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Abstract

It was shown recently by Clarke, Ledyaev, Sontag and
Subbotin that any asymptotically controllable system can
be stabilized by means of a certain type of discontinuous
feedback. The feedback laws constructed in that work are
robust with respect to actuator errors as well as to pertur-
bations of the system dynamics. A drawback, however,
is that they may be highly sensitive to errors in the mea-
surement of the state vector. This paper addresses this
shortcoming, and shows how to design a dynamic hybrid
stabilizing controller which, while preserving robustness
to external perturbations and actuator error, is also ro-
bust with respect to measurement error. This new design
relies upon a controller which incorporates an internal
model of the system driven by the previously constructed
feedback.

1. Introduction

Let the nonlinear control system

ẋ = f(x, u) (1)

be (null)-asymptotically controllable. This means that for
each point x0 ∈ Rn there exists an “open loop” control
u : [0,+∞) → U which drives the state vector x(t) to
the origin in Rn. It is clear that the control system (1)
is asymptotically controllable if there exists a “closed-
loop”, or feedback, control k : Rn → U which stabilizes
all trajectories of the system

ẋ = f(x, k(x)) (2)

with respect to the origin. The answer to the converse
question: “Does asymptotic controllability imply feed-
back stabilization?” is not so obvious. In fact, the an-
swer is negative if we consider only continuous feedback
laws, as remarked in [15] and [2]. One must allow for
discontinuous feedback. Unfortunately, allowing discon-
tinuous feedback leads to an immediate difficulty: how
should one define the meaning of solution x(·) of the dif-
ferential equation (2) with discontinuous right-hand side?
One possibility would be to interpret solutions in terms of
differential inclusions, and in particular solutions in the
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Filippov sense [7]. However, as shown in [12, 6], there
are examples of asymptotically controllable systems for
which there is no possible feedback that stabilizes in the
Filippov sense; in fact, [6] shows that the existence of a
stabilizing feedback in the Filippov sense is equivalent to
the existence of a continuous stabilizing one, in the case of
systems affine in controls. Thus a totally different notion
is needed.

A natural and physically meaningful concept of solution
of (2), which can be interpreted as stabilization by sam-
pling at arbitrarily high sampling rates, was introduced
in [4]. This concept allowed the proof of the general re-
sult: asymptotic controllability implies the existence of
stabilizing feedback. The feedback laws constructed in
that work are robust with respect to actuator errors as
well as to perturbations of the system dynamics (1). A
drawback, however, is that they may be highly sensitive
to errors in the measurement of the state vector x(t). This
paper addresses this shortcoming, and shows how to de-
sign a dynamic hybrid stabilizing controller which, while
preserving robustness to external perturbations and ac-
tuator error, is also robust with respect to measurement
error. This new design relies upon a controller which in-
corporates an internal model of the system driven by the
previously constructed feedback. We start by reviewing
the relevant definitions and results from [4].

1.1. Definition of Feedback Solution

From now on, we assume that U is a compact metric
space and that the mapping f : Rn × U→ Rn : (x, u) 7→
f(x, u) is continuous, and locally Lipschitz on x uniformly
on compact subsets of Rn×U. (The compactness assump-
tion on U is made here only to clarify the exposition and
it can be replaced by more general assumption that U is
a locally compact metric space.) We use |x| to denote the
usual Euclidean norm of x ∈ Rn, and 〈x, y〉 for the inner
product of two such vectors.

By a sampling partition (of [0,+∞)) we mean any in-
finite sequence π = {ti}i≥0 consisting of numbers

0 = t0 < t1 < t2 < . . .

with limi→∞ ti =∞; its diameter is the number

d(π) := sup
i≥0

(ti+1 − ti).

An arbitrary function k : Rn → U will be called feedback.



π, and an x0 ∈ Rn. Recursively solve

ẋ(t) = f(x(t), k(x(ti))) , t ∈ [ti, ti+1] (3)

for i = 0, 1, 2, . . ., using as initial value x(ti) the endpoint
of the solution on the preceding interval (and starting
with x(t0) = x0). The function x(·) thus obtained is the
π-trajectory of (2) starting from x0.

The above solution may fail to be defined on all of
[0,+∞), because of possible finite escape times in one
of the intervals, in which case we only have a trajectory
defined on some maximal interval. We say that the tra-
jectory is well-defined if this interval is all of [0,+∞).

