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Abstract

This paper deals with analog circuits. It establishes the finiteness of VC dimension, teaching
dimension, and several other measures of sample complexity which arise in learning theory. It also
shows that the equivalence of behaviors, and the loading problem, are effectively decidable, modulo
a widely believed conjecture in number theory. The results, the first ones that are independent
of weight size, apply when the gate function is the “standard sigmoid” commonly used in neural
networks research. The proofs rely on very recent developments in the elementary theory of real
numbers with exponentiation. (Some weaker conclusions are also given for more general analytic
gate functions.) Applications to learnability of sparse polynomials are also mentioned.

1 Introduction

“Multilayer neural networks” employing smooth threshold gates have been proposed during the past
few years as models of parallel analog computation. In such networks, each processor computes a
function of the type: (uy,...,u,) — o (XI_; wyu; — wy) where o is a differentiable function R — R
(called the “gate” or “activation” function), and the w; are real numbers (the “weights” or, for
i = 0, the “threshold”) associated to the particular processor. The w;’s include external inputs to
the network as well as values calculated by other units. The output of one of the processors is
singled out and designated as the output of the network. The graph describing the interconnections
is assumed to be acyclic, so one thinks of such a device as computing, in the obvious manner, a
function of the external inputs.
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The paper [14] compared the power of smooth circuits with the power of those based on step-
function threshold gates (that is, o(x) would be 0 for # < 0 and 1 otherwise). Step-function
threshold networks are common in circuit complexity studies, and this comparison was quantified
in terms of the scaling of network size with respect to input size, as is common in that area. It
was shown that, if weights do not grow more than polynomially, and under natural conventions
on output separation, the usual classes of fixed-depth polynomial-sized circuits (namely, TC9) are
recovered. However, it was also shown that, perhaps surprisingly, a provable gain in efficiency
exists for constant-sized circuits of depth 2. For computing functions of real inputs —as opposed
to Boolean functions, but now leaving the input dimension constant— gains in effiency are also
provable; see for instance the recent papers [18] and [4].

In applications work —see e.g. the textbook [9]— it is most common to use the activation function
os(z) = 1/(1 + e *), and we do so here for our main results. (Some results are developed in
more generality, however.) Networks employing the function oy are nowadays routinely used in a
wide variety of empirical learning problems. Differentiability of ¢ is needed since it is common to
use gradient descent techniques for the numerical approximation of training data by a feedforward
network. The particular choice ¢ = oy is due to ease of calculation of derivatives in terms of
function values, since ol(z) = (1 — os(x))os(x), as well as for other qualitative considerations.
(Another choice sometimes made is o(z) = arctan(z).) These applications motivated to some
extent the major work of Haussler in [8], which dealt with, among other topics, sample complexity
results for smooth networks. The results in [8] left open, however, the question of whether, for
distribution-independent learning, the sample complexity of the class of concepts defined by any
fixed architecture (interconnection graph given, but weights to be chosen) is finite for any given
error probabilities, if no assumptions are made as to boundedness of weights. One of the purposes of
this work is to show that the Vapnik-Chervonenkis dimension of such concept classes is finite, which
implies the desired sample complexity fact. The proof relies on some very recent developments in
model theory which can be seen as an extension of both the classical Tarski-Seidenberg theory and
the Whitney stratification of algebraic sets. The result will be proved in more generality, allowing
more general polynomials, rather than just affine combinations, in the expressions that appear as
arguments to o; this has the advantage of allowing results for so-called “high-order” or “sigma-pi”
neural nets, which have also appeared in the literature (cf. [5]).

In [20], it was remarked that, as an easy consequence of elementary properties of VC dimension
and Tarski-Seidenberg theory, concept classes defined algebraically —in particular, neural nets with
polynomial activations— do give rise to finite-VC dimension concept classes. (In that context, see
[13, 6] for similar questions when using piecewise polynomial activations. Note also that for step-
function threshold gates, sample complexity bounds are by now quite well understood, with fairly
good bounds on VC dimension available; see for instance [1].) In [20], the authors also gave results
that apply to a restricted class of (real-)analytic functions on bounded domains; for neural nets,
their results would apply to the very special case of bounded inputs and a single adjustable (and
bounded) weight. The recent model-theory work that we use allows dropping the single-weight
assumption in this general result, but, far more importantly, it permits dropping all boundedness
conditions when dealing with the standard sigmoid os(z) = 1/(1 + e~ *). It is not hard to see
that analyticity, for instance, is not sufficient for the validity of the VC dimension result; an easy
counterexample is furnished by using networks based on sin(x). Even general qualitative properties
such as monotonicity and existence of limits at infinity do not help, so more sophisticated tools
must be brought in. (Under strong nondegeneracy conditions, one could also use techniques as in
[11], but these assumptions are rarely satisfied in the networks application.)

We also apply these tools to the solution of several other open problems dealing with sigmoidal



nets, establishing finiteness of other “dimensions” which have appeared in this context. In par-
ticular, we show that the “teaching dimension” for real-valued functions determined by any given
architecture is finite (and bounded by the number of weights plus one), and a similar result is given
for a measure of interpolation capabilities. We also establish the finiteness of the Haussler /Pollard
“pseudodimension.” Finally, we show that, subject to the validity of a conjecture in number theory
which is widely believed to be true, the question of equality of input/output behaviors (and the
“loading” question in the sense of e.g. [3]) for sigmoidal neural nets is effectively decidable.

The techniques used here permit also answering in the positive the following open question, posed
n [10], Section 4: is the VC dimension of the class of concepts defined by r-sparse polynomials in
m variables finite?

