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An Example of a GAS System Which Can Be Destabilized
by an Integrable Perturbation

Eduardo D. Sontag and Mikhail Krichman

Abstract—A construction of a globally asymptotically stable time-in-
variant system which can be destabilized by some integrable perturbation
is given. Besides its intrinsic interest, this serves to provide counterexam-
ples to an open question regarding Lyapunov functions.

Index Terms—Asymptotic stability, integrable perturbations, intergral
stability.

I. INTRODUCTION

We present a construction of a time-invariant system_x = f(x)
which has the origin as a globally asymptotically stable (GAS) equi-
librium, yet there is some integrable functiond(�) such the system
_x(t) = f(x(t)) + d(t) admits unbounded solutions.

Based on one-dimensional intuition, one might have expected that
such examples cannot exist, so there is an intrinsic interest to this ques-
tion. However, this work was, in fact, motivated by a problem posed by
L. Praly. The question concerns the existence of continuously differ-
entiable Lyapunov functions with globally bounded gradients. If there
is such a Lyapunov functionV for _x = f(x), then solutions of_x =
f(x) + d(t) are bounded [sincedV (x(t))=dt � cjd(t)j, wherec is a
bound on the norm of the gradient, soV (x(t)) is bounded], and this
implies in turn that solutions converge to the origin. In their work [7],
Praly and Arcak analyze output feedback with an observer/controller
structure for systems_x = f(x; u), y = h(x). The observer takes the
general form

_̂x = f(x̂; u) + �(� � �)(y � ŷ)

where�(� � �) is an appropriate term, and̂y = h(x̂), and the construc-
tion guarantees thaty � ŷ is in L1. The output feedback is obtained
with the “certainty equivalent” controlu = �(x̂), where� is a globally
asymptotically stabilizing state feedback law. They impose the tech-
nical condition that there is aC1 Lyapunov functionV whose gradient
is bounded when multiplied by the term�; a sufficient condition for
this, when� is bounded, is to have boundedness of the gradient. The
question was if this technical assumption is needed, in the sense that,
conceivably, the fact thaty � ŷ is inL1 might suffice to complete the
proof. Our counterexample implies that boundedness of the gradient
needs, indeed, to be stated as an assumption.

Not unrelated to the observer question is the more abstract question
of studying stability of the system_x = f(x + e), wheree = e(t)
represents a “measurement error” and the nominal system_x = f(x)
is known to be globally asymptotically stable. One might have hoped
that the system remains stable whene does not vary too fast, in an
appropriate sense. For instance, one might ask thate be an absolutely
continuous function, i.e., thatd := _e be inL1. Since the change of
variablesz := x + e transforms_x = f(x + e) to _z = f(z) + d, we
see that, unfortunately, such constraints on variations are not sufficient
to guarantee stability.
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In this context, it is worth remarking that Freeman gave an example
in [4] of a controlled system_x = g(x; K(x)) with the property that
the origin is globally asymptotically stable but so that, for a suitable
function of timee(t), with e(t) converging to zero, finite escape times
exist for the system_x = g(x; K(x+e)). (Moreover, Freeman showed
that this happens for all possible feedback stabilizersK, for the given
g.) Note the subtle difference with the problem considered in this note:
we are interested in the system_x = f(x+ e) = g(x+ e; K(x+ e)),
instead of the system_x = g(x; K(x + e)).

The question studied here is related to, but different from, ideas from
input-to-state stability (ISS) (see [8]) and more specificallyintegral
ISS (see [1], [2], and [9]). One knows that a system_x = f(x; u)
might well be GAS yet not be integral-ISS, meaning very roughly (see
[9] for the precise definition) that “integrable” inputs (integrability is
defined with respect toK-function classes) may destabilize the system.
An important difference is that, here, we look for systems of the very
special form_x = f(x) + u, and we insist uponL1 norm.

