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1. Introduction

System stability with respect to input perturba-
tions is one of the central issues to be studied in
control. During the past few years, the property
called “input to state stability” (iss) has been pro-
posed (originally in (Sontag, 1989a)) as a founda-
tion for the study of such problems, and has been
subsequently employed by many authors in areas
ranging from robust control to highly nonlinear
small-gain theorems (see for instance (Jiang et al.,
1994; Tsinias, 1989)). In the paper (Sontag and
Wang, 1995), the authors established the equiv-
alence among several natural characterizations of
the iss property, stated in terms of dissipation in-
equalities, robustness margins, and Lyapunov-like
functions.

The iss property was originally stated for stabil-
ity with respect to a given equilibrium state of
interest. On the other hand, in many applications
it is of interest to study stability with respect to
an invariant set A, where A does not necessarily
consist of a single point. Examples of such appli-
cations include problems of robust control and the
various notions usually encompassed by the term
“practical stability.” This motivated the study of
the “set” version of the iss property, originally in
(Sontag and Lin, 1992), and developed with ap-
plications to the study of parameterized families
of systems in (Lin et al., 1995). Given the interest
in set-iss, it is an obvious question to ask whether
the equivalent characterizations given in (Sontag
and Wang, 1995) for the special case A = equilib-
rium extend to the more general set case. It is the
main purpose of this paper to point out that, at
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least for the case of compact invariant sets A, the
results in (Sontag and Wang, 1995) indeed can be
generalized with little or no change; in particu-
lar, iss with respect to a given A is equivalent to
the existence of an “iss-Lyapunov function” rela-
tive to A. (Most of the proofs valid in the equi-
librium case extend easily to the set case.) The
property of there existing some invariant com-
pact set A so that there is iss with respect to A
will be called the “compact-iss” property; various
remarks about this notion are included, includ-
ing the equivalence with what is sometimes called
“practical stability.” Finally, we also sketch some
applications of the iss notion to feedback design
and disturbance attenuation.

2. Set Input to State Stability

We deal with systems of the following general
form:

ẋ = f(x, u) , (Σ)

where f : IRn × IRm → IRn is a locally Lipschitz
map, and we interpret x and u as functions of time
t ∈ IR, with values x(t) ∈ IRn and u(t) ∈ IRm,
for some positive integers n and m. (Generaliza-
tions to systems evolving on manifolds, and/or re-
stricted control value sets, are also of interest, but
in this paper, all spaces are Euclidean.) From now
on, one such system is assumed given.
A control or input is a measurable locally essen-
tially bounded function u : IR≥0 → IRm. We
use the notation ‖u‖ to indicate the Lm∞-norm
of u, and |·| for Euclidean norm in IRn and IRm.
For each ξ ∈ IRn and each u ∈ Lm∞, we denote
by x(t, ξ, u) the trajectory of the system Σ with
initial state x(0) = ξ and the input u. (This
solution is a priori only defined on some maxi-
mal interval [0, Tξ, u), with Tξ, u ≤ +∞, but the
main definition will include the requirement that
Tξ, u = +∞.) We recall in an appendix the no-



tions of positive definite and class K, K∞, and
KL comparison functions.

Let A be a nonempty subset of IRn. For each
ξ ∈ IRn, |ξ|A = d (ξ, A) = inf {d (η, ξ), η ∈ A}
will denote the usual point-to-set distance from ξ
to A. (So for the special case A = {0}, |ξ|{0} = |ξ|
is the usual Euclidean norm.) We say that such
an A is a 0-invariant set for Σ, or more precisely,
for the associated “zero-input” or “undisturbed”
system

ẋ = f0(x) = f(x, 0) , (Σ0)

if it holds that x(t, ξ, 0) ∈ A, ∀ t ≥ 0, ∀ ξ ∈ A .
That is, when the control is u ≡ 0, the solution
when starting from A is defined for all t ≥ 0 and
stays in A.