We wish to emphasize that we do not provide explicit bounds for VC dimension, but merely
establish finiteness. However, since the results being used are essentially constructive, it would be
possible in principle to compute the VC dimension of a given architecture. In any case, we view our
contribution as providing a motivation for the search for good bounds for particular architectures.

In closing this introduction, we remark that when the interconnection graph is permitted to have
loops, it is natural to study neural networks as dynamical systems, in the role of language acceptors.
For such “feedback” nets, the gains in capabilities when introducing continuous activations are even
more drastic, allowing the passage from regular language recognition to Turing capabilities, and
even to all of P/poly; see the recent work [16] and [17]. Moreover, in that context most reasonable
concept classes turn out to have infinite VC dimension. We emphasize that in this paper we restrict
attention to loop-free, feedforward, networks, and deal strictly with the computation of functions
on Euclidean spaces.

2 Feedforward Networks

We will introduce the concept of an architecture, that is, a “neural network” for which all weights
are thought of as variables. We retrict attention to architectures in which no feedback loops are
allowed in signal transmission. An architecture serves to define a “wiring diagram” which indicates
the flow of information among neurons, as well as, for each neuron, a rule that states what particular
combination of the incoming signals will be used as its input. When these rules, specified by the
polynomials P, in the definition to be given below, happen to be given simply by affine functions,
the architecture is said to be first order; this special case is the one most often considered in neural
networks research. We treat more general (polynomial, or “high order”) architectures, since we can
obtain results for these with no extra effort.

We let ¥ be any fixed set of functions R — IR. In the context of networks, we will refer to elements
of ¥ as activations.

Definition 2.1 A feedforward network architecture A (with activations in X)) is a labeled directed
acyclic graph as follows. We assume given an integer r; the space R" will be the weight space for
the architecture. There are a number m of input nodes (i.e., nodes of in-degree zero), and these are
labeled by variables z1, ..., x,,. The rest of the nodes are called computation nodes; exactly one of
these is also an output node, i.e., a node of out-degree zero. The [th computation node NV, is labeled
by a variable z; as well as a polynomial P, and an element o, of ¥, where, for some p = p(1), u = (1),
and v = v(l), B = P(Wi, ..., Wi, Zjys-- s Zj,s Thys - - - Tk, ) - Here {w;,, ..., w;,} is a subset of the
weight variables {w1,...,w,}, while {z;,,...,z;,} are the computation variables and {zy,,...,z;, }
the input variables corresponding to those nodes (computation and input, respectively) that are
incident to NN;. In the case of the output node, we denote the corresponding variable z; simply by
Y. d

The subsets of weights {w;,,...,w;,} appearing in each P are usually taken to be disjoint for



different [, but mathematically this will make no difference, so we do not make that assumption.
In fact, we could equally well take all weights to appear in each P, thought of now as a function of
all the variables.

Definition 2.2 Assume given a feedforward network architecture A with activations in the set 3.
We associate to A a behavior, which is a function G4 : R" x R™ — IR. The behavior is defined
inductively on nodes, starting with inputs, as follows. If N is the ith input node, it computes the
function f(w,z) = x;. For the computation node Ny, its function is

flw,z) == P(w;,, ..., w,,

Uj1(fj1(w’ :L’)), s 7Uju(fju<wa :L‘)), Thyy- - - ’xku> )
where f; (w,z) denotes the function computed by the node j;. Finally, the function 54 is defined
as the function computed by the output node. O

The function computed by the network corresponding to a given set of weights wy € IR" is by
definition the function G4(wo,) : R™ — R. The class of functions computed by A is defined as
the set of functions {B4(wo, ) : R™ — R,wo € R"}. When A is clear from the context, we write
simply ( instead of (4.

The main results will be for the special case ¥ = {05}, where we use the notation o to denote
the standard sigmoid, given by: oy(z) = 1+i7w (alternatively, one may use the function tanh(z),
which is obtained by rescaling and adding a constant). The choice o = oy is standard in neural
network practice, as discussed in the introduction. More generally, one may allow a larger set X,
containing oy, as follows.

Pick any positive integer [, and a cube C' = [k, k]’ in R'. Assume that g is a real-valued function
which is (real-)analytic in a neighborhood of C'. By the 0-restriction of g to C' we will mean the
function f : R' — IR which equals 0 outside C' and equals g on C. A restricted analytic (RA)
function is any function obtained in this manner. A function f : IR™ — IR will be said to be
exp-RA definable if it can be defined in terms of a first-order logic sentence involving the standard
propositional connectives, existential and universal quantification, algebraic operations, and symbols
for the exponential function as well as all RA functions. Of course, oy is exp-RA definable, since
y = os(x) if and only if y(1 + exp(—x)) = 1. Any RA function is in particular exp-RA definable.
The function arctan(x) is also exp-RA definable, since y = arctan(z) if and only if —7/2 <y < 7/2
and SIN (y) = x COS (y), where SIN and cOs denote the restrictions of sin and cos to [—m/2,7/2].
Compositions such as arctan(exp(exp(z))) are also allowed. However, the function sin(z) is not
exp-RA definable (this will follow from the fact that the VC dimension result to be given below does
not hold for this function).

When the set of activations ¥ consists of exp-RA definable functions, the behavior 3 is again exp-
RA definable. All results to be given for networks using such activations are in fact results that
hold for any set of functions {f(wp, ) : R™ — R,wy € R"}, for any exp-RA definable function
G : R™ — IR. We use the network terminology, however, since this is what motivated the paper,
and because examples and counterexamples are given for networks.

3 Statements of Main Results

We next state our main results. Proofs are deferred to later sections.

