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An Example of a GAS System Which Can Be Destabilized  In this context, it is worth remarking that Freeman gave an example

by an Integrable Perturbation in [4] of a controlled system = g(x, K(x)) with the property that
the origin is globally asymptotically stable but so that, for a suitable
Eduardo D. Sontag and Mikhail Krichman function of timee (), with ¢(¢) converging to zero, finite escape times

exist for the systent = g(x, K(z+¢)). (Moreover, Freeman showed

) ] o that this happens for all possible feedback stabiliZergor the given
Abstract—A construction of a globally asymptotically stable time-in- —  y Ngte the subtle difference with the problem considered in this note:
variant system which can be destabilized by some integrable perturbation

is given. Besides its intrinsic interest, this serves to provide counterexam- W€ are interested in the system= f(z +¢) = g(x +e, K(z +¢)),

ples to an open question regarding Lyapunov functions. instead of the system = g(xz, K(x + e)).
) L ) . The question studied here is related to, but different from, ideas from
Index Terms—Asymptotic stability, integrable perturbations, intergral . . I
stability. input-to-state stability (ISS) (see [8]) and more specificatitegral

ISS (see [1], [2], and [9]). One knows that a system= f(z, u)

might well be GAS yet not be integral-ISS, meaning very roughly (see
|. INTRODUCTION [9] for the precise definition) that “integrable” inputs (integrability is
defined with respect t& -function classes) may destabilize the system.

We present a construction of a time-invariant system= f(x) . > :
which has the origin as a globally asymptotically stable (GAS) equ_n |rr_1portant difference is that, here, we look for systems of the very

e h )

librium, yet there is some integrable functialfi-) such the system SPECial form = f(x) + , and we insist upod. " norm.

#(t) = f(x(t)) + d(t) admits unbounded solutions. Much closer to this note is the early work of Vikin the 1950s, who
Based on one-dimensional intuition, one might have expected ti$h¢died these same questions. In fact, \¢rkia [10], introduced a no-

such examples cannot exist, so there is an intrinsic interest to this qui¥ of “integral stability” which essentially amounts to the requirement

tion. However, this work was, in fact, motivated by a problem posed g?hat systems remain stable underinputs, and established Lyapunov

L. Praly. The question concerns the existence of continuously difféfiaracterizations of this as well as related properties. (See [3], [5], and
entiable Lyapunov functions with globally bounded gradients. If thefg] for more recent references along these lines). In his paper,.cvrko
is such a Lyapunov functiol for # = f(), then solutions of: = 9aVe an example of éme-varyingsystem: = f(#, ») which has the
#(x) + d(t) are bounded [sincéV (z(t))/dt < c|d(t)|, wherecisa °riginas aGAS point put which is destabilized by some integrable per-
bound on the norm of the gradient, §tx(t)) is bounded], and this turbation, and he implied that a counterexample exists for autonomous
implies in turn that solutions converge to the origin. In their work [7]5YStems as well. However, we have been unable to find one in the litera-
Praly and Arcak analyze output feedback with an observer/controlff€: and there seems to be no way to adapt his time-varying example to
structure for systems = f(x, u),y = h(x). The observer takes the build a time-invariant one. Thus, we produce an example from scratch.
general form We will show the existence of a smooth vector figlan R?, with

F(0) = 0 and so that the equilibrium 0 is globally asymptotically
stable, and with the following property: for any> 0, there is some
functiond such that|d|| < = in L' and# = f(«) + d admits an

. . unbounded solution.
wherex(- - -) is an appropriate term, and= h(:i), and the construc-

tion guarantees that — ¢ is in L'. The output feedback is obtained
with the “certainty equivalent” contral = ¢(&), wheres is a globally Il. INTUITION
asymptotically stabilizing state feedback law. They impose the tech-

