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Chapter 16

Inference of Signal Transduction Networks  
from Double Causal Evidence

Réka Albert, Bhaskar DasGupta, and Eduardo Sontag 

Abstract

Here, we present a novel computational method, and related software, to synthesize signal transduction 
networks from single and double causal evidences. This is a significant and topical problem because there 
are currently no high-throughput experimental methods for constructing signal transduction networks, 
and because the understanding of many signaling processes is limited to the knowledge of the signal(s) 
and of key mediators’ positive or negative effects on the whole process. Our software NET-SYNTHESIS 
is freely downloadable from http://www.cs.uic.edu/~dasgupta/network-synthesis/.

Our methodology serves as an important first step in formalizing the logical substrate of a signal 
transduction network, allowing biologists to simultaneously synthesize their knowledge and formalize 
their hypotheses regarding a signal transduction network. Therefore, we expect that our work will appeal 
to a broad audience of biologists. The novelty of our algorithmic methodology based on nontrivial com-
binatorial optimization techniques makes it appealing to computational biologists as well.

Key words: Computational biology, Network inference, Signal transduction, Systems biology, 
Double causal evidence

Most biological characteristics of a cell involve complex interac-
tions between its numerous constituents such as DNA, RNA, pro-
teins, and small molecules (1). Cells use signaling pathways and 
regulatory mechanisms to coordinate multiple functions, allowing 
them to respond to and acclimate to an ever-changing environ-
ment. In a signal transduction network (pathway), there is typically 
an input, perceived by a receptor, followed by a series of elements 
through which the signal percolates to the output node, which 
represents the final outcome of the signal transduction process. For 
a cellular signal transduction pathway not involving alterations in 
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gene expression, elements often consist of  proteinaceous receptors, 
intermediary signaling proteins, metabolites, effector proteins, and 
a final output that represents the ultimate combined effect of the 
effector proteins. If the signal transduction process includes regula-
tion of the transcript level of a particular gene, the intermediate 
signaling elements will also include the gene itself and the tran-
scription factors that regulate it, as well any small RNAs that regu-
late the transcript’s abundance, with the final output being presence 
or absence of transcript. Genome-wide experimental methods now 
identify interactions among thousands of proteins (2–5). However, 
the state-of-the-art understanding of many signaling processes is 
limited to the knowledge of key mediators and of their positive or 
negative effects on the whole process.

The experimental evidence about the involvement of specific 
components in a given signal transduction network frequently 
belongs to one of these three categories:

 (a) Biochemical evidence. This type of evidence provides informa-
tion on enzymatic activity or protein–protein interactions. 
These are “direct,” physical interactions. Examples include:
•	 Binding	of	two	proteins,
•	 A	 transcription	 factor	 activating	 the	 transcription	 of	 a	

gene, or
•	 A	 simple	 chemical	 reaction	 with	 a	 single	 reactant	 and	

single product.
 (b) Pharmacological evidence. This type of experimental evidence 

is generated by processes in which a chemical is used either to 
mimic the elimination of a particular component or to exog-
enously provide a certain component, leading to observed 
relationships that are not direct interactions but indirect 
causal relationships most probably resulting from a chain of 
direct interactions and/or reactions.

 (c) Genetic evidence of differential responses to a stimulus. Such 
evidence in a wild-type organism versus a mutant organism 
implicates the product of the mutated gene in the signal 
transduction process. This category is a three-component 
inference as it involves the stimulus, the mutated gene prod-
uct, and the response. We will call this category as a double 
causal inference.

In this chapter, we describe a method for synthesizing single and 
double causal information into a consistent network. Our method 
significantly expands the capability for incorporating indirect (path-
way-level) information. Previous methods of synthesizing signal 
transduction networks only include direct biochemical interactions, 
and are therefore restricted by the incompleteness of the experi-
mental knowledge on pair-wise interactions. Figure 1 shows a sche-
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matic diagram of our overall goal. Mathematical and more technical 
details about our method are available in our publications (6–9).