3.1 Vapnik-Chervonenkis Dimension

Let D be any fixed set, to be thought of as the set of “inputs.” For each subset X of D, a dichotomy
on X is a function ¢ : X — {0,1}. We say that a function f : D — IR implements the dichotomy
c if and only if ¢(s) > 0 <= f(z) > 0. Let F be any class of functions D — IR. The subset



X is shattered by F if each dichotomy on X can be implemented by some function f € F. The
Vapnik-Chervonenkis dimension vC (F) of the function class F is the supremum (possibly infinite)
of the set of integers x for which there is some subset X C D of cardinality s that can be shattered
by F.

In particular, consider, for any given architecture A with activation set 3, the set of all functions
of the type [4(wy, ) for wy ranging over all possible wg € R". Here, D = R™. In this case, we
write simply vC (A) and refer to the VC dimension of A.

Theorem 1 Assume that X consists of exp-RA definable functions. For every feedforward network
architecture A, vC (A) < oo.

Thus nets using the standard activation oy, or even o, combined with certain other functions such
as arctan, give rise to finite VC dimension. In general, however, it may be the case that vC (A) = oo,
even for analytic o, and even if one asks that o be of “sigmoidal” type, as discussed later. But in
the very special case of bounded weights, analytic activations, and bounded input space D, there
is a finiteness result which follows immediately from the above. More precisely, for each real v > 0
and each architecture A, consider the class of functions {G4(wo, ) : [=7,7]™ — R, [|wol < 7},
where we take any fixed norm in weight space R". The VC dimension of this function class will be
denoted by vc (A, 7).

Corollary 3.1 Assume that ¥ consists of analytic functions. Then, for any feedforward network
architecture A and real v > 0, vC (A, 7) < oo. O

None of the assumptions can be relaxed. If the weights or the inputs are allowed to be unbounded,
or if analyticity is replaced by infinite differentiability, the dimension may be infinite. The proof of
the Corollary is trivial from Theorem 1. Indeed, if all weights are bounded and inputs are bounded
as well, then there is an a priori bound on the arguments that appear in each activation. Thus one
may replace each activation by a suitable restriction to a compact set, so that all functions become
RA functions, and the Theorem applies.

3.2 Haussler’s Pseudo-Dimension

We next define a few other notions of “dimension” of function classes. Again, F will be any class
of functions D — R, and when this class is that of all B4(wy,-), wy € R", we will just write “A”
for the resulting function class and refer to the “dimension of the architecture.”

For each subset X = {z1,..., 25} of D, we will say that X" is H-shattered by F (the terminology
is just “shattered” in Haussler’s work [8]) if there exist real numbers yi,...,ys such that every
dichotomy of X := {(z1,41),-.., (% ys)} can be implemented by some function of the form
(z,y) — f(z,y) = f(z) —y . The Pseudo-Dimension PD (F) of the class F is the supremum
(possibly infinite) of the set of integers x for which there is some set X of cardinality x that can be
H-shattered by F.

This notion of dimension turns out to be useful when studying learning-theoretic questions for
real-valued (as opposed to binary-valued) functions, for instance, regression functions in statistics.
According to [8], it originates in the work of Pollard. Note that vc (F) < pD (F) (case when all
yi = 0).

For any architecture A, consider the architecture A’ obtained from A by adding a new input “y”
and a new computation node (the new output node) which computes y 4 —y, where y 4 is the value of
the function computed by the output node (now a non-output computation node) of A. Obviously,
PD (A) < vc (A'). (In fact, equality holds, because a set shattered by A" cannot contain two points
with same z-component.) Thus, from Theorem 1 applied to A’ we can conclude:



Theorem 2 Assume that 3 consists of exp-RA definable functions. For every feedforward network
architecture A, PD (A) < oo.

Similarly, Corollary 3.1 generalizes to this case.

3.3 Interpolation Dimension

For each finite subset X of D, a labeling of X is a function A : X — IR. The error of a given
function f : D — R on a labeling A is defined as: E(f,\) = Y,ex|f(z) = Ax)]> . We say
that A\ can be loaded into the class of functions F (in the particular case of feedforward network
architectures, “into the architecture A”) if

}QJ{;E(]‘,)\) =0.
The set X will be said to be I-shattered by F if each labeling of X can be loaded into F.

A weaker requirement is that, for some € > 0, X be e-I-shattered by F, when one asks merely that
each labeling A : & — (—¢,¢) of X can be loaded.

Note that for the case when F = {fB4(wo,"),wy € R"}, requiring that X = {xy,...,z} be
[-shattered amounts to asking that the mapping

et R R w e (w3, B, z,)) | 1)
from weights to outputs corresponding to inputs in X', has a dense image, and e-I-shattering is the
same as the requirement that the image of this map intersect (—e,¢)® densely.

The interpolation dimension 1D (F) of the function class F is the supremum (possibly infinite) of
the set of integers x for which there is an € > 0 and some set X of cardinality « that can be e-I-
shattered by F. (Note that if one would define 1D (F) using I-shattering rather than e-I-shatterings
the dimension would be no greater; thus the upper bound to be given below holds in that case as
well.)

This notion of capacity is natural in the context of neural network practice, where least-squares
techniques are used in order to minimize the error F(5(w,-), A) as a function of the parameters w,
for experimental data given by \. If weights in the output layer are restricted to be small, only
small targets are reasonable, hence the interest in e-shattering.

The next result is “as expected,” but the use of oy is essential here. Similar results are false even
for other analytic functions that qualitatively look very much like oy (strictly increasing, limits at
+00, etc); see [18] for such counterexamples.

Theorem 3 Assume that ¥ consists of exp-RA definable functions. For every feedforward network
architecture A, 1D (A) < r.