Definition 2.1 The system Σ has K-asymptotic
gain with respect to the nonempty subset A ⊆ IRn

if there is some γ ∈ K (an “asymptotic gain”) so
that, for all u, solutions exist for all t ≥ 0 and

lim
t→+∞

|x(t, ξ, u)|A ≤ γ(‖u‖) (1)

uniformly on compacts for ξ.

The uniformity requirement (which, as will be
shown in a forthcoming paper, can be substan-
tially relaxed) means, precisely: solutions exist
for all initial states, controls, and times, and
for each real numbers r, ε > 0, there is some
T = T (r, ε) ≥ 0 so that |x(t, ξ, u)|A ≤ ε + γ(‖u‖)
for all u, all |ξ| ≤ r, and all t ≥ T . This gen-
eralizes the idea of finite (linear) gain, classically
used in input/output stability theory. Clearly, if
a system has K-asymptotic gain with respect to a
set A, and if A′ is any subset of IRn containing A,
then the system also has K-asymptotic gain with
respect to A′.
The main concept to be studied is as follows.

Definition 2.2 Let A ⊆ IRn be a nonempty com-
pact set. The system Σ is input-to-state stable
(iss) with respect to A if it has K-asymptotic gain
with respect to A and A is 0-invariant. 2

Note that, in particular, if this property holds
then the autonomous system Σ0 is globally asymp-
totically stable with respect to A (in the sense
in (Lin et al., to appear)). The iss property can
also be definied with respect to non-compact 0-
invariant sets A (cf. (Lin et al., 1995)), but then
an additional technical condition must be imposed
(see Remark 2.5 below).

For any A ⊆ IRn, we consider the zero-input orbit
from A: O(A) := {η : η = x(t, ξ, 0), t ≥ 0, ξ ∈ A}
and let O(A) be the closure of O(A).

Lemma 2.3 Let A ⊆ IRn be a nonempty compact
set. If the system Σ has K-asymptotic gain with
respect to A, then it is iss with respect to O(A).

Proof: Since O(A) includes A, the system has K-
asymptotic gain with respect to O(A), and the
latter set is 0-invariant (since O(A) is). Thus

we only need to prove that O(A) is compact, or
equivalently, that O(A) is bounded. From the
K-asymptotic gain property, we know that there
exists some T ≥ 0 so that, for each ξ ∈ A,
|x(t, ξ, 0)|A ≤ 1 for all t ≥ T . By continuity at
states in A of solutions of Σ0 with respect to ini-
tial conditions, and compactness of A, there is
some constant c so that |x(t, ξ, 0)|A ≤ c for all
t ∈ [0, T ]. Thus O(A) is included in a ball of
radius max{1, c}.

Definition 2.4 The system Σ is compact-iss if it is
iss with respect to some compact set A. 2

By Lemma 2.3, this is equivalent to simply asking
that system Σ has K-asymptotic gain with respect
to some compact set A.
Remark 2.5 The definition of the iss property is
in terms of a uniform attraction property. Just
as for systems with no controls (cf. (Bhatia and
Szegö, 1970), Theorem 1.5.28, or (Hahn, 1967),
Theorem 38.1), compactness of A insures that the
following stability-like property is automatically
satisfied as well:

For each ε > 0, there exists a δ > 0 so that

|ξ|A ≤ δ, ‖u‖ ≤ δ ⇒ |x(t, ξ, u)|A ≤ ε, ∀ t ≥ 0 .