Much closer to this note is the early work of Vrkoč in the 1950s, who
studied these same questions. In fact, Vrkoč, in [10], introduced a no-
tion of “integral stability” which essentially amounts to the requirement
that systems remain stable underL1 inputs, and established Lyapunov
characterizations of this as well as related properties. (See [3], [5], and
[6] for more recent references along these lines). In his paper, Vrkoč
gave an example of atime-varyingsystem_x = f(t; x) which has the
origin as a GAS point but which is destabilized by some integrable per-
turbation, and he implied that a counterexample exists for autonomous
systems as well. However, we have been unable to find one in the litera-
ture, and there seems to be no way to adapt his time-varying example to
build a time-invariant one. Thus, we produce an example from scratch.

We will show the existence of a smooth vector fieldf on 2, with
f(0) = 0 and so that the equilibrium 0 is globally asymptotically
stable, and with the following property: for any" > 0, there is some
functiond such thatkdk < " in L1 and _x = f(x) + d admits an
unbounded solution.

II. I NTUITION

Let us first give the intuitive idea behind the counterexample. The
basic idea is to start with a system having a trajectory which looks like
that shown in Fig. 1 (this will be built from a linear spiral, under an
appropriate coordinate change which looks like an “accordion” in the
x direction). The system will be GAS, provided that the pointsPi go to
�1, since all other trajectories are “trapped” inside this one. However,
we construct the system in such a manner that the distances between
the pointsP1; P2; . . . labeled by integersk = 1; 2; . . . satisfyjP1 �
P2j = �1, jP3 � P4j = �2, jP5 � P6j = �3, jP7 � P8j = �4,
jP9 � P10j = �5, and so forth, with �i < 1.

Now, if d is an input which applies an impulse of magnitude�1
when crossing the point labeled 1 (landing at 2), then an impulse of
magnitude��2 when crossing the point labeled 3 (landing at 4), an
impulse of magnitude�3 when crossing the point labeled 5 (landing
at 6), an impulse of magnitude��4 when crossing the point labeled 7
(landing at 8), and so on, the perturbed system will have a trajectory that
diverges. (Of course, impulses have to be approximated by functions).

III. CONSTRUCTION OF THESYSTEM

We will start with the two-dimensional system~� given by:

_x = y

_y =�2x� 2y (1)
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Fig. 1. Intuition.

(sox satisfies the linear second-order equation�x+2 _x+2x = 0, whose
general solution isx = C1e

�t sin t+C2e
�t cos t) and will obtain our

counterexample after an appropriate smooth coordinate change in2.
The original system has convergent spiral trajectories, and the coordi-
nate change will be of the “accordion” type mentioned in the intuitive
description. Note that, in polar coordinates, the system is equivalently
described by

_� =�1� cos2 � � sin(2�)

_r =�r(cos � sin � + 2 sin2 �): (2)

For the initial conditionsy(0) = 0, x(0) = x0 the solution is

x(t) =x0e
�t(cos t+ sin t)

y(t) =�2x0e
�t sin t:

Thus

(r(t))2 = (x(t))2 + (y(t))2 = x20e
�2t(1 + 4 sin2 t+ sin(2t))

and

d

dt
((r(t))2)

= �2x20e
�2t(1 + 4 sin2 t+ sin(2t))

+ x0e
�2t(8 sin t cos t+ 2cos(2t))

= 2x20e
�2t(�1� 4 sin2 t� sin(2t) + 2 sin(2t) + cos(2t))

= 2x20e
�2t(sin(2t)� 6 sin2 t):

When, in particular, the initial states have the formx(0) = e2K�

andy(0) = 0, for some fixed integerK, the following properties hold.

1) The solutionx = e2K��t(cos t + sin t) will hit the positivex
axis at all pointse2k� , for integersk � K, and the negativex
axis at points�e(2k�1)� , k � K.