_nlcsl : co(rjld:jtlonhthat thtletrel_lsdébL){iputnov functlfcf)_ri!_/ V\;hose dgtfad'f”t basic idea is to start with a system having a trajectory which looks like
IS bounded when multiplied by the term a sutlicient Conaition 1or . gy in Fig. 1 (this will be built from a linear spiral, under an

this, \,['yhen'{ |s_fb:)hgntzedr,] IS tol have botl_mde_dneszo; thet%radlent. -I;E ropriate coordinate change which looks like an “accordion” in the
question g\llasj[r'] f'stfﬁ n|c§ _as_squTp lc_)nhlts ”ff? et 1N elstent?we atirection). The system will be GAS, provided that the poiitgo to
conceivably, the fact that = g is in L might suffice to complete the +o0, since all other trajectories are “trapped” inside this one. However,

proof. Our counterexample implies that boundedness of the gradig\;g construct the system in such a manner that the distances between

nel(\al?)f’ulr?r?atlaaeg’dt?obtijsgiir?/sera nuiist;:)??stl?;é more abstract uesgh% points, I, ... labeled by integerg = 1, 2, . .. satisfy| 1 —
a GUESTON = 61, |Py — Pi| = 62, |Ps — Ps| = 65, |Pr — Bs| = &4,

of studying stability of the system = f(z + ¢), wheree = e(#) |Py — Pio| = &5, and so forth, withy" §; < oo
represents a “measurement error” and the nominal systemf(«) 'Now, it d is‘a’m input whic,h applies an impulse of magnitutle

is knawn to be globally asymptotically stable. One might have hOp%\%en crossing the point labeled 1 (landing at 2), then an impulse of

that the_system ren'laln_s stable Whedo_esh not k\;alr));ttoo fESt‘I n ?n magnitude—é2 when crossing the point labeled 3 (landing at 4), an
apptr_oprlatefsen?_e. or 'ni’;‘a;géi o.ng m_lthlasé_ t t?wn ahso ute yf impulse of magnitudés when crossing the point labeled 5 (landing
continuous function, 1.€., = e bemndl . since the change ot 5 6), an impulse of magnitudeé, when crossing the point labeled 7

variablesz := x 4 e transformsi = f(z +e¢)t0 2 = f(z) + d, we ganding at8), and so on, the perturbed system will have a trajectory that

see that, unfortunr_#ely, such constraints on variations are not suffici R}erges. (Of course, impulses have to be approximated by functions).
to guarantee stability.

2.

= f(&, u)+ k(- )y —9)

Let us first give the intuitive idea behind the counterexample. The

I1l. CONSTRUCTION OF THESYSTEM
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Fig. 1. Intuition.

(sox satisfies the linear second-order equatier2:i+2x = 0, whose
general solution is = Ce ™" sint + Cae™" cost) and will obtain our

where we are denoting = arctan(1/3) > 7 /12, so that, for
all s € [t, t + 7/12] we have

counterexample after an appropriate smooth coordinate charitfe in
The original system has convergent spiral trajectories, and the coordi- »(t) < r(s) < r(t)e_”/”\/l +4sin®(7/12) + sin(7/6)
nate change will be of the “accordion” type mentioned in the intuitive < 1.03r().
description. Note that, in polar coordinates, the system is equivalently ’
described by We next construct the diffeomorphism. For this, we start by picking,
foreachj > 1, asmooth function; € C°[e(%1=3)7 (6797 with
the following properties:
@ M=
. )\j(e(bffz)rfﬂ/z) = 897 —1/27:
\; is linear on[e(87 =27 —7/2  ((6i42)m4n/2).
GrDmbn/2) 657 4 ] /97,

f =—1—cos”# — sin(26)

7 = —r(cosfsinf + 2sin> §).