Definition 1.2 The feedback k : Rn → U s-stabilizes the
system (1) if for each pair

0 < r < R

there exist numbers M = M(R) > 0, δ = δ(r,R) > 0,
and T = T (r,R) > 0 such that, for each partition π with
d(π) < δ, and for each initial state x0 such that |x0| ≤ R,
the π-trajectory x(·) of (2) starting from x0 is well-defined
and the following properties are satisfied:

1. (uniform attractiveness)

|x(t)| ≤ r for all t ≥ T . (4)

2. (overshoot boundedness)

|x(t)| ≤ M(R) for all t ≥ 0; (5)

3. (Lyapunov stability)

lim
R↓0

M(R) = 0. (6)

Thus, a stabilizing feedback is one such that, for all
fast enough sampling, drives states asymptotically to the
origin and with small overshoot. Observe that, implicit
in this definition are the facts that a faster sampling rate
may be required near the origin (since smaller steps are
needed, to preserve stability), as well as very far from
the origin (to avoid for instance lack of existence of so-
lutions). This definition is consistent with more classical
notions of stabilization: if a continuous feedback k sta-
bilizes the system (1) in the usual sense of making the
origin of (2) globally asymptotically stable, then it also
s-stabilizes (cf. [4]).

The following definition of (global, null-) asymptotic
controllability generalizes the classical concept of uniform
asymptotic stability for control systems; it was introduced
in [13]. Given any control , that is, a measurable function
u : [0,+∞) → U, the solution of (1) at time t ≥ 0, with
initial condition x0, defined on some maximal interval
[0, tmax(x0, u)), is denoted by x(t;x0, u).

Definition 1.3 The system (1) is asymptotically control-
lable if:

control u such that the trajectory x(t) = x(t;x0, u)
is defined for all t ≥ 0, and x(t)→ 0 as t→ +∞;

2. (Lyapunov stability) for each ε > 0 there exists
δ > 0 such that, for each x0 ∈ Rn with |x0| < δ,
there is a control u as in 1. such that |x(t)| < ε for
all t ≥ 0.

A relation between asymptotic controllability and feed-
back s-stabilization was established in [4].

Theorem 1 The system (1) is asymptotically control-
lable if and only if it admits an s-stabilizing feedback.

The interesting part of this result lies in the construc-
tion of an s-stabilizing feedback for any asymptotically
controllable system (1). This construction was based
on: (a) the notion of control-Lyapunov function [13], (b)
methods of nonsmooth analysis [3], and (c) techniques
from positional differential games [10, 5].

1.2. Robustness Properties of Feedback

The advantages of feedback over open-loop control are
usually expressed in terms of robustness properties. The
most obvious such property is the compensation for sud-
den changes in states. Often, in addition, one is inter-
ested in good performance even with respect to persistent
disturbances. Consider the following “perturbed” model
associated to (2):

ẋ = f(x, k(x+ e(t)) + a(t)) + d(t). (7)

We think of d(t) as an external disturbance of the dynam-
ics, a(t) as an actuator error , and e(t) as a measurement
error for the state vector x(t). For continuous stabilizing
feedback, one has the following classical results on sta-
bility for persistent disturbances (cf. [9]): that there is a
continuous function ρ : Rn → R≥0 such that ρ(x) > 0 for
x 6= 0, and so that, for any disturbances d(·), a(·), and
e(·) satisfying

|d(t)| ≤ ρ(x(t)), |a(t)| ≤ ρ(x(t)), |e(t)| ≤ ρ(x(t)), (8)

the trajectories of (7) are uniformly asymptotically stable
with respect to the origin. Moreover, it can be shown that
a continuous stabilizing feedback provides robust practi-
cal semi-global stabilization of the perturbed system (7),
in the following sense: for any 0 < r < R there exists
positive η = η(r,R), T = T (r,R), and M(R) such that
for any disturbances d(·), a(·), e(·) satisfying

|d(t)| ≤ η, |a(t)| ≤ η, |e(t)| ≤ η,

any trajectory of (7) with |x(0)| ≤ R satisfies (4), (5)
(and (6) holds for M).

The situation concerning robustness properties of s-
stabilizing discontinuous feedback is more complicated.