2) For any integer̀, whent = `�, jx(t)j = r(t) = e(2K�`)� and

r0(s) � 0 for all s 2 [t; t+ � ]

where we are denoting� = arctan(1=3) > �=12, so that, for
all s 2 [t; t + �=12] we have

r(t) � r(s) � r(t)e��=12 1 + 4 sin2(�=12)+ sin(�=6)

< 1:03r(t):

We next construct the diffeomorphism. For this, we start by picking,
for eachj � 1, a smooth function�j 2 C1[e(6j�3)�; e(6j+3)�], with
the following properties:

• �j(e
(6j�3)�) = e(6j�3)� ;

• �j(e
(6j�2)���=2) = e6j� � 1=2j ;

• �j is linear on[e(6j�2)���=2; e(6j+2)�+�=2];
• �j(e

(6j+2)�+�=2) = e6j� + 1=2j ;
• �j(e

(6j+3)�) = e(6j+3)� ;
• �0j(r) > 0 for all r 2 [e(6j�3)�; e(6j+3)� ];
• �0j(e

(6j�3)�) = �0j(e
(6j+3)�) = 1;

• �
(p)
j (e(6j�3)�) = �

(p)
j (e(6j+3)�) = 0 for all integersp > 1.

It is easy to see that such functions exist; a partial graph of such a
function�j is sketched in Fig. 2.

Now, we can define�(�) by gluing the�j ’s together. We let

�(r) = r; r < e3�

and

�(r) = �j(r) for r 2 e(6j�3)�; e(6j+3)� :

Next, we define a diffeomorphismSr of a plane into itself as(r; �)!
(�(r); �) in polar coordinates or, equivalently, as

Sr(x; y) =
x� x2 + y2

x2 + y2
;
y� x2 + y2

x2 + y2
:

The diffeomorphismSr will stretch the right-hand side of the plane.
In the same manner we construct a diffeomorphism for the left-hand

side of the plane: We define the function� as the identity on[0; e4�],
and on each interval[e(6j�2)�; e(6j+4)�] we take�(�) = �j(�), where

• �j(e
6j�) = e6j� ;

• �j(e
6j�+�=2) = e(6j+3)� � 1=2j ;

• �j is linear on[e6j�+�=2; e(6(j+1)���=2];
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Fig. 2. Graph of� .

• �j(e
(6(j+1)���=2) = e(6j+3)� + 1=2j ;

• �j(e
6(j+1)�) = e6(j+1)� ;

• �0j(r) > 0 for all r 2 [e6j� ; e6(j+1)� ];
• �0j(e

6j�) = �0j(e
6(j+1)�) = 1;

• �
(p)
j (e6j�) = �

(p)
j (e6(j+1)�) = 0, for all integersp > 1.

The diffeomorphism

Sl(x; y) =
x� x2 + y2

x2 + y2
;
y� x2 + y2

x2 + y2

will stretch the left-hand side of the plane.
Let �: 2 ! [0; 1] be aC1 function such that

�(x; y) =
0 whenx < �1;

1 whenx > 1

and defineS: 2 ! 2 by

(�; �) = S(x; y) := Sr(x; y)�(x; y) + Sl(x; y)(1� �(x; y)):

Under the diffeomorphismS, the system~� will transform into the
desired system, which we denote by�. In polar coordinates,� is ex-
pressed as follows:

_# ='#(�; #)

_� ='�(�; #) (3)

where, excluding the stripj� cos#j < 1

'#(�; #) =�1� cos2 #� sin(2#)

'�(�; #) =��
�1(�)=��1 (�)(cos# sin#+ 2 sin2 #)

for the right half-plane� cos# > 1, or

'�(�; #) = ���1(�)=��1 (�)(cos# sin#+ 2 sin2 #)

for the left half-plane� cos# < �1.
Obviously, if (r(t); �(t)) is the solution of (2), then on all of

f(�; #): j� cos#j � 1g the corresponding solution of� can be
written as#(t) = �(t), and �(t) = �(r(t)) or �(r(t)) chosen
appropriately.