Indeed, assume given ε > 0. Let T = T (1, ε/2).
Pick any δ1 > 0 so that γ(δ1) < ε/2; then, if
|ξ|A ≤ 1 and ‖u‖ ≤ δ1, and t ≥ T ,
|x(t, ξ, u)|A ≤ ε/2 + γ(‖u‖) < ε . (2)

By continuity (at u ≡ 0 and states in A) of so-
lutions with respect to controls and initial con-
ditions, and compactness and 0-invariance of A,
there is also some δ2 > 0 so that, if |η|A ≤ δ2 and
‖u‖ ≤ δ2 then |x(t, η, u)|A ≤ ε for all t ∈ [0, T ].
Together with (2), this gives the desired property
with δ := min {1, δ1, δ2}. 2

In a manner entirely analogous to the equilibrium
case in (Sontag and Wang, 1995), Lemma 2.7, one
can show the following characterization in terms
of decay estimates:
Lemma 2.6 The system Σ is iss with respect to
the compact set A if and only if there are a KL-
function β and a K-function γ so that
|x(t, ξ, u)|A ≤ β(|ξ|A , t) + γ(‖u‖) (3)

holds for each t ≥ 0, u ∈ Lm∞, and ξ ∈ IRn. 2

Remark 2.7 In the paper (Jiang et al., 1994), a
system Σ is said to be “input-to-state practically
stable” (isps) if there exist a KL-function β, a
K-function γ and a constant c ≥ 0 such that
|x(t, ξ, u)| ≤ β(|ξ| , t) + γ(‖u‖) + c (4)

holds for each input u ∈ Lm∞ and each ξ ∈ IRn.
This concept is equivalent to the system being
compact-iss. Indeed, the concept implies the K-
asymptotic gain property with respect to the ball
of radius c. Conversely, if the system is iss with
respect to A, and 0 ∈ A (which may be assun-
med without loss of generality, by first enlarging



the set and then considering O(A)), then it is
also isps, because |x(t, ξ, u)| ≤ |x(t, ξ, u)|A+ c ≤
β(|ξ|A , t) + γ(‖u‖) + c ≤ β(|ξ| , t) + γ(‖u‖) + c
with c := sup{|ξ| , ξ ∈ A}. 2

2.1. ISS-Lyapunov Functions

An iss-Lyapunov function with respect to the com-
pact subset A ⊆ IRn for system Σ is a smooth
function V : IRn → IR≥0 which satisfies the fol-
lowing conditions: (a) V is proper and positive
definite with respect to the set A, that is, there
exist α1, α2 ∈ K∞ such that for all ξ ∈ IRn,

α1(|ξ|A) ≤ V (ξ) ≤ α2(|ξ|A) , (5)
and (b) there exist functions α3 ∈ K∞ and σ ∈ K
such that
∇V (ξ)f(ξ, v) ≤ −α3(|ξ|A) + σ(|v|) (6)

for all ξ ∈ IRn and for all v ∈ IRm.
Note that such a V is automatically also a Lya-
punov function for the zero-input system Σ0 with
respect to A. Also, observe that, since here A is
compact, the existence of a function α2 as stated
is in fact a consequence of the continuity of V .
Remark 2.8 There are two other, equivalent, ways
of defining iss-Lyapunov function. The first is as
follows. One asks that V satisfy (5) and that,
for some K∞-functions α4 and χ there hold the
implication

|ξ|A ≥ χ(|v|) =⇒
∇V (ξ)f(ξ, v) ≤ −α4(|ξ|A) (7)

(for each state ξ ∈ IRn and control value v ∈ IRm).
A second variant is to drop the requirement that
α4 be of class K∞; that is, one asks only that there
is a χ so that
|ξ|A ≥ χ(|v|) =⇒ ∇V (ξ)f(ξ, v) < 0 (8)

for all ξ 6= 0 and all v ∈ IRm. These two vari-
ants are equivalent: if (8) holds, then there exists
a positive definite function α4 such that (7) holds
(define for instance α4(r) as the supremum of the
values of∇V (ξ)f(ξ, v) on the compact subset con-
sisting of all |ξ|A = r and v so that χ(|v|) ≤ r);
then, for some properly chosen q, q(V ) satisfies (7)
with a new α4 ∈ K∞. Extending the proof of Re-
mark 2.4 in (Sontag and Wang, 1995), it can be
shown that all variants of the definition are equiv-
alent. 2

