
Entry “Automata, Neural Networks as”

for Handbook of Brain Theory and Neural Networks

(M.A. Arbib, ed, MIT Press, 1995)

This draft dated August 25, 1994

Eduardo D. Sontag

1 Introduction

An automaton, or sequential machine, is a device which evolves in time, reacting to external stimulii and in

turn affecting its environment through its own actions. In computer science and logic, Automata Theory deals

with various formalizations of this concept.

Artificial Neural Networks, as understood in this article, are systems obtained from a finite number of

memory-free scalar elements or “neurons” by means of linear interconnections. The complete system is

updated synchronously, in discrete time steps, and the transmission of information among neurons requires a

unit time delay. The term recurrent or feedback network is sometimes used in order to emphasize the fact that

possible loops in signal paths may allow neurons to mutually affect each other.

In this formal sense, neural networks constitute a (very) particular type of automaton. It is therefore natural

to analyze the information processing and computational power of neural networks through their comparison

with the more abstract general models of automata classically studied in computer science. This permits a

characterization of neural capabilities in unambiguous mathematical terms.

Several variants of the notion of automata are possible, depending on the type and availability of “external”

secondary memory storage. Similarly, many different types of neural networks can be conceived of, depending

on the time scales of operation and the types of signals transmitted among neurons. This article will present

some basic background about automata and will briefly explain how such objects can be compared to, and

simulated by, neural networks.

The area of relations between automata and neural nets is an old one, dating back at least to the work of

the neurophysiologists McCulloch and Pitts ([McCulloch and Pitts, 1943]), but it is also one of active current

research, so only a small fraction of the topic can be covered in this short article; pointers to relevant literature

are given in the references. For the same reason, most ideas will be only discussed in an intuitive and sketchy

fashion, with mathematical details omitted.

2 Automata

The components of actual automata may take many physical forms, such as gears in mechanical devices, relays

in electromechanical ones, integrated circuits in modern digital computers, or neurons. The behavior of such an

object will depend on the applicable physical principles. From the point of view of automata theory, however,

all that is relevant is the identification of a set of internal states which characterize the status of the device at

a given moment in time, together with the specification of rules of operation which predict the next state on

the basis of the current state and the inputs from the environment. Rules for producing output signals may be

incorporated into the model as well.

Although the beginings of the mathematical formalization of automata took place prior to the advent of

digital computers, it is useful to think of computers as a paradigm for automata, in order to explain the basic

principles. In this paradigm, the state of an automaton, at a given time t, corresponds to the specification of

the complete contents of all random access memory locations as well as of all other variables that can affect

the operation of the computer, such as registers and instruction decoders. The symbol x(t) will be used to

indicate the state at the time t. At each instant (clock cycle), the state is updated, leading to x(t + 1). This

update depends on the previous state, as instructed by the program being executed, as well as on external inputs

like keyboard strokes and pointing-device clicks. The notation u(t) will be used to summarize the contents of

1



these inputs. (It is mathematically convenient to consider “no input” as a particular type of input.) Thus one

postulates an update equation of the type

x(t+ 1) = f(x(t); u(t)) (1)

for some mapping f . Also at each instant, certain outputs are produced: update of video display, characters

sent to printer, and so forth; y(t) symbolizes the total output at time t. (Again, it is convenient to think of “no

output” as a particular type of output.) A mapping

y(t) = h(x(t)) (2)

provides the output at time t associated to the internal state at that instant.

Abstractly, an automaton is defined by the above data. As a mathematical object, an automaton is simply a

quintuple

Σ = (X;U; Y; f; h)

consisting of sets X, U , and Y (called respectively the state, input, and output spaces), as well as two functions

f : X � U ! X ; h : X ! Y

(called the next-state and the output maps, respectively). A finite automaton is one for which each of the sets

X, U , and Y is finite.

The Finiteness Assumption

It would appear on first thought that it is sufficient in practice to restrict studies to finite automata. After

all, only a finite amount of memory is available in any computer. However, even for digital computation,

finiteness imposes theoretical constraints which are undesirable when one is interested in the understanding

of ultimate computational capabilities. As a trivial illustration, assume that one wishes to design a program

which reads an input string of 0’s and 1’s and, after this string ends, displays the same string in its output.