Remark 3.2 Observe that it is possible for ID (A) to be far smaller than r. For instance, consider
the architecture with ¥ = {0} in which the nodes are totally ordered ordered and where at each
computation node the polynomial P, is affine on incoming node variables. Here r = 2(k — 1),
where k is the number of nodes. As all the functions S4(w,-) : R — IR are necessarily monotone,
ID (A) = 2, independently of the number of nodes. (The same argument shows that vc (A) = 2 as
well.) O

Remark 3.3 As another example, take a k-unit one hidden layer architecture with a scalar input
and ¥ = {og}. Here k is a positive integer, there are k + 1 computation nodes and 1 input node.
The polynomials P, are all affine on incident node variables, and the graph is such that the input
node is incident to the k non-output computation nodes, and these in turn are all incident to the

output node. Thus r = 3k + 1, and
k

Blw,z) = ag + Y_ao(bz+c), (2)

i=1



where w = (ag, ..., ak, b1,...,bg, C1,...,¢,) and 0 = o5. The above result says that 1D (A) < 3k+ 1.
This fact had also been proved, for this very special architecture, by an ad-hoc argument in [18],
where it was also shown that 1D (A) > 2k — 1. The precise value of 1D (A) in this case seems to be
open. O

3.4 Teaching Dimension

Again assume that a class F of functions D — IR has been fixed. We first introduce some equivalence
relations. For each x € D and each two functions fi, fo € F, we denote f1~ fo if fi (x) = fa(x).
More generally, given a subset X of D, f1 7 f> means that fi ~ f> for all z € X. If fi~ fo for all
possible x € D, that is, if f; = f5, we write also fi ~ fs.

Following [7], we say that a teaching subset for a function fy € F is a subset X of D such that, for
every f € F, foy [ = fo~ [ . The teaching dimension TD (F) is the smallest integer x (possibly
infinite) with the property that for each fy, € F there is some teaching subset of size k.

Thus, a teaching subset (“teaching sequence” in [7], but the order is immaterial) is a set of inputs
that would allow a teacher to uniquely specify the particular function among all other functions
of interest. The smallest bound on the size of such a set, over all fy to be taught, is the teaching
dimension of the class.

For the case when an architecture A has been specified and we take F = {f4(wo, "), wy € R"},
we write w; ~ ws instead of B(wy, -) ~ B(ws, -), and so forth, and we talk about teaching subsets for
weights wy, and the teaching dimension of A.

A universal identification set X is one that is a teaching subset for all possible fy € F. In other
words, “ ~ ” is the same as simply “~” or equivalently for the case of architectures, the mapping in
Equation (1) induces an embedding of R"/ ~ into R®. The universal teaching dimension UTD (F)
is the smallest integer k (possibly infinite) with the property that there is some universal teaching
subset of size k. Clearly TD (F) < UTD (F).

The result to be given below provides a simple upper bound on the size needed for (universal)
teaching subsets. Moreover, the result shows that in a precise sense, to be defined next, “almost
every” subset of a given cardinality has the desired property.

Let M be any analytic manifold (in all results to follow, M = R!, for some positive integer 1). A
subset Z of M will be said to be analytically thin if it can be expressed as a finite or countable
union of embedded analytic submanifolds of positive codimension. Such a set has zero measure and
is of the first category (a countable union of nowhere dense sets), as discussed later. A subset Z
of M will be said to be finitely analytically thin if it is a finite union of such submanifolds (it is
hence nowhere dense). By abuse of terminology, we’ll say that a family Z of k-element subsets of
IR™ is (finitely) analytically thin if the set of vectors (zy,...,z;) € R*™ so that {zy,..., 2} € Z
is (finitely) analytically thin.

Theorem 4 Assume that X consists of analytic functions. Then, for every feedforward network
architecture A, TD (A) < r+1 and UTD (A) < 2r+1. Moreover, the set of universal teaching subsets
of size 2r + 1, and for each wy the set of teaching subsets for wy of size r + 1, have analytically thin
complements. In the particular case in which X consists of exp-RA definable functions, one may
replace “finitely analytically thin” for analytically thin in the above statement.

Remark 3.4 The original definitions in [7] dealt with learning binary rather than real-valued
functions. However, for infinite classes such as we consider in dealing with neural networks, the
binary “teaching dimensions” obtained from just considering the sign of the outputs are, except
for degenerate cases, always infinite (just from the signs of outputs for a finite number of inputs



one cannot predict the signs at all other points). Thus the binary case is not interesting in this
context. Closely related to teaching subsets for classes of functions is the more general notion of
“universal inputs for observability” that appears in the study of controlled dynamical systems; see
[19], in particular Section 5.1 and the references for that section. O

It is also interesting to consider the case in which the space of inputs is restricted. Instead of
Euclidean space, one might want to consider, for instance, only points x € D with integer or
rational coordinates. We can modify the definitions to deal with this more general situation as
follows. We assume that a function class F has been fixed, and also that a subset Z of the input
space D has been chosen. Now we define a teaching subset, for a particular function fy and relative
to Z, to be a subset X of T so that foy f = fo5 f . The teaching dimension TDz (F) is the
smallest integer integer x (possibly infinite) with the property that for each fy € F there is some
such teaching subset, relative to Z, of size k. In the case of architectures, we again write just
TD7 (A). Analogously, we can also define a universal dimension relative to Z.

Theorem 5 Let X = {os}. For every feedforward network architecture A, and each T C D, there
is a finite universal identification set; in particular, TD7 (A) < UTD7 (A) < o0.