Remark 2.9 If A is not compact, then proper-
ties (6) and (7) may no longer be equivalent. As
an example, consider the following system: ẋ1 =
−x1, ẋ2 = −x2 + x1q(u− |x2|), where q : IR→ IR
is a smooth function satisfying q(r) = 0 for all
r ≤ 0 and q(r) > 0 for all r > 0. Let A be the set
{(ξ1, ξ2) : ξ2 = 0}. Consider the function V (ξ) =
ξ2
2/2. Clearly V satisfies (5) (as |ξ|A = |ξ2|), and
|ξ|A ≥ |v| =⇒ ∇V (ξ) f(ξ, v) ≤ −ξ2

2 . But it is
easy to see that V fails to satisfy property (6). 2

The main result is as follows.
Theorem 1 Let the compact set A be a 0-invariant

set for the system Σ. Then the system is iss with
respect to A iff it admits an iss-Lyapunov function
with respect to A.
The proof follows essentially the same lines as the
proof of the analogous Theorem 1 (for equilibria)
in (Sontag and Wang, 1995). We omit the details
for reasons of space, but the main point is that
care must be taken to establish all estimates in
terms of |·|A rather than Euclidean norm.
One may modify V in an essentially arbitrary way
inside the set A, so as to make V positive definite
with respect to subsets of A:
Lemma 2.10 Assume that Σ is iss with respect to
a given compact setA, and let Ã be any nonempty
compact subset of A. Then there is a smooth
function Ṽ : IRn → IR≥0 which satisfies the fol-
lowing conditions: (a) Ṽ is proper and positive
definite with respect to the set Ã, that is, there
exist α̃1, α̃2 ∈ K∞ such that for all ξ ∈ IRn,

α̃1(|ξ|Ã) ≤ Ṽ (ξ) ≤ α̃2(|ξ|Ã) , (9)
and (b) there exist a function α̃3 ∈ K∞ and a
nondecreasing continuous function σ̃ such that
∇Ṽ (ξ)f(ξ, v) ≤ −α̃3(|ξ|Ã) + σ̃(|v|) (10)

for all ξ ∈ IRn and for all v ∈ IRm.
Proof: Let V be an iss-Lyapunov funtion for Σ sat-
isfying (6). Consider the set A1 = {ξ : |ξ|A ≥ 1}.
Since this is disjoint from A, there is a smooth
function ϕ : IRn → [0, 1] so that ϕ(ξ) = 0 if
ξ ∈ A and 1 if ξ ∈ A1. Similarly, there is
some smooth, nonnegative function λ defined on
IRn which vanishes exactly on Ã. Now we de-
fine Ṽ (ξ) := λ(ξ)(1 − ϕ(ξ)) + V (ξ)ϕ(ξ). By con-
struction, Ṽ is smooth and is proper and positive
definite with respect to Ã, that is, there are com-
parison functions as in (9). Furthermore, since
V (ξ) = Ṽ (ξ) for |ξ|A > 1, also

∇Ṽ (ξ) f(ξ, v) ≤ −α3(|ξ|A) + γ(|v|) ,
(where α3 and γ are the comparison functions as-
sociated to V ) for all v ∈ IRm and all |ξ|A > 1.
Since both A and Ã are compact, there exists
some s0 ≥ 0 such that |ξ|Ã ≤ |ξ|A + s0; thus

∇Ṽ (ξ) f(ξ, v) ≤ −α̃3(|ξ|Ã) + γ(|v|), (11)
whenever |ξ|Ã ≥ 1 + s0, where α̃3 is any K∞
function which satisfies α̃3(r) ≤ α3(r − s0) for
all r ≥ s0 + 1. The proof is completed by
taking any nondecreasing continuous function σ̃
which majorizes both γ(r) and the maximum of
∇Ṽ (ξ) f(ξ, v) over all |ξ|Ã ≤ 1 + s0, |v| ≤ r.