A finite automaton cannot accomplish this task, obviously, since the task requires an unbounded amount of

memory (unless one knows in advance that the strings to be memorized and repeated will be of no more than

a certain predetermined length, in which case enough memory, represented by a certain number of states, can

be preallocated for storage). On the other hand, one could certainly write a computer program, in any modern

programming language, to perform this task. The program will instruct the computer to write the string into

a file as it is being received, to be later retrieved when u(t) = # is encountered. This program will execute

correctly as long as enough external storage (e.g., in the form of disk drives) is potentially available.

A mathematical model more general than finite automata allows for “external” storage in addition to the

information represented by the current “internal” state of the system. This is the Turing Machine model,

introduced by the English mathematician Alan Turing in 1936, and it forms the basis of most of modern

computer science. In a Turing machine, a finite automaton is used as a “control” or main computing unit,

but this unit has access to a potentially infinite read/write storage device. The entire system, consisting of the

control unit and the storage device, together with the rules that specify access to the storage, can be seen as a

particular type of infinite automaton, albeit one with a very special structure. It is widely accepted today in

the computer science community that no possible digital computing device can be more poweful, except for

relative speedups due to more complex instruction sets or parallel computation, than a Turing machine.

It has been known at least since [McCulloch and Pitts, 1943] that finite automata can be simulated by

(recurrent) neural networks; this fact is stated formally later in this article. One may wish to ask as well about

neural simulation of infinite automata, such as Turing machines. Such a simulation can be approached in at

least two different ways. The first is to make a distinction between “RAM” and secondary storage for neural

networks, in which case the simulation of a finite automata (the control part) is all that is needed, and details of

the secondary storage implementation are not studied. An alternative possibility, perhaps more reasonable from

a biological standpoint, is to blur this distinction and to allow the extra memory to be represented by quantities

also associated to neurons, such as activation levels or concentrations of neurotransmitters at synapses. In this

latter case, a more sophisticated mathematical analysis is required.

2



Types of Machines Not Covered in this Article

In this article it is assumed that all behavior is deterministic. The field of probabilisticautomata (cf. [Paz, 1971])

deals with random effects, and will not be studied here.

Note that the definition of automata implicitely assumes that all attention is restricted to operation at

discrete instants of time, or epochs t = 0; 1; 2; : : :. On the other hand, many physical devices (and “analog

computers”) are most naturally described by means of continuous quantities such as voltages or forces, evolving

perhaps in continuous time, and are subject to continuous-valued external signals. Such more general devices

can be studied as well, leading to connections between automata theory and control systems theory; see

[Padulo and Arbib, 1974], [Sontag, 1990]. Various areas of continuous mathematics, including differential

equation theory, are relevant in that study.

3 Recurrent Neural Nets

As mentioned earlier, this article deals with recurrent neural networks. These are devices built by linearly

combining a finite numbern of memory-free scalar processing units, each of which performs the same nonlinear

transformation � : IR ! IR on a linear combination of its inputs. The units are interconnected through unit

delays. One may describe such a system by introducingn real-valued variablesx
i

; i = 1; : : : ; nwhich represent

the internal state of the ith processor respectively, subject to update equations such as:

x

i

(t + 1) = �

0

@

n

X

j=1

a

ij

x

j

(t) +

m

X

j=1

b

ij

u

j

(t)

1

A

; (3)

where each u
i

; i = 1; : : : ;m, is an external input signal. The coefficients a
ij

; b

ij

denote the weights, intensities,

or “synaptic strengths” of the various connections. The function� : IR ! IR which appears in all the equations,

is called the “activation function” and is often taken to be a sigmoidal-type map, as discussed below; it

characterizes how each neuron responds to its aggregate input. One also assumes given a certain number p of

probes, or measurement devices, whose outputs signal to the environment the collective response of the net.

Each such device averages the activation values of many neurons. Mathematically, this is modelled by adding

a set of functions

y

i

(t) =

n

X

j=1

c

ij

x

j

(t) ; i = 1; : : : ; p : (4)

The coefficient c
ij

represents the effect of the jth neuron on the ith measurement.

