ≥ 0. We may consider the new initial state x(t) and the
control ω̃ obtained by restricting ω to the interval [t,∞). Then V (x(t)) is bounded
above by the cost when using ω̃, that is,

V (x(t)) ≤
∫ ∞
t

W (x(τ))dτ + max{‖ω̃‖−k, 0}

≤
∫ ∞
t

W (x(τ))dτ + max{‖ω‖−k, 0}

= V (ξ)−
∫ t

0

W (x(τ))dτ.

Thus property (4) holds with T = +∞.

6. A Previous Result on Differential Inclusions. Next we recall some
concepts from set-valued analysis. We consider set-valued maps (or “multifunc-
tions”) between two Hausdorff topological spaces X and Y . A map F from X
to subsets of Y is upper semicontinuous (abbreviated USC) if for each open sub-
set V ⊆ Y the set {x |F (x) ⊆ V } is open. If U is a compact topological space
and f : X × U → Y is continuous, then the set valued map F (x) := F (x,U) =
{f(x, u), u ∈ U} is USC (see for instance [2], Prop. 1 in Section 1.2).

We will henceforth use the abbreviations DI and USCMCC for “differential
inclusion” and “upper semicontinuous multifunction with compact convex values,”
respectively.

Let X be a subset of Y = Rn. A solution of the DI ẋ ∈ F (x) is by definition
a locally absolutely continuous curve x(·) : I → X, where I is an interval, such
that ẋ(t) ∈ F (x(t)) for almost all t ∈ I.

The second ingredient needed to prove Theorem 4.1 is from the literature on
differential inclusions and viability theory. The relevant results are as follows. (We
give them in a slightly stronger form than needed, but still not in full generality:
in [2], the function “W” is allowed to depend convexly on derivatives ẋ(t), and
in some implications less than continuity of V or W is required.) Theorem 1 in
Section 6.3 of [2] shows that 2 implies 1 (with T =∞ if X is closed and F (X) is
bounded), and Proposition 2 in Section 6.3 of [2] says that 1⇒2. (Another good
reference is [6]; see in particular Theorem 14.1 there.)

7



Fact 6.1. Let F be an USCMCC from X into subsets of Rn, where X is a
locally compact subset of Rn. Assume that V and W are two continuous functions
X → R≥0. Let Ṽ : Rn → R ∪ {+∞} be such that Ṽ ≡ V on X, Ṽ ≡ +∞ on
Rn\X. Then the following properties are equivalent:

1. For each ξ ∈ X there are a T > 0 and a solution of ẋ(t) ∈ F (x(t)) defined
on [0, T ) with x(0) = ξ which is monotone with respect to V and W , that
is,

V (x(t))− V (x(s)) +
∫ t

s

W (x(τ))dτ ≤ 0(5)

for all 0 ≤ s ≤ t < T .
2. For each ξ ∈ X there is some v ∈ F (ξ) such that D−v Ṽ (ξ) ≤ −W (ξ).

Moreover, if X is closed and F (X) =
⋃
x∈X F (x) is bounded, then one can pick

T = +∞ in 2.

7. Proof of Theorem 4.1. Let Σ be a system of the form (1). Assume that
Σ is AC. We apply Fact 5.1, and obtain V , W , and ν. Pick ξ ∈ X. Let T , ω, x(·)
be as in Fact 5.1. Then

x(t)− ξ =
∫ t

0

f(x(s), ω(s))ds =
∫ t

0

f(ξ, ω(s))ds+ o(t) ∈ t.co(f(ξ, Uν(|ξ|))) + o(t).

So there is a sequence {tj} such that tj > 0 and tj → 0, with the property that, if
vj = t−1

j (x(tj)− ξ), then vj → v for some v ∈ co(f(ξ, Uν(|ξ|))). On the other hand,
(4) implies that

lim inf t−1
j (V (ξ + tjvj)− V (ξ)) ≤ −W (ξ).

So D−v V (ξ) ≤ −W (ξ). Therefore (V,W ) is a Lyapunov pair.
Conversely, assume that (V,W ) is a Lyapunov pair with W continuous and

positive definite, and let ν be as in the definition of Lyapunov pair. For ξ ∈ X,
let Xξ be the sublevel set {x |V (x) ≤ V (ξ)}, and write ν̂(ξ) = ν(r(ξ)), where
r(ξ) = sup{|x| : x ∈ Xξ}. Then let ν̂(s) = sup{ν̃(ξ) : |ξ| ≤ s} for s ≥ 0. For
x ∈ Xξ, define