This construction can be applied in particular
when A contains the origin Ã = {0} to conclude
that if the system Σ is compact-iss, then Σ admits
a semi-iss-Lyapunov function, that is, a smooth
function V satisfying α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|) for
suitable α1, α2 ∈ K∞ and so that
∇V (ξ)f(ξ, v) ≤ −α3(|ξ|) + σ(|v|) (12)



for some α ∈ K∞ and nondecreasing continuous
function σ. (Note that, in general, σ cannot be
picked of class K; there is no need for such a func-
tion to vanish at 0. However, one may always
write σ ≤ c + σ̃, for some class-K function σ̃ and
some positive constant c.)

On the other hand, if Σ admits a semi-iss-
Lyapunov function satisfying (12), then it follows
that |ξ| ≥ χ(|v|) =⇒ ∇V (ξ)f(ξ, v) ≤ −α3(|ξ|)/2
where χ(r) = α−1

3 ◦ 2σ(r). Observe that χ is a
nondecreasing function. Using exactly the same
arguments as used on page 441 of (Sontag, 1989a),
one can show that there exist some KL-function
β and some nondecreasing function γ such that
|x(t, ξ, u)| ≤ β(|ξ| , t) + γ(|u|)

for each input u and each initial state ξ. It is easy
to see from this that the system is compact-iss.
So we proved the following conclusion:

Corollary 2.11 The system Σ is compact-iss iff it
admits a semi-iss-Lyapunov function.

3. ISS-Control Lyapunov Functions

In this section, we provide a preliminary discus-
sion of some questions related to input to state
stabilizability under feedback. (For simplicity, we
consider only the case of stabilization with respect
to the equilibrium A = {0}, but the theory could
be developed in more generality.) Now inputs in
Σ will be assumed to be partitioned into two com-
ponents, one of which corresponds to true controls
u : IR≥0 → IRm, and the other to “disturbances”
w : IR≥0 → IRp acting on the system. Further-
more, we will assume that the right-hand side of
Σ is affine in u and w. That is to say, we consider
systems on IRn of the general form:

ẋ = f(x) +G(x)u+D(x)w , (13)
where f and the columns of the matrices G and
D are smooth vector fields. We also assume that
f(0) = 0.

Our main objective is to study conditions for the
existence of a smooth feedback law u = k(x) such
that the closed-loop system

ẋ = f(x) +G(x)k(x) +D(x)w (14)
is iss, with w seen as the external input. As when
studying (non-iss) stabilizability under feedback,
we search for conditions expressed in terms of
“control Lyapunov functions.”

Observe that if there exists a feedback law as
above, then, by the main result in (Sontag and
Wang, 1995), there exists a positive definite,
proper function ϕ such that the system

ẋ = f(x) +G(x)k(x) + ϕ(x)D(x)d (15)
is uniformly globally asymptotically stable (ugas)
with respect to all d ∈MO (= the set of all mea-
surable functions from IR≥0 to the unit ball in
IRm). That is, there exists for solutions of this

closed-loop system a KL-function β such that
|x(t, ξ, d)| ≤ β(t, ξ), ∀ t ≥ 0

for all ξ ∈ IRn and all d ∈ MO. We next apply
to (15) the converse Lyapunov Theorem in (Lin
et al., to appear) for systems with no controls but
with time-varying parametric uncertainties. We
conclude (using the value u = k(x)) that there
exists also a smooth, proper and positive definite
function V such that

inf u {a(ξ) +B0(ξ)u+ ϕ(ξ)B1(ξ) d} < 0
for all |d| ≤ 1 and ξ 6= 0, where we are using the
notations a(ξ)=∇V (ξ)f(ξ), B0(ξ)=∇V (ξ)G(ξ),
and B1(ξ)=∇V (ξ)D(ξ). Consequently, for any
ξ 6= 0,

inf u {a(ξ) +B0(ξ)u+ ϕ(ξ) |B1(ξ)|} < 0 . (16)
For any given real-valued function V on IRn, let
B0 be the set {ξ : B0(ξ) = 0, ξ 6= 0}. Thus, for
the above V ,

a(ξ) < 0 if ξ ∈ B0 (17)
and

lim
|ξ|→∞
ξ∈B0

−a(ξ)
|B1(ξ)| = +∞. (18)