We will say that the feedback k is robustly s-stabilizing
with respect to external disturbances, and actuator errors,



tinuous function ρ : Rn → R≥0, ρ(x) > 0 for x 6= 0, such
that, for any disturbances a(·), d(·) satisfying (8), and
e(·) ≡ 0, k is s-stabilizing for the perturbed system (7).

We will simply say that k is robustly s-stabilizing if for
any disturbances a(·), d(·) and errors e(·) satisfying (8) k
is s-stabilizing for the perturbed system (7).

It was shown in [4] that the s-stabilizing feedback con-
structed there is robust with respect to external distur-
bances and actuator errors in the absence of measurement
errors. But the assumption that there is no measure-
ment error, i.e. e(·) ≡ 0, is essential for establishing that
fact. In general, s-stabilizing feedback can be too sensi-
tive with respect to errors in measurement of state vector
x(t). The following result from [11] (which was motivated
by an analogous result for classical solutions given in [8])
imposes strong conditions on robust stabilization:

Theorem 2 Let k : Rn → U be a robust s-stabilizing
feedback. Then the control system (1) admits a smooth
control-Lyapunov function.

The existence of a smooth control-Lyapunov function
for control system (1) is a strong requirement, and fails
in general for asymptotically controllable systems. For
instance, if (1) is affine in controls, the existence of such
a control-Lyapunov function implies that there is also a
continuous stabilizing feedback, which as discussed earlier
is in general not the case. More generally, the existence
of smooth control-Lyapunov function is equivalent to the
existence of stabilizing discontinuous feedback with so-
lutions of (2) defined in terms of a suitable differential
inclusion.

The main contribution of this paper lies in the con-
struction, for any asymptotically controllable system, of
a dynamic hybrid controller, which provides robust stabi-
lization in spite of external disturbances, actuator errors,
and measurement errors. An important component of
this controller is an internal model of the system (1) un-
der the action of the s-stabilizing feedback constructed in
[4].

Our notion of s-stabilizing discontinuous feedback was
based upon the notion of discontinuous feedback stud-
ied in the context of positional differential games by N.N.
Krasovskii and A.I. Subbotin in [10]. Similarly, our design
of a stabilizing robust controller in this paper is closely
patterned after the “control with guide” algorithm, which
was introduced in their work also in order to provide ro-
bustness of discontinuous feedback with respect to mea-
surement errors.

Remark 1.4 Mathematically, because of the uniform
continuity of f(x, u) on bounded sets, any perturbation
of the system (1) by actuator errors can be considered
and accounted for by the external disturbances. So from
now on we omit any explicit reference on actuator errors.
2

This paper is organized as follows. In the next sec-
tion we provide a construction of the robust controller

auxiliary results. Later these results are used in the proof
of the robustness properties of this controller.

2. Robust Dynamic Hybrid Controller

Let the control system (1) be asymptotically control-
lable and let k : Rn → U be a s-stabilizing feedback for
(1).

In the presence of measurement errors e(t), only values
x′(t) of the measured estimate of state vector x(t)

x′(t) := x(t) + e(t) (9)

can be used for control.
Define a tracking controller k0 : Rn×Rn → U as follows:

〈z − x′, f(x′, k0(x′, z))〉 = max
u∈U
〈z − x′, f(x′, u)〉. (10)

The most important feature of the tracking controller (10)
is the fact that trajectories of the system

ẋ = f(x, k0(x′, z)) + d1(t) (11)

can track any trajectory of the control system

ż = f(z, u(t)) + d2(t) (12)

for any control u(·) if the measurement errors e(·), distur-
bances d1(·), d2(·), and diameter of the sampling partition
πx for (11) are small enough. We postpone a detailed dis-
cussion to the end of this Section, in order to first define
a robust dynamic hybrid controller.

A dynamic hybrid controller consists of:

• a tracking controller k0 (10) which drives system (11)

• an internal model of the system (1) driven by an s-
stabilizing feedback

ż = f(z, k(z)) + d2(t) (13)

• a set of re-initialization rules which define moments
t′k from the sampling partition πz for (13) for re-
initialization of internal model (13)

z(t′k) = x′(t′k) (14)

• a sampling rule to choose sampling moments ti ∈ πx
and τi ∈ πz

ti+1 − ti ≤ δx(x′(ti)) (15)

τi+1 − τi ≤ δz(z(τi)). (16)

Remark 2.5 Note that, by allowing a disturbance in the
internal model (13), we can assume that the output z(t)
of the internal model is computed by an Euler method for
the differential equation (13). In this sense, the internal
model is the computational model of closed-loop system
(2).



initialization of the internal model is determined by the
stabilizing properties of s-stabilizing feedback k. Their
precise definition will be given in (26)-(27), after a de-
scription of these properties.