IV. CONSTRUCTION OF THEDISTURBANCE

Now, fix an arbitrary" > 0. We will find an initial state(�0; 0) and
design a disturbanced 2 L1 with kdk < ", such that the ensuing
trajectory of the system:

_# ='#(�; #)

_� ='�(�; #) + d (4)

will tend to1.
We writex(x; t) for the value at timet of the solution of IVP (1) with

x(0) = x andy(0) = 0; writer+(r; t) (r�(r; t)) for the value at time
t of the solution of IVP (2) withr(0) = r, �(0) = 0 (�(0) = ��);
write �(�; t) and�+(�; t) (��(�; t)) for the corresponding solutions
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of �; and write�+(�; d; t) (��(�; d; t)) for a solution of (4) with
�(0) = �, #(0) = 0 (#(0) = ��), and disturbanced.

Find an integerK such that"=4 > 2�K+1 and2�K+1 < �=12.
Let x0 = e(6K�2)� , so that�0 = �(e(6K�2)�); and let alsox1 =
e(6K+2)� and�1 = �(x1).

Recall that, by property 2),x1 � r(x1; t) < 1:03x1 andx0 �
r(x0; t) < 1:03x0 for all t 2 [0; �=12]. In particular, for anyt 2
[0; �=12], and withx0 = e(6K�2)� , x1 = e(6K+2)� , bothr(x0; t)
andr(x1; t) will be in the interval[e(6K�2:5)� ; e(6K+2:5)� ]. Then,
by construction of�, both �(�0; t) = �(r(x0; t)) and�(�1; t) =
�(r(x1; t)) will belong to the interval[e6K�

� 2�K; e6K� + 2�K],
so that

�+(�1; t)� �+(�0; t) < 2�K+1; t 2 [0; �=12]:

Therefore, there must exist a positive�0 < 2�K+1 such that ifd0 :=
1[0; � ], then

�+(�1; �0) = �+(�0; d0; �0):

So

�+(�0; d0; �) = �+(�1; �) = �� e(6K+1)� :

Let �2 := ��(e(6K+1)�), �3 := ��(e(6K+5)�).
Next, take a disturbanced1 = 1[�;�+� ], with some�1 < 2�K+1

such that

��(�3; �1) = ��(�2; d1(�+ �); �1):

Then

�+(�0; d0 + d1; 2�) = ��(�2; d1(�+ �); �)

= ��(�3; �) =� e(6K+4)� :

Generally, for eachk � 0, we let

�4k :=� e(6(K+k)�2)�

�4k+1 :=� e(6(K+k)+2)�

�4k+2 :=�� e(6(K+k)+1)�

�4k+3 :=�� e(6(K+k)+5)�

and choose�2k � 2�K�k+1 and�2k+1 � 2�K�k+1 so that

�+(�4k+1; �2k) = �+(�4k; d2k(�+ 2k�); �2k)

and

��(�4k+3; �2k+1) = ��(�4k+2; d2k+1(�+ (2k+ 1)�); �2k+1)

with dl := 1[0; � ].
Finally, letd :=

l
dl. Then

d(t)dt = �l � 4=2K�1 < "

and

lim
t!+1

�+(�0; d; t) =1:
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A Note on Global Output Regulation of Nonlinear Systems
in the Output Feedback Form

Qi Gong and Wei Lin

Abstract—This note shows how the adaptive control method developed
recently for nonlinearly parameterized systems can be used to solve the
problem of global output regulation, for nonlinear systems in the so-called
output-feedback form with unknown parameters and exogenous signals be-
longing to a compact set whose bound is also unknown.

Index Terms—Adaptive nonlinear control, global output regulation,
output feedback.

I. INTRODUCTION AND PRELIMINARIES

In this note, we consider the problem of global output regulation for
nonlinear systems of the form

_x =F (�)x+G(y; !; �) + g(�)u

_y =H(�)x+K(y; !; �)

_! =S!

e = y � q(!; �) (1.1)
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