(We make the convention that −a(ξ)/ |B1(ξ)| =
+∞ at those points where B1(ξ) = 0. The mean-
ing of the limit along B0 is the obvious one, namely
that values are large as long as |ξ| is large and
ξ ∈ B0. If B0 happens to be bounded, this condi-
tion is vacuous.)
Motivated by these considerations, we say that a
smooth, proper and positive definite function V is
an iss-control-Lyapunov-function (iss-clf) for (13)
if (17)-(18) hold. An iss-clf V is said to satisfy the
small control property (scp) if for any ε > 0, there
is a δ > 0 such that for each 0 < |ξ| < δ, there
is some |v| < ε such that a(ξ) + B0(ξ)v < 0. (To
simplify, we also say that the corresponding pair
(a(ξ), B0(ξ)) “satisfies scp.”) These definitions
constitute one possible generalization of the cor-
responding notion for systems with no “w”, for
which only equation (17) is relevant; see (Sontag,
1989b; Isidori, 1995).
Theorem 2 If there is an iss-clf V for system (13),
then there exists a feedback law k : IRn → IRm

which is smooth on IRn \ {0} and is such that the
closed-loop system (14) is iss. If V satisfies the
small control property, then k can be chosen to be
continuous at 0.
This result is not really new: (Freeman and Koko-
tovic, to appear) give a very similar theorem
which applies to systems not necessarily affine in
controls, but we believe that the method of proof
given here is very natural and constructive.
We will say that a feedback k is almost smooth if
it is smooth on IRn \ {0} and continuous at 0.
Remark 3.1 The converse of the above Theorem is
also true, that is, if system (13) is iss-stabilizable



by an almost smooth feedback k(·), then there
exists an iss-clf with scp. However, in order to
prove the stronger assertion, we would need to
make some modifications to the proof of Theorem
1 in (Lin et al., to appear), but we don’t have the
space to do so in this conference paper. We may
sketch the main steps, however. Basically, and
using the notations in that paper, one needs to
show that, when the 0-invariant set A used there
is compact, the functions g and U constructed for
obtaining V are locally Lipschitz outside A with-
out needing to assume that f is locally Lipschitz
on A (which, when k is almost smooth but not
smooth, cannot be guaranteed). To show the Lip-
schitz continuity of g, one only needs to notice
that the trajectories starting outside A never en-
ter A in negative time; hence, the original proof is
still valid. To prove the Lipschitz condition on U ,
one first notices that the stability of the system
implies that trajectories starting from a compact
set always stay in a compact set in positive time.
Using this, one can show that x(t, ξ, dξ,ε) always
stays in a compact set disjoint from A, for any
t ∈ [0, tξ,ε]. This then allows one to apply the
Lipschitz condition for f outside A, together with
the Gronwall inequality, to conclude that U is lo-
cally Lipschitz outside A. 2

Sketch of Proof of Theorem 2. Assume that (13)
admits an iss-clf V satisfying (17)–(18). If B0 is
unbounded, we let

ψ1(r) = inf
{
− a(ξ)
|B1(ξ)| : B0(ξ) = 0, |ξ| = r

}
(values may be infinite). If B0 is bounded, we
let ψ1(r) be defined in this way for those r for
which there is some ξ ∈ B0 with |ξ| ≥ r, but let
ψ1(r) =∞ otherwise. In either case, it holds that
inf {ψ1(r), r ∈ [a, b]} > 0 for each two numbers
0 < a < b, so there is a smooth K∞-function ψ(r)
such that ψ(r) ≤ min {r2, ψ1(r)} for all r ≥ 0.
Let ϕ(ξ) := ψ(|x|); this is continuously differen-
tiable everywhere in IRn, because ψ(r) ≤ r2. It
is clear that the following implication holds:

ξ ∈ B0 =⇒ a(ξ) + ϕ(ξ)|B1(ξ)| < 0 .
So inf v {a1(ξ) +B0(ξ) v} < 0 for all ξ 6= 0, where
a1(ξ) := a(ξ) + ϕ(ξ) |B1(ξ)| . Applying the “uni-
versal formula” given in (Sontag, 1989b) (see also
(Isidori, 1995), Section 9.4) to the pair (a1, B0),
one obtains a feedback k0(ξ) = α(a1(ξ), |B0(ξ)|),
so that for all ξ 6= 0,

a(ξ) +B0(ξ)k0(ξ) + ϕ(ξ) |B1(ξ)| < 0 (19)
where α(r, s) is the function defined by

α(r, s) =
{
− r+

√
r2+s4

s , if s 6= 0 ;
0 , if s = 0 .

As it was shown in (Sontag, 1989b), the function
α is analytic on the set

S = {(s, r) ∈ IR2 : r 6= 0 or s < 0} .
This then implies that k0 is locally Lipschitz on

IRn\{0}. (Note here that k0 may fail to be smooth
on IRn\{0} because the function ξ 7→ |B1(ξ)| may
fail to be smooth.) To obtain a feedback that is
smooth on IRn \ {0}, it is sufficient to approxi-
mate k0 on IRn \{0} by a smooth k so that Equa-
tion (19) still holds. It then follows that

a(ξ) +B0(ξ)k(ξ) +B1(ξ)v < 0 (20)
for all ξ 6= 0 and all |v| ≤ ψ(|ξ|). Therefore, V
is an iss-Lyapunov function for the closed-loop
system, and consequently, the closed-loop system
is iss.
To show that if in addition V satisfies the scp then
the feedback law can be chosen to be continuous
everywhere, observe that one may always choose
ψ in such a manner that lim|ξ|→0

|B1(ξ)ψ(ξ)|
a(ξ) = 0 .

For instance, one can pick up any smooth K∞-
function ψ̃ so that ψ̃(r) ≤ min {ψ(r)(−a(ξ)) :
ξ ∈ B0, |ξ| = r} in a neighborhood of 0 where
−a(ξ) ≤ 1, and let ψ̃(r) ≤ ψ(r) everywhere. Then
replace ψ by ψ̃. With this new choice of ψ and
the resulting ϕ, the pair (a1(ξ), B0(ξ)) still has
the scp, and hence the feedback law k0 is contin-
uous everywhere, and hence, the approximating
function k1 can be choosen almost smooth.

3.1. Gain assignment

Suppose that system (13) admits an iss-Lyapunov
function V , and that the two K∞-functions α1 and
α2 are such that

α1(|ξ|) ≤ V (ξ) ≤ α2(|ξ|), ∀ ξ. (21)
The above arguments also show that if there exists
a smooth, positive definite and proper function ϕ
such that

inf u {a(ξ) +B0(ξ)u+ |B1(ξ)|ϕ(ξ)} < 0
for all ξ 6= 0, then there exists a feedback k
that is smooth on IRn \ {0}, such that for any
ξ 6= 0, a(ξ) + B0(ξ)k(ξ) + B1(ξ)w < 0 provided
|w| ≤ ψ(|ξ|), where ψ(r) = inf |ξ|≤rϕ(ξ) is a K∞-
function. By the proof of Theorem 1 in (Sontag,
1989a), (strictly speaking, this is not a particu-
lar case of the setup in the first part, because
the closed-loop system need not satisfy a Lipschitz
property at the origin), one knows that there ex-
ists a KL-function β so that for every trajectory
x(t, ξ, w) of the closed-loop system, it holds that
|x(t, ξ, w)| ≤ β(|ξ| , t) + γ(‖w‖) . (22)

where γ(r) = α−1
1 ◦ α2 ◦ ψ−1(r). We say that a

function γ is a feedback assignable gain if there is
some k so that an estimate of this form holds (for
some β), under some almost smooth feedback law.
When studying the problem of iss stabilizability
for a system of the form (13), a special case is
that of “matching uncertainties” when G = D;
then the equations have the form

ẋ = f(x) +G(x)(u+ w). (23)
In (Sontag, 1989a), it was shown that if sys-
tem (23) is stabilizable by a smooth feedback



when w = 0 in (23), then the system is also iss-
stabilizable by a smooth feedback. In (Praly and
Wang, submitted), this result was generalized to
obtain the following “gain assignability” result,
rederived here in a somewhat simpler manner by
means of iss-Lyapunov functions.