As defined, a recurrent neural net is a particular type of automaton, with state space X = IRn, input space

U = IRm, and output space Y = IRp.

In many studies, starting with the classical work by McCulloch and Pitts ([McCulloch and Pitts, 1943]),

the function � is taken to be the hardlimiter, threshold, or Heaviside function H(x), which equals 1 if x > 0

and 0 for x � 0. Often one wants a differentiable saturation, and for this, especially in contemporary neural

networks studies, it is customary to consider the standard sigmoid �(x) = (1 + e

�x

)

�1 or equivalently, up to

translations and change of coordinates, the hyperbolic tangent tanh(x). Also common in practice is a piecewise

linear function, �(x) := x if jxj < 1 and �(x) = sign (x) otherwise; this is sometimes called a “semilinear”

or “saturated linearity” function. In this article, it will only be assumed that � is a sigmoid (sometimes called

a “squashing” function): � is monotone (not necessarily continuous), bounded, and not constant. Note that

necessarily both lim
x!�1

�(x) and lim
x!+1

�(x) exist and are distinct. The above activation functions are

all sigmoids.

4 Simulations

In order to precisely state that neural nets can do everything that a finite automata can, one needs to introduce

the notion of simulation.

3



In general, given an automaton Σ = (X;U; Y; f; h), the map f can be extended by induction to arbitrary

input sequences. That is, for any sequence u1; : : : ; uk of values in U ,

f

�

(x; u1; : : : ; uk)

is defined as the iterated composition f(f(: : : f(f(x; u1); u2); : : : ; uk�1); uk). Suppose now given two au-

tomata Σ = (X;U; Y; f; h) and Σ = (X;U; Y; f; h) which have the same input and output sets. The automaton

Σ simulates Σ if there exist two maps

ENC : X ! X and DEC : X ! X ;

called the encoding and decoding maps respectively, such that, for each x 2 X and each sequence ! =

u1; : : : ; uk of elements of U ,

f

�

(x; !) = DEC [f

�

(ENC [x]; !)] ; h(x) = h(ENC [x]) :

Assume that for some integer m the input value set U consists of the vectors e1; : : : ; em in IRm, where e
i

is the ith canonical basis vector, that is, the vector having a 1 in the ith position and zero in all other entries.

Similary, suppose that Y consists of the vectors e1; : : : ; ep in IRp. (The assumption that U and Y are of this

special “unary” form is not very restrictive, as one may always encode inputs and outputs in this fashion.) There

holds then the following “Simulation Theorem:”

Theorem. Every finite automaton can be simulated by a neural network with activation function � = H.

See [Alon, Dewdney, and Ott, 1991] for a study of the minimal number of neurons (the dimension n)

required for the simulation; the theory of threshold functions, as covered in [Muroga, 1971], is useful in

this context. The implementation of finite automata by networks has been suggested in some application

areas; see for instance [Cleeremans, Servan-Schreiber, and McClelland, 1989]. For more on automata, their

behaviors, and relations to neural networks, the reader may wish to consult [Kleene, 1956, Rosenblatt, 1962,

Hopcroft and Ullman, 1979, Minsky, 1967, Arbib, 1987].

A sketch of a proof of the theorem is as follows. Assume that the states of the finite automaton Σ to be

simulated are f�1; : : : ; �Ng. A neural network that simulates Σ has n = Nm+1 neurons and is built as follows.

Denote the coordinates of the state vector x 2 IRn by x

ij

, i = 1; : : : ; N , j = 1; : : : ;m, and x0. (This last

coordinate will be identically equal to 1 in the simulation.) In terms of these coordinates, the update equations

are x+0 = H(x0) and, for r = 1; : : : ; N , s = 1; : : : ;m:

x

+

rs

= H

0

@

m

X

j=1

X

i2S

rs

x

ij

� x0 + u

s

1

A

where

S

rs

:= fl j f(q

l

; e

s

) = q

r

g :