3.5 Decidability Issues

Assume that ¥ = {o,}. Given an architecture A, and two weight vectors wy,wy € R, it is not
entirely trivial to determine if the resulting functions are the same, that is, if w; ~ wy. (One
notable exception is the “single hidden layer architecture,” where, as noted by Pascal Koiran —
personal communication,— the results in [21] make the question trivial.) Our next result asserts
—modulo the validity of a conjecture in number theory— that the equivalence relation ~ is indeed
computable. Schanuel’s conjecture is the following statement: (SC) For any set {z1,..., 2} of Q-
linearly independent complex numbers, trdegg Q[21, .. ., 2z, €, ..., e*] > [. Property (SC) is widely
believed to be true; note that it encompasses many classical open problems; for instance, for z; = 1
and zy = e it would imply that e and e® are algebraically independent.

In order for the following result to make sense, we assume that the coefficients of the polynomials
P, are all rational. The same result will hold under more general conditions involving various types
of computable real numbers.

Theorem 6 Assume that ¥ = {os}. If (SC) is true, then there is a decision procedure for deter-
mining, for any given wy,ws € R, if wy ~ ws.

3.6 A Remark on Sparse Polynomials

Consider, for any two fixed positive integers m,r, the class P,,, of those functions f : R"™ — R
that can be expressed as a linear combination of no more than » monomials in the m variables
Z1,...,Ty. Elements of P, , are sometimes called r-sparse polynomials (or “fewnomials”). See [10]
for background on sparse polynomials, including applications to the harmonic analysis of Boolean
circuits and learnability of Boolean functions; this reference states as an open problem the finiteness
of VC dimension for P,,,, when m > 1.

Theorem 7 For F = P,,,, VC (F) < 0.

4 Some Facts on Analytic Functions

We collect here some technical results that will be needed in the proofs.



4.1 Analytically Thin Sets

Let M be any (second countable) analytic manifold of dimension I. Recall that an embedded
submanifold Z of M, of dimension ¢, is a connected subset which, locally around each of its points
and up to diffecomorphisms, looks like a “slice” {(z1,...,2;) 241 = ... = 2y = 0}. When ¢ = [,
this is just an open set. Assume now that Z has positive codimension, that is, ¢ <[ — 1. From the
definition, it follows that for some open subset My C M, Z is a closed subset of Mj (in the relative
topology). Observe that Z is nowhere dense, that is, its closure has empty interior. (That is, if U
is any open subset of M, then Z (U cannot be dense in U: if U does not intersect M;, then this is
clear; otherwise U (| My is a nonempty open set and we may assume without loss of generality that
U C My; then U = (U\ Z)U(UNZ), so either U \ Z is a nonempty open set, and we are again
done, or U Z = U, but in this latter case Z would contain an open set and hence could not have
positive codimension.) Also, such a Z has measure zero.

If Z is a finite or countable union of embedded analytic submanifolds of M of dimension < g¢,
and ¢ is the smallest such integer, we call ¢ the dimension of Z. (It is not hard to verify that the
dimension is well-defined, in the sense that it doesn’t depend on the particular union of countably
many submanifolds being used.) From now on, if we write “dim Z” for a subset Z of a manifold
M, we mean implicitly that Z is such a finite or countable union. Note that being analytically thin
is equivalent to dim Z < dim M. We collect next some facts that will be needed later. Essentially,
these facts amount to saying that naive parameter counts are well-justified when dealing with
analytic mappings.

Proposition 4.1 Assume that M, N, and M;, i = , k, are analytic manifolds. Let f : M — N
be an analytic mapping. Then:

1. Forall Z C M, dim f(Z) < dim Z.

2. Forall Z C M,
dimZ < dim N + maxdlmf ﬂZ

3. U Z, C M, fori=1,... k, then Z = Zyx...xZ, C My x...x My satisfies dim Z = }_, dim Z;.

Proof. We need first to recall the notion of a semianalytic subset T of M. This is a set T" so that, for
each z € M, there is some neighborhood U of z so that "N U is in the Boolean algebra generated
by a finite famlly of subsets of the form {f;(z) > 0}, for some analytic functions f; : U — R,
j = 1,...,J,. Semianalytic subsets are countable unions of embedded submanifolds, as follows
from the stratlﬁcatlon theorems cited later. Conversely, it is easy to see from the deﬁmtlon of
embedded submanifold that if Z is such a submanifold, then Z is a countable union of semianalytic
subsets. Moreover, as M can be written as a countable union of compacts, after intersecting with
suitable compact sets one knows that Z is a countable union of semianalytic subsets with compact
closure. Thus saying “countable union of embedded submanifolds” is the same as “countable union
of semianalytic subsets with compact closure.” Note that dim Z = ¢ if and only if Z can be written
as such a union in such a way that the maximum of the dimensions of the subsets is q.

Now let f : M — N be analytic and let Z be as above. In order to calculate the dimension of f(Z),
it is enough, by the above considerations, to do this when Z is a relatively compact semianalytic
subset. But in that case, f(Z) is a subanalytic (= proper analytic image of a semianalytic) subset of
N, so it is indeed a countable union of embedded submanifolds of NV, by the stratification theorem
for subanalytic sets (for which see, for instance, [22] or [2]), and the dimension inequality follows
by the stratification theorem applied to f.