A sampling rule means that sampling partitions πx for
(11) and πz for (13) satisfying respectively (15) and (16)
are considered. The continuous functions δx : Rn → R≥0

and δz : Rn → R≥0 are assumed to be positive outside 0.
2

The main result of this paper is the following state-
ment characterizing robustness properties of the dynamic
hybrid controller defined in this section.

Theorem 3 Let the system (1) be asymptotically control-
lable and k be an s-stabilizing feedback. Then, there exists
continuous functions ρ : Rn → R≥0, δx : Rn → R≥0, and
δz : Rn → R≥0, as well as re-initialization rules (26)-
(27), such that for any measured estimate x′ of state vec-
tor x, and any disturbances d1(·), d2(·) satisfying

|x′(t)− x(t)| ≤ ρ(x(t)), for any t ≥ 0 (17)

|d1(t)| ≤ ρ(x(t)), |d2(t)| ≤ ρ(x(t)) for any t ≥ 0,
(18)

The πx-trajectories x(·) of (11) are stable in the following
sense: for any 0 < r < R there exist positive T = T (r,R)
and M(R) such that (6) holds, and any πx-trajectory of
(11) with |x(0)| ≤ R satisfies (4) and (5).

It is possible to derive from Theorem 3 that this dy-
namic hybrid controller provides robust practical semi-
global stabilization of system (1) even for πx-trajectories
of (11) with sampling partitions πx satisfying assumption
d(πx) ≤ δ, instead of (15), for some positive constant δ.

Corollary 2.6 For any 0 < r < R there exist positive
T = T (r,R), η = η(r,R), δ = δ(r,R), and M(R) such
that (6) holds and for any measured estimate x′ and any
disturbances d1(·), d2(·) satisfying

|x′(t)− x(t)| ≤ η for any t ≥ 0, (19)

|d1(t)| ≤ η, |d2(t)| ≤ η for any t ≥ 0, (20)

any πx-trajectory of (11) with d(πx) ≤ δ and |x(0)| ≤ R
satisfies (4) end (5). 2

This result means that the dynamic hybrid controller
drives x(t) from a bounded set in Rn uniformly to an
arbitrary small neighborhood of the origin, if the mea-
surements errors, external disturbances, and diameter of
a sampling partition are small enough.

2.1. Re-Initialization Rules

In this paper we prove Theorem 3 for the case of s-
stabilizing feedback k defined in [4]. Let us describe some
properties of this feedback which are used in the state-
ment of the re-initialization rules for the internal model.

{Rj}+∞−∞ and closed sets {Gj}+∞−∞ such that

lim
j→−∞

Rj = 0, lim
j→+∞

Rj = +∞,

Gj ⊂ BRj ⊂ B2Rj ⊂ Gj+1 (21)

and the set Gj+1 is invariant with respect to πz-
trajectories of the internal model:

z(t) ∈ Gj+1 for all t ≥ 0 (22)

if d(πz) ≤ δj and |d2(t)| ≤ χj for some positive numbers
δj , χj . Moreover, there exists moments Tj > 0 such that,
for any πz-trajectory as above with z(0) ∈ Gj+1, we have
the relation

z(t′) ∈ Gj−1, |z(t)| > Rj−2 for all t ∈ [0, t′] (23)

at some moment t′ ≤ Tj .
Remark 2.7 It can be shown that there exist continuous
functions δz : Rn → R≥0 and χz : Rn → R≥0 which are
positive outside 0 and such that for any disturbance d2(·)
satisfying

d2(t) ≤ χ(z(t)) for all t ≥ 0 (24)

and πz-trajectory of (13) with sampling partition πz de-
termined by sampling rule (16), relations (22) and (23)
hold. 2

We have for the sets

Hj := Gj+1 \Gj
that

Rn \ {0} = ∪+∞
j=−∞Hj .

Now we can define re-initialization rules for determin-
ing sequential moments t′k ∈ πz, k = 0, 1, . . ., of re-
initialization (14) of the internal model (13).