For each l = 1; : : : ; p, the lth coordinate of the output is defined as

y

l

=

m

X

j=1

X

i2T

l

x

ij

where T
l

:= fijh

l

(q

i

) = 1g and h

l

is the lth coordinate of h. The encoding map is

ENC [q

r

] := e

r1 + e0

where e
ij

and e0 denote the canonical basis vectors in the coordinates x
ij

and x0 respectively. The decoding

map is

DEC [e

ij

+ e0] = q

i

for all i; j, and is arbitrary on all other elements of IRn. The proof that this is indeed a simulation is immediate,

based on the observation that, provided that the starting state has the form e

lj

+ e0, at each instant the state of

4



the network has the same special form, where q
l

is the corresponding state of the original automaton. Note that

the expression
P

m

j=1

P

i2S

r

x

ij

� x0 + u

s

=

P

m

j=1

P

i2S

r

x

ij

+ u

s

� 1 can only take the values �1, 0, or 1,

because only one of the x
ij

can be equal to one at any given time. Moreover, the value 1 can only be achieved

for this sum if both u
s

= 1 and there is some i so that x
ij

= 1, that is, if the current state of the original machine

is q
i

and f(q
i

; e

s

) = q

r

. Thus the next state is e
rs

+ e0 precisely if the next state of Σ is q
r

and the input applied

is e
s

.

Unbounded Machines

As remarked earlier, it follows as a simple consequence of the theorem just stated that every possible Turing

machine (i.e., any digital computer) can also be simulated by a neural network, provided that an external

memory be assumed. It suffices to simulate the control part of the Turing machine by a net. However, this begs

the question of what are the capabilities of neural networks when no such additional memory is allowed. This

issue is discussed next.

It is not very difficult to establish that the above simulation theorem is true whatever sigmoid � one wishes

to use, not merely the Heaviside mapH. If this sigmoid happens to beH, which is used in most of the classical

neural networks literature, then no more than finite automata can be realized without additional memory. This

is because after the first time step the states of the system are forced to lie in the finite set f0; 1gn. Observe

however that neural networks might be more powerful than finite automata provided that the next-state mapping

be allowed to have an infinite range, that is, if the sigmoid � itself can take infinitely many possible values.

This latter observation was exploited in the paper [Siegelmann and Sontag, 1992] (see also the paper

[Cosnard, Garzon, and Koiran, 1993], which expanded on this work) to show that, if one uses the piecewise

linear sigmoid �(x) = �(x) introduced earlier, a novel simulation result is possible. It turns out that all Turing

machines can be simulated by neural networks, with no recourse to an artificial secondary storage device.

The basic idea is to take advantage of the unbounded precision of the state variables x
i

to store information.

The construction results in a simulation of a universal Turing machine by a recurrent network which employs

roughly 1000 neurons. The main mathematical difficulty in the proof lies in the fact that a continuous sigmoid

does not allow, in principle, for discontinuous logical decisions of the “if x � 0 then do (: : : ) else do (: : : ) ”

type, and such decisions are required in general programs. This drawback was overcome by the use of a Cantor

set representation for the storage of activation values. Cantor sets permit making binary decisions by means of

finite precision devices, taking advantage of the fact that no values may ever appear in the “middle” range.

The simulation of Turing machines by sigmoidal networks in effect substitutes one assumption, namely

that a potentially infinite external storage device exists, by another, namely the hypothesis that unlimited

precision is possible in neural computation and in the storage of activations. Neither assumption (infinite finite

precision storage units nor finitely many infinite precision cells) is of course valid in the real world, but the two

models represent different idealizations of the potential unlimited availability of resources. By studying these

mathematical idealizations. one gains a better understanding of the power and limitations of real devices.

While classical computation theory stops essentially with Turing machines, in the context of neural networks,

seen as analog computing devices, there is no need to do so. If weights and activations are allowed to assume

arbitrary real values, neural networks with continuous sigmoidal� are able to “compute” more than digital com-

puters. A precise study of such analog computations was carried out in the paper [Siegelmann and Sontag, 1993],

which characterized the information processing power of neural networks under resource constraints, in partic-

ular in terms of computation time. One of the the main results in that reference is that the class of languages

recognized in polynomial time using recurrent nets, called there “circuit P” or “analog P” is exactly the same

as a class also studied in computer science, namely the class of languages recognized in polynomial time by

Turing machines which consult oracles, where the oracles are sparse sets. This gives a precise characterization

of the power of recurrent nets in terms of a known (non-computable in the classical sense) complexity class.