To prove the statement about fibres f~!(y), we proceed as follows. Note that each such fibre is
semianalytic, so its dimension is well-defined. Write Z as a countable union of compact semianalytic
subsets Z;; then max,[dim f~!(y) N Z] = max,,; dim[f~'(y) N Z;]. Fix any i. By the stratification
theorem applied to f and relative to Z;, as in for instance Theorem 9.2 in [22], we can partition
N into a countable union of connected analytic embedded submanifolds 7} in such a manner that
Z; is a countable union of embedded submanifolds diffeomorphic to R™ x Tj for various integers
n; and various j’s, and on each such set the mapping f is (up to the same diffeomorphism) the
projection R™ x T; — T;. Thus ¢ = max,dim[f!(y) N Z] is the largest of these n;’s, while
dim Z; is at most ¢ + ¢, t= largest dimension of the 7}’s, and N has dimension ¢. This shows that
dim Z; < dim N 4 max,ey[dim f~1(y) N Z;] < dim N 4+ max,en[dim f~(y) N Z] from which, since
dim Z = max; dim Z;, the conclusion follows.

Finally, to prove that dim Z; x Z; = dim Z; + dim Z,, simply note that Z; X Z, equals a union of
the type Z{ x Z& for countable coverings by submanifolds for each of Z; and Z, respectively, and
dimensions add as they should for submanifolds. [

4.2 Order-Minimality

We will need to use certain recent techniques from model theory. For this purpose, we consider
the structure L = (R,+,-,<,0,1,exp,{f,f € RA}), and the corresponding language for the
real numbers with addition, multiplication, and order, as well as one function symbol for real
exponentiation and one for each restricted analytic function. The set of (first order) formulas over
L is the set of all well-formed logical expressions obtained by using propositional connectives, real
numbers as constants, the operations of addition and multiplication, the relations < and =, and exp
and restricted analytic functions as functions; quantification is allowed over variables. By abuse of
notation, when giving such a formula, we will also allow other symbols, such as “—” or “>” which
could be in turn defined on the basis of the above primitives, or even symbols for any function
already shown to be exp-RA definable. ~ The following is an example of a formula ®(x,y) over
L: Vz €779 — ruz > arctan(ez)} . We write ®(z,y) to indicate the fact that the only free —i.e.,
non-quantified— variables in the formula are x and y. Each such formula will be interpreted over
the real numbers, that is, all variables are assumed to take real values. Thus all quantifiers are
implicitely assumed to be over IR. Given a formula ® with free variables x1, ..., z;, we write S(®P)
for the subset of IR! that it defines. For instance, the above ®(z,%) gives rise to: S(®)=
{(a:, y) € R?| (V2 € R) [eh%y — Tz > arctan(ex)” :

Similarly, the truth of a formula ® with no free variables is defined as the truth of the statement
obtained when quantifying over the reals. A definable set is a set of the form S(®), for some first
order formula ® over the language L. An exp-RA definable function is the same as one whose graph
is definable in this sense.

When the exponential is left out, the definable sets are precisely those called “finitely subanalytic”
in [24]. Restricted analytic functions were introduced in [26]. (The definition in that reference is
slightly different from the one we gave in the previous section: it assumes that the functions g
have a convergent power series representation valid on all of the cube C' = [—k, k]', but a standard
compactness argument shows that the two definitions are equivalent.) Van den Dries had shown
in [24] that the theory of real numbers with restricted analytic functions is model-complete, which
means roughly that every formula is equivalent to one that involves only existential quantification.
(We do not give the precise definition here, as it is not needed for explaining the further material.)
In a recent major development, Wilkie showed in [28, 29] that using exponentiation (but now leaving
out the RA functions), model-completeness obtains as well. Finally, in [26] and [27], it was shown
that the full theory (RA as well as exponentials) is model-complete, and hence order-minimal:



Fact. ([26], Theorem 6.9, and [27]) The theory of L is order-minimal, that is, for each formula ®
having just one free variable, S(®) is a subset of IR consisting of a finite union of intervals (possibly
unbounded or just points).

The terminology arises from the fact that such finite unions are the smallest Boolean algebra of
subsets that can be defined using order. The forthcoming book [25] by van den Dries deals in
detail with order-minimal theories. Sets definable (in any dimension) for order-minimal theories
admit finite cell decompositions into topological submanifolds, and are in every sense very small
(for instance, unless of full dimension, there are directions along which every line intersects the set
in at most finitely many points). When dealing with the language L, where the primitives denote
analytic functions, one has a stronger result as well:

Proposition 4.2 Let S be a definable subset of IR?. Then, either S contains an open subset or it
is finitely analytically thin. O

This is a consequence of [26], Theorem 8.8, which shows that each definable subset is a finite
union of “analytic cells” each of which is definable and definably-isomorphic to an Euclidean space.
The definition of analytic cell in that paper implies that each such cell is an embedded analytic
submanifold.

5 Proofs

We now prove the results.

5.1 VC Result

A critical ingredient that we need is provided by a recent paper by Laskowski. In order to make the
application of the results in [12] easier to understand, we next re-express some of the definitions given
there in the terminology used in this work. We will say that an L-architecture with r parameters
and m inputs is a formula ®(wy, ..., w,,z1,...,2,y) (We write often just ®(w,z), using variables
w € R" and x € R™). For each fixed evaluation of the “weight” vector w, we may consider the
binary function ®,, : R™ — {0,1} given by ®,,(z) =1 <= &(w,z) true . This defines a class of
functions F = {®,,,w € R™}. If F arises in this manner from a formula ®, we write vc (®) for the
VC dimension vc (F).

One of the main results in [12] (page 383, first paragraph) shows that order-minimality of a theory,
which essentially amounts to providing a finite VC dimension conclusion for subsets of IR, implies the
same conclusion for any number of variables: If the theory of L is order-minimal, then v (®) < oo
for every formula ®. At the time when [12] was written, order-minimality was open for the theory
of the language L of interest in this paper. This in turn has now been established, as remarked
above. We can then conclude as follows:

Theorem 8 vc (®) < oo for every formula ®.