Fξ(x) := co(f(x,Uν̂(|ξ|))),

and let Ṽξ(x) = V (x) for x ∈ Xξ, Ṽξ(x) = +∞ for x /∈ Xξ. Then it is clear that Fξ
is an USCMCC. If x ∈ Xξ, then Def. 4.2 implies that there is a v ∈ co(f(x,Uν(|x|)))
such that D−v V (x) ≤ −W (x). Since |x| ≤ r(ξ), we have ν(|x|) ≤ ν̃(ξ) ≤ ν̂(|ξ|). So
v belongs to Fξ(x). If vj → v, tj > 0, tj → 0, and

1
tj

(V (x+ tjvj)− V (x)) → w ≤ −W (x) ,

then V (x+ tjvj) must be finite for all large j. Therefore V (x+ tjvj) = Ṽξ(x+ tjvj)
for large j. So D−v Ṽξ(x) ≤ −W (x). This shows that Condition 2 of Fact 6.1 holds
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with X = Xξ, F = Fξ, and Vξ = V |X in the role of V . Fact 6.1 —together with
standard measurable selection theorems— then implies that there is a control ω :
[0,+∞)→ P(Uν̂(ξ)) such that Equation (4) holds with T = +∞, x(t) = φ(t, x, ω).
Since this is true for every ξ, we see that the condition of Fact 5.1 holds (with ν̂
in the role of ν), so Σ is AC.

Remark 7.1. The proof actually shows that in the AC case one has trajec-
tories, corresponding to relaxed controls, which are monotone with respect to V
and W , and are defined on the entire [0,+∞). (Observe that the cost function
used in [12] is not additive, because of the term “max{‖ω‖−k, 0}”, so the dy-
namic programming principle does not apply, and hence we cannot conclude that
optimal trajectories are monotone. If desired, this situation could be remedied by
redefining the optimal control problem as follows: drop the term max{‖ω‖−k, 0}
but instead add a state-dependent control constraint forcing u(t) to be bounded
by θ(x(t)).)

8. Comparison with differential inclusions. The purpose of this Section
is basically to remark that the necessary and sufficient condition presented here
is truly a result about control systems as opposed to about abstract differential
inclusions. Notice first that, as explained in Remark 3.2, the systems corresponding
to DI’s are in S∗, so the concept of asymptotic controllability given by Def. 3.1
makes sense for them. Moreover, there is an obvious definition of clf in this case
as well. It is easy to see that it is still true that the existence of a clf implies
AC (indeed, the proof of the “if” part of Theorem 4.1 applies in this case as
well). We now show that the converse implication can fail, that is, we provide an
example of an AC system for which there is no clf. (It is proved in [6] that an
AC DI arising from an USCMCC always has a lower semicontinuous “clf.” Our
definition requires the clf to be continuous.)

We let f : R2 → R2 be given by f(x, y) = (−y, x). Let S = R≥0×{0}. Define
an USCMCC F on R2 by letting

F (x, y) =
{
{f(x, y)} if (x, y) /∈ S
co({f(x, y), (−1, 0)}) if (x, y) ∈ S .

Then for every p ∈ R2 we can construct a trajectory

γp : [0, Tp]→ R2

of the DI ξ̇ ∈ F (ξ) such that γ(0) = p, γ(Tp) = 0, and t 7→ |γp(t)| is nonincreasing.
So our DI is AC. However, there is no continuous function V : R2 → R such that

inf
v∈F (ξ)

D−v V (ξ) < 0 for all ξ 6= 0 .

Indeed, let V be such a function. Then D−f(x,y)V (x, y) < 0 if (x, y) /∈ S. If r > 0,
then Fact 6.1 —with W ≡ 0— easily implies that the function

[0, 2π] 3 t 7→ hr(t) = V (r cos t, r sin t)
9



is nonincreasing on (0, 2π). Since V is continuous, and hr(0) = hr(2π), we conclude
that hr is constant. So V is in fact a radial function, i.e. V (ξ) = V̂ (|ξ|) for some
continuous V̂ : R≥0 → R. Given r > 0, let ξ = (0, r), so that f(ξ) = (−r, 0), and
find wn → (−r, 0), hn → 0+, such that

V (ξ + hnwn)− V (ξ) ≤ −chn

for some c > 0. Let rn = |ξ + hnwn|. Then |rn − r| = o(hn) as n → ∞. Pick any
L > 0, and define kn = hn

L . Write rn = r + knsn. Then sn → 0, kn → 0+, and

V̂ (r + knsn)− V̂ (r) ≤ −cLkn .

Therefore D−0 V̂ (r) ≤ −cL. So D−0 V̂ (r) = −∞. Since this is true for all r > 0,
Fact 6.1 —with W ≡ −1— yields the existence, for each r, of an a > 0 and a
solution ρ : [0, a] → R of ρ̇ = 0, such that ρ(0) = r and V̂ (ρ(a)) < V̂ (r). Since
ρ(a) = r, we have reached a contradiction.
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