A starting point in applying our method involves distilling 
experimental conclusions into qualitative regulatory relations 
between cellular components. We differentiate between positive 
and negative regulation by using the verbs “promote” and 
“inhibit” and representing them graphically as → and , respec-
tively (see Fig. 2).	Biochemical	and	pharmacological	evidence	is	
represented as a component-to-component relationship, such as 
“A	 promotes	 B,”	 and	 is	 incorporated	 as	 a	 directed	 edge	 (also	
called	 link)	 from	vertex	 (also	called	node)	A	 to	B	 (see	Fig.	2). 
Edges corresponding to “known” (documented) direct interac-
tions are marked as “critical.” Genetic evidence leads to double 

single causal
relationship

A → B

double causal
relationship

A → (B → C)

additional
information

Method
(algorithms, software)

FAST

minimal complexity
biologically relevant

Fig. 1.  A schematic diagram of the overall goal of our method.
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A promotes B A → B

A inhibits B

Illustration of double causal relationships
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BA
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Fig. 2. Direct and double causal interactions. Illustration of graph–theoretic interpreta-
tions of various types of interactions.
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causal inferences of the type “C promotes the process through 
which	A	promotes	B.”	We	assume	that	a	three-node	double	causal	
inference corresponds to an intersection of two paths (one path 
from	A	to	B	and	another	path	 from	C	to	B)	 in	the	 interaction	
network; in other words, we assume that C activates an unknown 
intermediary (pseudo)	vertex	of	the	AB	path;	see	Fig.	2 for a picto-
rial illustration.

The main idea of our method is to find a minimal graph, both 
in terms of pseudo-vertex numbers and noncritical edge num-
bers, that is consistent with all reachability relationships between 
nonpseudo (“real”) vertices. A schematic diagram of an overall 
high-level view of our method is shown in Fig. 3 and a detailed 
diagram appears in Fig. 4. Two main computational steps involved 
are: (1) binary transitive reduction	(BTR)	of	a	resulting	graph	sub-
ject to the constraints that no edges flagged as direct are eliminated 
and (2) pseudo-vertex collapse (PVC) subject to the constraints that 
real vertices are not eliminated. In the next two subsections, we 
discuss these two computational substeps in more detail.

Intuitively, the PVC problem is useful for reducing the pseudo-vertex 
set to the minimal set that maintains the graph consistent with all 
double causal experimental observations. Computationally, an exact 
solution of this problem can be obtained in polynomial time.

The PVC operation is shown schematically in Fig. 5. Mathe-
matically, the PVC computational problem can be defined as fol-
lows. Our input is a signal transduction network G = (V, E) with 
vertex set V and edge set E in which a subset of vertices are pseudo-
vertices. For any vertex v, the vertex sets are defined as follows:

in (v) = {(u,x) | u has a path to v of type x with x ∈{→

out (v) = {(u,x) | u has a path to v of type x with x ∈{→

1.1. Pseudo-vertex 
Collapse

Synthesize single causal relationshipsSynthesize single causal relationships

OptimizeOptimize

Synthesize double causal
relationships

Synthesize double causal
relationships

OptimizeOptimize

Interaction
with

biologists

Interaction
with

biologists

BTRBTR

PVCPVC

BTRBTR

Fig. 3. High-level description of the network synthesis process. PVC and BTR refer to the 
pseudo-vertex collapse and the binary transitive reduction computational steps, 
respectively.
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Collapsing two vertices u and v is permissible provided both 
are not real vertices, in(u) = in(v) and out(u) = out(v). A PVC 
operation is as follows: if permissible, collapse two vertices u and v 
to create a new vertex w, make every incoming (respectively, out-
going) edge to (respectively, from) either u or v an incoming 
(respectively, outgoing) edge from w, remove any parallel edges 
that may result from the collapse operation and also remove both 
vertices u and v. A valid solution consists of a network G ′ = (V ′, 
E ′) obtained from G by a sequence of permissible collapse opera-
tions; the goal is to minimize the number of edges in E ′.

1. [encode single causal relationships]
1.1 Build networks for connections like A → B and A ┤B noting each critical edge.

1.2 Apply BTR
2. [encode double causal reltionships]

2.1 For each double causal relationship of the form A → (B → C) with x,y ∈ {0,1}, add new nodes  
and/or edges as follows:

• if  B → C ∈ Ecritical then add A → (B → C)
• if  no subgraph of the form (for some node D with b = a+b = y (mod 2) )

then add the subgraph (where P is a new pseudo-node and b = a+b = y (mod 2) )

2.2 Apply PVC

3. [final reduction] Apply BTR

x y

x

x

x

y y

A

B D C

ba

a b

A

PB C

Fig. 4. Algorithmic details of the basic network synthesis procedure (8). In this diagram, a right arrow → labeled by 0 
denotes a “promotes” relation and a right arrow → labeled by 1 denotes an “inhibits” relation. Similarly, a right double 
arrow ⇒ labeled by 0 denotes a “promotes” path and a right double arrow ⇒ labeled by 1 denotes an “inhibits” path. 
E

critical denotes the set of critical edges. The mathematical notation like a + b = c (mod 2) indicates that a + b has the same 
remainder as c when divided by 2.

u

v

in(u) = in(v) out(u)=out(v)

uv

pseudo-vertices

new 
psuedo-vertex

Fig. 5. Pictorial illustration of a PVC operation. Repeatedly performing this operation results in a graph with fewer nodes 
and edges
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Intuitively,	the	BTR	problem	is	useful	for	determining	a	sparsest	
graph consistent with a set of experimental observations. 
Computationally, in contrast to the PVC problem, an exact solu-
tion of this problem is hard.