Proposition 3.2 If system (23) is stabilizable by
an almost smooth feedback k when w = 0, then
every γ ∈ K∞ is an assignable gain.

Proof: By standard converse Lyapunov theorems,
the hypotheses imply the existence of a control-
Lyapunov function V satisfying (21) and

inf u{a(ξ) +B(ξ)u} < 0, ∀ξ 6= 0, (24)
where a(ξ) = ∇V (ξ)f(ξ), B(ξ) = ∇V (ξ)G(ξ),
and in addition, V satisfies the scp. Let ψ be a
K∞-function such that ψ(r) ≥ 2γ−1 ◦α−1

1 ◦α2(r).
Let ϕ be a almost smooth function so that ϕ(ξ) ≥
ψ(|ξ)| /2 for all ξ ∈ IRn. It follows from (24) that
inf u{a1(ξ) + B(ξ)u} < 0, ∀ξ 6= 0, where a1(ξ) =
a(ξ) + |B(ξ)|ϕ(ξ). Arguing as earlier, one knows
that there exists a k that is smooth on IRn \ {0}
such that

a1(ξ) +B(ξ)k(ξ) < 0 (25)
for all ξ 6= 0. Note again that if the pair (a,B)
satisfies the scp, the pair (a1, B) also satisfies the
scp, so the resulting k is continuous everywhere.
From (25), it follows that for each ξ 6= 0,

a(ξ) +B(ξ)k(ξ) +B(ξ)w < 0
provided |w| ≤ ψ(|ξ|)/2. From here one obtains
the desired conclusion.

Finally, we relate our results to those in (Isidori,
1995), Section 9.5, where the problem of distur-
bance attenuation with stability is discussed in
the context of finiteness of L2 gains (we assume
for this comparison that the output function is
y = x). It was shown there that if system (13)
admits a positive definite proper smooth function
V such that for each ξ 6= 0,

B0(ξ) = 0 =⇒

a(ξ) +
1

4γ2
|B1(ξ)|2 + |ξ|2 < 0, (26)

where γ > 0 is some constant, then there exists
an almost smooth feedback k such that the closed-
loop system is iss with an iss-Lyapunov function
satisfying
∇V (f(ξ) + g(ξ)k(ξ) + p(ξ)w) ≤ γ2 |w|2 − ξ2 .

Observe that if (26) holds, then V is also an iss-
Lyapunov function as defined above. This follows
immediately from the following observation:

Lemma 3.3 Let a, b, c : IRn → IR be continuous
functions. Assume that c is positive definite and
proper. If a(ξ) + (b(ξ))2 + c(ξ) < 0 for all ξ 6= 0,
then lim|ξ|→∞

−a(ξ)
|b(ξ)| =∞ .

Proof: The Lemma follows directly from the in-
equality ρ+ σ

ρ ≥ 2
√
σ for all ρ, σ > 0.

4. Appendix

We recall the definitions of the standard classes
of comparison functions. A function γ : IR≥0 →
IR≥0 is positive definite if γ(s) > 0 for all s >
0, and γ(0) = 0; the function γ is a K-function
if it is continuous, positive definite, and strictly
increasing; and γ is a K∞-function if it is a K-
function and γ(s) → ∞ as s → ∞. Finally, a
function β : IR≥0× IR≥0 → IR≥0 is a KL-function
if for each fixed t ≥ 0 the function β(·, t) is a K-
function, and for each fixed s ≥ 0, β(s, t) decreases
to zero as t→∞.
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