The proof of Theorem 1 is a trivial consequence of Theorem 8, as one can characterize the behavior
of a feedforward architecture by an obvious formula.

Remark 5.1 The constructions in the model theory literature would result in tremendously large
upper bounds for VC dimension. For the “single hidden layer” one-input architecture mentioned
in Remark 3.3, one can easily obtain a bound that is exponential in the number k of units (just
use the fact that a linear combination of exponentials in 1 variable cannot have more zeroes than
number of terms, which is essentially the Descartes Rule of Signs). O



Remark 5.2 The result in Theorem 8 is a generalization of that proved in [20] for formulas in-
volving only algebraic operations. More precisely, consider a formula ® in the language of the
real numbers with addition, multiplication, and order (no exponentiation). The proof in [20]
that vc (®) < oo for every formula ® of this type is far easier than in the general case, and is
sketched next. By the Tarski-Seidenberg theorem on quantifier elimination, the set defined by
®(w, x), for each w, can also be defined by a propositional formula involving just terms of the type
{z| P(w,x) > 0}, for some finite set of polynomials P; (the formula and the P;’s depend only on ®).
As a formula, each “P; > 0”7 defines a class with finite VC dimension, since the class of functions
determined in this manner is a subset of a finite dimensional space of functions (the space of all
polynomials of degree at most equal to the degree of P;). Now the sets defined by the formulas
®(w,x) can be obtained by a finite number of Boolean operations from the above sets, and this
can be easily shown to preserve finite VC dimension. It was recently observed in [13, 6] that a far
better result can be given in the algebraic case, resulting in an estimate of VC dimension which
is polynomial on the size of the architecture (the second reference uses the Milnor bounds on the
number of connected components of a semi-algebraic set.) a

5.2 The Interpolation Result

Note that a finitely analytically thin subset is nowhere dense (as it is a finite union of nowhere
dense subsets). So this follows from Proposition 4.2:

Corollary 5.3 If S is a definable subset of IR?, then either it has nonempty interior or it is nowhere
dense.

Now Theorem 3 is easy to establish. Indeed, if X is a set that can be e-I-shattered, then the image
of the map in Equation (1) intersects (—e¢,e)® densely, for some € > 0. By the above Corollary this
image, being a definable set, must have nonempty interior. But the map is analytic, so then Sard’s
Theorem implies that its differential must have full rank s at some point. In particular, it must
then be the case that s < r, establishing the result.

Note that the inequality 1D (A) < r is trivial in the case of bounded weights, assuming only
that > consists of smooth activations. That is, if one takes any class of funtions of the type
{Ba(wy, "), ||wo|| < v}, then the image of the map (1) (with domain |w| < ) is compact, hence
closed. Thus the image cannot intersect (—e,¢)® densely unless it contains all of (—¢,¢)®. Now
Sard’s theorem again provides the conclusion.

5.3 Teaching Dimension Bounds

[14 b

Consider a feedforward network architecture A, and the various relations “~” on weights. Fix an
wy € R"; we will characterize the teaching subsets of size r + 1 for the weight wg. Let: W, =
{w e R"[w # wp} . For each w € Wy let: B(w) := {z|z € R™ and w~wp}. If w € W, this set
is a semianalytic subset of IR™ of dimension at most m — 1, as it is the set of zeroes of a nonzero
analytic function, namely G(w, ) — B(wy, ).

Therefore the following subset of R™"™: T(w) = {(z1,...,2p1) |z: € Bw) Vi=1,...,r +1} =
[171] B(w) has dimension at most (m — 1)(r + 1). (Apply Proposition 4.1, Part 3.)

With k& := m(r + 1), take the following subset of Wy x R¥: G := {(w,x1,...,241) | w € Wy, z; €
B(w) Vi = 1,...,7 + 1}. Consider the projection m : Wy X R* — W, on the first r coordinates.
For each w € Wy, 71 (w) NG = 7 (w) has dimension at most (m — 1)(r +1). Applying Proposition
4.1, Part 2, it follows that the subset G has dimension at most r + (m — 1)(r + 1) = m(r + 1) — 1.

Now consider the projection 7y of G on the last m(r + 1) coordinates. The image is exactly the set
B consisting of those vectors (z1, ..., x,.1) which give rise to non teaching sets X = {x1,..., 2,41}



for wy. But projections cannot increase dimension. (Apply Proposition 4.1, Part 1, with f = 7.)
Therefore the set B has dimension < m(r+1)—1, as desired for the first part of Theorem 4. Observe
that when > consists of exp-RA definable functions, the set B is definable, so from Proposition 4.2
and the above dimension count it follows that B is finitely analytically thin.

Proving the existence of universal teaching sets of cardinality 2r+1, and in fact that almost all sets
of that cardinality are universal teaching sets, is now easy. Indeed, consider a new architecture with
weight space IR?" and such that the new behavior satisfies 3'((wy, ws), z) := B(wy, z) — B(ws, 7). Fix
any wy. Then, any teaching set for (wp, wp), that is, a teaching set for the identically zero function,
is a universal teaching set. Since the parameter space is now of dimension 27, the result follows.

Remark 5.4 It can be shown by examples that the bounds are best possible. Also, for smooth,
rather than analytic, activations, a local result is possible: there is a dense open subset of IR", and
an open covering of this set, so that on each subset V' of this cover, some set of r inputs serves as
a universal teaching set with respect to weights on V. O

We now turn to the proof of Theorem 5. Now there is no algebraic structure on the input space,
as we are restricted to working with the subset Z of IR™. Thus we can only exploit the dependence
on weights. For each x € 7, consider: V(x) := {w € R" |w~wyp}. The problem is simply to show

that there is some finite subset X = {z1,...,2;} C Z so that (\_, V(z;) = Nyez V(). All we need
for this is a descending chain condition (DCC) on sets obtained as finite intersections of sets of the
type V(z), which are definable.