Let t′0 = 0, and assume that the moment t′k has already
been determined. Take an index jk that satisfies

x′(t′k) ∈ Hjk . (25)

Then the next moment t′k+1 of the re-initialization is de-
fined as first moment t′ > t′k from πz such that one of the
following two events occur:

x′(t′) ∈ Hjk+1 for some jk+1 ≤ jk − 1 (26)

x′(t′) 6∈ Gjk+2 (27)

2.2. Tracking Lemma
It was mentioned before that the tracking controller

(10) can track trajectories of control system (12) by using
only measured estimates x′(t) (9) of state vector x(t).

The next variant of Krasovskii-Subbotin Tracking
Lemma [10] makes this statement precise.

Let us assume that function f : Rn × U→ Rn satisfies
the following growth and Lipschitz conditions:

|f(x, u)| ≤ m on Rn × U (28)

|f(x1, u)−f(x2, u)| ≤ l|x1−x2| for all x1, x2 ∈ Rn, u ∈ U
(29)



tive T , η, any measured estimate x′(·) and disturbances
d1(·), d2(·) satisfying (19), (20), and any trajectory z(·) of
(12) defined on [0, T ], an arbitrary πx-trajectory of (10)
with

d(πx) ≤ η2 (30)

and initial conditions

|x(0)− z(0)| ≤ η (31)

is defined on [0, T ] and satisfies

|x(t)− z(t)| ≤ γ(η) for all t ∈ [0, T ], (32)

where

γ(η) := e2lT (1 + l(1 +mη)2 + 4m)
1
2 η (33)

Remark 2.9 Since limη→+0 γ(η) = 0, it follows from
Lemma 2.8 that, on finite time intervals, the trajectories
of (11) driven by the controller k0 (10) approximate arbi-
trarily close (that is, they track) the trajectories of (12) if
measurement errors, disturbances, diameter of the sam-
pling partition are small and the initial conditions x(0)
and z(0) are close enough.

It follows from the proof of Lemma 2.8 that if a tra-
jectory z(·) stays in some compact set G, then, for suffi-
ciently small η, constants m, l in (28), (29) can be defined
as an upper bound and Lipschitz constant of f on the set
G′×U where G′ is some compact neighborhood ofG. This
means that we can replace the global growth and Lips-
chitz conditions (28), (29) by assumptions of continuity
and local Lipschitzness of f . 2

3. Proof of Main Theorem

Let mj and lj denote respectively the upper bound for
|f(x, u)| and Lipschitz constant of f on the set BRj+3×U
for every integer j.

Define

ηj := max{η > 0 : γj(η) + 2η ≤ Rj−2 −Rj−3},

where the function γj is given by (33) for T = Tj , m =
mj , l = lj . Let

ρ̃(x) := min{ηi : j−3 ≤ i ≤ j+3} for Rj < |x| ≤ Rj+1,

δ̃(x) := min{η2
i : j−3 ≤ i ≤ j+3} for Rj < |x| ≤ Rj+1,

and
ρ(x) := min{ρ̃(y) +

1
2
|y − x| : y ∈ Rn}

δx(x) := min{δ̃(y) +
1
2
|y − x| : y ∈ Rn}.

Note that functions ρ and δx are positive for x 6= 0, Lip-
schitz with constant 1

2 and

ρ(x) ≤ ηi, δx(x) ≤ η2
i (34)

for any j − 3 ≤ i ≤ j + 3 and Rj < |x| ≤ Rj+1.

function ρ satisfies the inequality ρ ≤ χ.
By using the Lipschitz condition for the function ρ, we

obtain that for any x, x satisfying |x − x′) ≤ ρ(x), the
following inequality holds:

|x− x′| ≤ 2ρ(x′). (35)

To verify that the functions ρ and δx satisfy the assertion
of Theorem 3, let us consider two sequential moments
t′k, t

′
k+1 of the re-initialization of the internal model (13).

Let t∗ = min{t′k+1, t
′
k+Tjk and denote by t̃ the maximal

t′ ∈ [t′k, t
∗] such that

Rjk−3 < |x(t)| < Rjk+3 (36)

Rjk−3 < |x′(t)| < 2Rjk+2 (37)

for all t ∈ [t′k, t
′].