For the initial conditiong;(0) = 0, (0) = xo the solution is

o (e
L, . )\j(e(6j+3)7r) — 6(6j+3)7r;
x(t) =xzoe "(cost +sint) « Xi(r) > Oforallr € [6((5)73)«, 6(6j+3)7r];
y(t) = —2x0e 'sint. . )\;(e(ﬁf*3)”) = A;(e(6f+3)”) =1;
o NP (e0i=3m) = AP ((6743)7) = ( for all integersy > 1.
Thus It is easy to see that such functions exist; a partial graph of such a
function )\, is sketched in Fig. 2.
(r(t)? = (x(t)? + (y(1))? = afe 2" (1 + 4sin® t + sin(21)) Now, we can definé(-) by gluing the);’s together. We let
and A(r)=r, r<e’m
and
< 07) » »
dt AMr) = A\ (r) forr € [0(6'7_3)”_/ C(G,7+3)r] -

= —2ude * (1 + 4sin®t + sin(2t))
+ woe P (8sint cost 4 2 cos(2t))
= 2uxge 2 (=1 — 4sin® t — sin(2t) + 2sin(2t) + cos(2t))

= 2u5e *'(sin(2t) — 6sin” 1).

Next, we define a diffeomorphisi$i. of a plane into itself aér, §) —
(A(r), 8) in polar coordinates or, equivalently, as

o (Var+ ) (Ve r )

The diffeomorphisn®,. will stretch the right-hand side of the plane.
In the same manner we construct a diffeomorphism for the left-hand
side of the plane: We define the functipras the identity o0, ¢*7],
and on each intervgd ¢/ =27 67+ we takeu(-) = u;(-), where
. (T
* e /
o yu; is linear on[ef™+/2  ((6G+DT—x/2].

Sp(x, y) =
When, in particular, the initial states have the fari)) = 25"
andy(0) = 0, for some fixed integeK’, the following properties hold.
1) The solution: = 257 ~*(cost 4 sint) will hit the positive
axis at all points-2*~, for integersk < K, and the negative
axis at points—e?*=7 < K.

2) For any integef, whent = (x, |(t)| = r(t) = ¢*¥ =97 and 6j.

)= o
()'j7r+7r/2) — 6(()‘j+3)7r _ 1/2]’

r(s) >0 forall s € [t, t 4 7]
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Fig. 2. Graph of\;.
o i (eOUFDT=T/2y — ((6543)m 4 q /o where, excluding the strifp cos 9| < 1
o p;(eBUFTDTY =BG , ’
. ‘“/;(T) >0 for all I [(36‘]'#7 CG(.i+1)1r]; wo(p, V) =—1 — cos” ¥ — sin(279)
. /l,/j((,’,s‘]ﬂ-») = /l,/]'(CG(‘]J'_Q") =1; olp, ) ==A""(p)/A"" (p)(cos ¥ sind + 2sin” )
. p,g’))(e@”) = ug”(ﬁ“““) = 0, for all integergy > 1. _ ,
The diffeomorphism for the right half-plane cos 9 > 1, or
‘ ‘ : wplp, 9) = —u_l(p)/y,_l/(p)(cosﬁsin19+251n219)
T (\/fcz + yz) yp (\/-TZ + yz) ’
Si(x, y) = : — 5 5 for the left half-planey cos ¥ < —1.
S ’ - viously, if (#(t), #(t)) is the solution o , then on all o
VIt ty VT ty Obviously, if (r(t), 6(t)) is the solution of (2), th Il of
) ) {(p, ¥): |pcos?¥| > 1} the corresponding solution d&& can be
will stretch the left-hand side of the plane. written as?(t) = 8(t), andp(t) = A(r(t)) or u(r(t)) chosen
Let ¢: R? — [0, 1] be aC™ function such that appropriately.
o(x, y) = 0 whenz <1, IV. CONSTRUCTION OF THEDISTURBANCE
o 1 whenz >1
Now, fix an arbitrary= > 0. We will find an initial state(&,, 0) and
and defineS: R> — R? by design a disturbancé € L' with ||d|| < =, such that the ensuing
trajectory of the system:
(& n) =S, y) = Se(w, y)o(x, y) + Si(z, y)(1 = b(x, y). § = oolp, 9)
Under the diffeomorphisn$, the systent will transform into the p=wolp. V) +d (4)

desired system, which we denote By In polar coordinates;. is ex-

will tend to co.
pressed as follows:

We writex (7, t) for the value at time of the solution of IVP (1) with
. x(0) = Fandy(0) = 0;writer ™ (7, t) (»~ (7, t)) for the value attime
U =palp, V) t of the solution of IVP (2) with-(0) = 7, 6(0) = 0 (8(0) = —7);
p=v,(p, V) (3) write £(€, ) andp™ (7, t) (p~ (7, t)) for the corresponding solutions
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of ¥; and writep™ (5, d, t) (p~ (, d, t)) for a solution of (4) with comments. They would also like to thank D. Angeli for bringing to

p(0) = p, 9(0) = 0 (¥(0) = —=), and disturbancd.

Find an integeti’ such that:/4 > 27"+ and2=%+! < #/12,
Let zy = e(5K=27 5o thatey, = A(e®5~27); and let alsar, =
eORED™ andg = A(x).

Recall that, by property 2)y1 < r(x(, t) < 1.03z; andze <
r{wo, t) < 1.03z forall ¢t € [0, m/12]. In particular, for anyt €
[0, 7/12], and withazg = % =27 2y = EK+D7 pothr (g, ¢)
and (1, t) will be in the interval[e(®X =257 ((6K+2:5)7) Then,
by construction of\, both p(&o, t) = A(r(wo, t)) andp(&, t) =
M(r(z1, t)) will belong to the interva[e® ™ — 275, 8™ 4 277,
so that

P+(f1e t) — p+(507 t) < 9= K+1

Therefore, there must exist a positive < 2=~ *" such that ifdy :=
1[0, o], then

t €0, 7/12].

pt (&, 70) = pT (&, do, T0).
So
p (. do, m)=pT (&, m)=—p (C(GKH)W) -

Let 52 — _u(e(GI{-‘rl)r)l &5 1= _#(6(61(-‘,-5)#).
Next, take a disturbanod, = 1, r,,], with somer; < 27 /~H!
such that

p (& m)=p (&, di(- +7), 11).
Then
p+(£07 dU +d1:~ Z‘T) :pi(EZa dl( + 7T>> ﬂ-)
= p (&, 1) =\ (6(67(+4)r) .
Generally, for eaclt > 0, we let
Cap = A (e(G(KJFk)*Q)”)

Caky1 == A (e(G(KJFk)H)”)
I APp— (S(G(I\’+A~)+1)7r)
Eonss = —p1 (6(6(K+k)+a)7r)

and choosey, < 275~ ! andry,y < 27K+ 5o that
p (Garrrs m2k) = p 7t (Eaks dan(- 4 2k7), Tor)
and
0~ (Cakrs, Tort1) = p (Cakv2, dopgr (- 4+ (2 + 1)7), Topt1)

with d; := 1[057.1].
Finally, letd := 3", d;. Then

/d(t)dt => n<4/2" <
and

i g (e 4 0) = .
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A Note on Global Output Regulation of Nonlinear Systems
in the Output Feedback Form

Qi Gong and Wei Lin

Abstract—This note shows how the adaptive control method developed
recently for nonlinearly parameterized systems can be used to solve the
problem of global output regulation, for nonlinear systems in the so-called
output-feedback form with unknown parameters and exogenous signals be-
longing to a compact set whose bound is also unknown.

Index Terms—Adaptive nonlinear control, global output regulation,
output feedback.

|. INTRODUCTION AND PRELIMINARIES

In this note, we consider the problem of global output regulation for
nonlinear systems of the form

i =F(u)r+ Gy, w, 1) + g(p)u
y=H()x+ Ky, w, 1)
w=58w

e=y—q(w, p (1.1
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