To get this, we need to use some results from Tougeron’s [23], which gives various sufficient
conditions for DCC to hold. In particular, the first sentence of the proof of 3.5 gives a condition
phrased in terms of finiteness of connected components for regular points of varieties, which together
with dimensionality counts is sufficient for our purposes. Details are omitted.

5.4 Decidability

Theorem 6 is immediate from the fact that, subject to a positive answer to conjecture (SC), there is
a decision procedure for determining the truth of any formula ® in the language introduced earlier,
if exponentials are used (but not RA functions). See [27] for this recent result,

We note also that the loading problem, that is, the problem of determining, for a given set of data
and architecture, if there is a network interpolating at the given data, is also decidable, modulo
(SC), for the same reasons.

Observe that the use of other analytic functions may lead to undecidability. For instance, if sin(x)
is used instead of o5, one may easily encode integers into the loading problem (by asking that certail
values be zero), and hence the solution of diophantine equations can be reduced to this question.

5.5 The Sparse Polynomials Result

The proof of Theorem 7 is a simple consequence of the previous material. Consider the class of all
functions given by exponential polynomials P(e¥, ... e¥"), where P is a polynomial having at most
r terms. As one can write a formula for these functions, over the language L —use as parameters
the coefficients of the monomials and the exponents— this has finite VC dimension, let’s say x. We
claim that the VC dimension of P, , is at most 3"x.

This is proved as follows. For each real number z, let sign z be zero if x = 0 and z/|x| otherwise.
For a vector x € IR™, let sign x be the vector of signs of its coordinates. Assume that there would
be some X C R™ of cardinality 3™k + 1 which can be shattered by P, ,. Then there is some subset
X' of X of cardinality x4+ 1, which consists of vectors all having the same sign, (¢1,...,&,), and of
course this set can still be shattered by P,,,. Now consider a subset ¥ C IR™ of cardinality x + 1



so that, for each © = (xy,...,2,,) in X', there is some y = (y1,...,¥n) in Y with z; = g;e¥ for
each ¢. This substitution maps polynomials into exponential polynomials, so ¥ can be shattered
by exponential polynomials, contradicting the definition of .

6 Counterexamples

We now show by means of counterexamples that none of the hypotheses in Corollary 3.1 can be
dropped. If the activation is merely infinitely differentiable, even with bounded inputs and weights,
or analytic with either unbounded inputs or unbounded weights, the VC dimension is infinite.
Moreover, the counterexamples are in terms of the single-hidden layer architectures standard in
neural nets research (see Equation 2) and o is a squashing function (strictly increasing and bounded),
a qualitative property which is usually imposed on activations.

Assume that o : IR — IR is continuously differentiable and satisfies the following properties:
a € LY(R), a(r) > 0 Vz, a is even, and |o/(z)| < ca(x) Vo. Assume that f : R — R is
continuously differentiable and satisfies the following properties: f and f’ are bounded and f is
even. Define f(z) := [i a(t)dt. Observe that this is an odd function. Now let g := Kf + af,
where K is a constant so that ¢|f(z)| + |f'(z)] < K for all z. By construction, ¢ is bounded.
We claim that g is strictly increasing as well. Indeed, |o/(x)f(z) + a(z)f'(z)] < Ka(x) for all x,
and hence g > 0 everywhere. So ¢ is a squashing function. Now consider the 2-unit one hidden
layer architecture with activation 0 = g, r = 1, and a9 = 0, a; = as = 1, ¢; = ¢ = 1, and
by = by = w. (There is only one programmable weight, but of course the result to be proved,
infinite VC dimension, will remain true if all coefficients in Equation 2 are taken as weights.)
The behavior is f(w,z) = g(wz) + g(—wz) = 2a(wz) f(wz). Since « is everywhere positive, the
dichotomies implemented by this architecture are precisely the same as those implemented by the
set of functions {f(w - (+)),w € R}. Thus if there exists for each integer s a set of s real numbers
x;,i=1,...,s and weight choices w;, j = 1,...,2° so that the matrix sign(f(w;z;)) has all its 2°
columns of distinct signs, the same is true of 5(w;, z;). An example is furnished by f(z) = cos(z),
and a = ﬁ This shows that arbitrary (not exp-RA definable) analytic functions may result in
architectures with infinite VC dimension. (Moreover, the architecture used is the simplest one that
appears in neural nets practice.)

Note that if we wish the z;’s to be bounded, for instance to be restricted to the interval [—1, 1],
one may replace the above z;’s and w;’s by % and cw;, where ¢ = 3 |x;|. Similarly, if one wants
to restrict the weights w; to be bounded, one can use cz; and “Z, with ¢ = 3 |w;|. Thus bounded
weights or inputs (but not simultaneously), even with analytic activations, do not suffice.

Finally, consider a function f as above, and let p : R — IR be 0 at 0 and equal to e~/ 2* alsewhere.
Write h(z) := p(x)f(%). Note that h is even, bounded, has bounded derivative, and is smooth.
Thus h can be used in the above constructions instead of f; consider the architecture that results.
Now, if z; > 1,7 =1,...,s and w; > 1,57 = 1,...,2° are so that the original matrix f(w;z;) had
all columns of distinct signs, the same is true of 3(w;, ;) with the new “f”, where w; = 1/w; and
2; = 1/x;. The inputs and weights are now all in the interval (0,1). Starting with f = cos, this
illustates that even with bounded weights and inputs, infinite differentiability is not sufficient to
guarantee finite VC dimension.
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