It follows from (17),(34) and (35) and that

|x(t′k)− x′(t′k)| ≤ 2ρ(x′(t′k)) ≤ 2ηjk ,

which implies that (36), (37) hold for t = t′k and t̃ > t′k.
Then we have from (34) that

ρ(x(t)) ≤ ηjk δx(x′(t)) ≤ η2
jk

for all t ∈ [t′k, t̃].

This implies due to (17) that we can apply Lemma 2.8 to
obtain that the estimate

|x(t)− z(t)| ≤ γj(ηj) (38)

is valid for all t ∈ [t′k, t̃].
Then in view of (22), (23) and the definition of ηj we

obtain that (36), (37) hold for t = t̃, which implies that
both these relations are valid on the entire interval [t′k, t

∗].
To show that

t′k+1 < t′k + Tjk ,

where the moment t′k+1 is defined by the relation (26), let
us assume that this is not the case. Then (38) holds and

x′(t) 6∈ Gjk

for all t ∈ [t′k, t
′
k + Tjk ]. Recall that in this case, for

the trajectory z(·) of the internal model there exists t′ ∈
(t′k, t

′
k + Tjk ] such that the first inclusion in (23) holds.

This implies that

|x′(t′)| ≤ |z(t′)|+ γj(ηj) + ηj

< Rjk−1 +Rjk−2 −Rjk−3 < 2Rjk−1.

Because of (21) we obtain that x′(t′) ∈ Gjk . This con-
tradiction proves that the relation (26) determines the
re-initialization moment t′k+1 and

t′k+1 − t′k < Tjk . (39)

Thus, we have proved the following Lemma.



x′(t) ∈ B2Rjk+2 ⊂ Gjk+3 for all t ∈ [t′k, t
′
k+1 (40)

x′(t′k+1) ∈ Hjk+1 ⊂ Gjk . (41)

It is obvious that by using this Lemma we can prove
that the dynamic hybrid controller provides the uniform
convergence of x′(t) to the origin in Rn. Then it follows
from (17) and (35) that x(t) uniformly converges to the
origin too.

To realize this plan, let us consider any 0 < r < R and
initial point x0 ∈ BR for the πx-trajectory of (11) with
x(0) = x0. Then we have from (17) and definition ηj that
there exists an integer N = N(R) which does not depend
upon x0 such that x′(0) ∈ GN and limR→+0N(R) = −∞.
Define

M(R) := 4RN(R)+2,

and note that it satisfies (6). In accordance with Lemma
3.10 we have that

|x′(t)| ≤ 2RN(R)+2,

which implies (5) because of (35). Define maximal the
K(r) such that 4RK(r)+2 < r. By applying Lemma 3.10,
we obtain that there is a moment t′ such that

t′ ≤ T :=
N(R)∑
i=K(r)

Ti

x′(t′) ∈ GK(r) which implies due to the same Lemma that

|x(t)| ≤ 4RK(r)+2 for all t ≤ T.
Then x(·) satisfies (4). This completes the proof of The-
orem 3.

Proof of Corollary 2.6. For arbitrary 0 < r < R, inte-
gers K = K(r) and N = N(R) were defined in the proof
of Theorem 3. Let us define

η := min{ρ(x) : RK−1 ≤ |x| ≤M(R)},

δ := min{ RK
mK+2

,min{δx(x) : RK−1 ≤ |x| ≤M(R)}}.

If the measurement x′(·), the disturbances d1(·), d2(·) sat-
isfy (19), (20), and the diameter of the sampling partition
πx is less than δ, then for any πx-trajectory x(·) with
|x(0)| ≤ R, the relations (17),(18) hold, and the parti-
tion πx satisfies the sampling rule (15) for all t such that
RK−1 ≤ |x′(t)| ≤ 2RN . For such t, Lemma 3.10 is valid,
and x′(t) and x(t) attain respectively GK and B4RK be-
fore some moment T > 0, and stay there till the mo-
ment when x′(t) attains GK−1. But the set GK−1 is not
necessarily invariant with respect to x′(t). This means
that the re-initialization moment can be defined by (27).
Thus, x′(t) can jump at such a moment outside GK−1.
It is easy to estimate that due to the choice of delta, the
vector x′(t) can jump to B2RK , which means that x′(t)
will stay in BRK+2 till the moment it again attains GK−1.
It follows from (35) that for all T ≥ T ,

|x(t)| ≤ 2RK+2 < r,

which proves that (4),(5) holds.
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