In summary, even though networks, as analog devices, can “compute” far more than digital computers, they

also give rise to a rich theory of computation. The ultimate implications of this characterization for analog

implementations of neural computers are as yet unclear, but the result implies that many problems, namely

those not in the class analog-P, cannot be expected to be solved efficiently even in analog computers such as

neural networks.

5



The reference [Sontag, 1993] provides an approximation type of result. It shows (with a proof similar to

the one sketched above) that arbitrary machines Σ = (X;U; Y; f; h), even infinite, but supposing now that X

as well as U and Y have a topological structure and the maps f and h are continuous, can be approximated

arbitrarily well, on compact subsets, by neural networks with sigmoidal activations. Various theoretical aspects

of neural network theory are explored in that paper as well.

References

[Alon, Dewdney, and Ott, 1991] Alon, N., A.K. Dewdney, and T.J. Ott, “Efficient simulation of finite automata

by neural nets,” J. A.C.M. 38 (1991): 495-514.

[Arbib, 1987] Arbib, M.A., Brains, Machines, and Mathematics, Second Edition, Springer, 1987.

[Cleeremans, Servan-Schreiber, and McClelland, 1989] Cleeremans, A., D. Servan-Schreiber, and J.L. Mc-

Clelland, “Finite state automata and simple recurrent networks,” Neural Computation 1 (1989): 372-381.

[Cosnard, Garzon, and Koiran, 1993] Cosnard, M., M. Garzon, and P. Koiran, “Computability properties of

low-dimensional dynamical systems,” in Proceedings of the 10th Symposium on Theoretical Aspects of

Computer Science, Springer-Verlag, Berlin, 1993. Also Theor. Comp. Sci., to appear.

[Hopcroft and Ullman, 1979] Hopcroft, J.E., and J.D. Ullman, Introduction to Automata Theory, Languages,

and Computation, Addison-Wesley, 1979.

[Kleene, 1956] Kleene, S.C., “Representation of events in nerve nets and finite automata,” in Shannon, C.E.,

and J. McCarthy, eds., Automata Studies, Princeton Univ. Press 1956: 3-41.

[McCulloch and Pitts, 1943] McCulloch, W.S., and W. Pitts, “A logical calculus of the ideas immanent in

nervous activity,” Bull. Math. Biophys. 5(1943): 115-133.

[Minsky, 1967] Minsky, M.L., Computation: Finite and Infinite Machines, Prentice Hall, Engelwood Cliffs,

1967.

[Muroga, 1971] Muroga, S., Threshold Logic and its Applications, Wiley, New York, 1971.

[Padulo and Arbib, 1974] Padulo, L., and M.A. Arbib, System Theory. A Unified State-Space Approach to Con-

tinuous and Discrete Systems, W.B. Saunders, Philadelphia, 1974. (Publishing continued by Hemisphere

Publ., Washington, DC.)

[Paz, 1971] Paz A., Introduction to Probabilistic Automata Academic Press, New York, 1971.

[Rosenblatt, 1962] Rosenblatt, F., Principles of Neurodynamics, Spartan Books, New York, 1962.

[Siegelmann and Sontag, 1992] Siegelmann, H.T., and E.D. Sontag, “On the computational power of neural

nets,” in Proc. Fifth ACM Workshop on Computational Learning Theory, Pittsburgh, July 1992, 440-449.

To appear in J. Computer Sys. Sci..

[Siegelmann and Sontag, 1993] Siegelmann, H.T., and E.D. Sontag, “Analog computation via neural net-

works,” in Proc. 2nd Israel Symposium on Theory of Computing and Systems (ISTCS93), IEEE Computer

Society Press, 1993. Also see “Analog computation, neural networks, and circuits,” Theor. Comp. Sci., to

appear.

[Sontag, 1993] Sontag, E.D., “Neural networks for control,” in Essays on Control: Perspectives in the Theory

and its Applications (H.L. Trentelman and J.C. Willems, eds.), Birkhauser, Boston, 1993, pp. 339-380.

[Sontag, 1990] Sontag, E.D., Mathematical Control Theory: Deterministic Finite Dimensional Systems,

Springer, New York, 1990.

6