The	BTR	operation	is	shown	schematically	in	Fig.	6. Mathe-
matically,	the	BTR	computational	problem	can	be	defined	as	fol-
lows. Our input is a signal transduction network G = (V, E) with a 
subset Ec ⊆ E of edges marked as critical. A valid solution is a sub-
set of edges E¢, with Ec ⊆ E¢ ⊆ E, that maintains the same “reach-
ability”: u has a path to v in G of nature x (x ∈ {→, }) if and only 
if u has a path to v in G¢ = (V, E¢) of the same nature. The goal is 
to minimize the size of E¢.

The	BTR	problem	is	known	to	be	NP-hard	as	a	consequence	
of the results in (10). A few results were obtained for certain ver-
sions	of	BTR	(11, 12) before our work in (6–9), but they were 
either special cases or biologically more restrictive versions. A spe-
cial	 case	of	 the	BTR	problem,	 called	 the	minimum-equivalent-
digraph problem, has been of special interest to computer scientists 
for a long time with regard to optimizing computer networks 
with connectivity requirements (13–17) and has also found appli-
cations in the context of visualization of social networks (18). 
Our theoretical results (6) resulted in efficient 2-approximation 
algorithms	for	BTR,	which	has	been	recently	improved	further	to	
a 1.5-approximation (19).

The final product of our method led to a custom software 
package NET-SYNTHESIS (available at http://www.cs.uic.
edu/~dasgupta/network-synthesis/) that can be simply down-
loaded and run in almost any machine with Microsoft Windows 
as the operating system (for LINUX users, source C/C++ codes 
for a nongraphic version of the software can be provided on 
request). The input to NET-SYNTHESIS is a list of relationships 
among biological components (single causal and double causal) 

1.2. Binary Transitive 
Reduction

yes,
alternate path

remove?

remove?

no,
critical edge

Fig. 6. Pictorial illustration of a BTR operation. The lighter edge is a critical edge and thus 
cannot ever be removed. The indicated inhibitory edge can be removed because there 
is an alternate inhibitory path from the beginning node of the edge to the end node of 
the edge.

http://www.cs.uic.edu/~dasgupta/network-synthesis/
http://www.cs.uic.edu/~dasgupta/network-synthesis/
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and its output is a network diagram and a text file with the edges 
of the signal transduction network.

Below	is	a	summary	of	the	standard	steps	necessary	for	carrying	
out the network synthesis and simplification task using NET-
SYNTHESIS:

 1. Gather the direct interactions, single causal inferences, and 
double causal inferences regarding your signal transduction 
network.

 2. Read the single inferences into NET-SYNTHESIS to form a 
graph.	Perform	BTR	on	the	graph.

 3. Integrate the double causal inferences into the graph.
 4. Perform PVC.
	 5.	Perform	a	follow-up	round	of	BTR	and	vertex	collapse	until	

the graph cannot be reduced further.
 6. If warranted, simplify the graph further by designating known 

vertices as pseudo-vertices and performing PVCs.

Large-scale repositories such as Many Microbe Microarrays (http://
m3d.bu.edu/cgi-bin/web/array/index.pl?read=aboutM3D), 
NASCArrays (http://affymetrix.arabidopsis.info/narrays/experi-
mentbrowse.pl), and Gene Expression Omnibus (http://www.
ncbi.nlm.nih.gov/geo/) contain expression information for thou-
sands of genes under tens to hundreds of experimental conditions. 
In addition, information about differentially expressed genes 
responding to a combination of two experimental perturbations, 
e.g., the presence of a signal in normal versus mutant organisms, 
can be expressed as double causal inferences. Signal transduction 
pathway repositories such as TRANSPATH (http://www.gene-
regulation.com/pub/databases.html#transpath) and protein inter-
action databases such as the Search Tool for the Retrieval of 
Interacting Proteins (http://string.embl.de/) contain up to thou-
sands of interactions, a large number of which are not supported by 
direct physical evidence and thus are best treated as single causal 
inferences.

The input to the NET-SYNTHESIS software package is a list 
of relationships among biological components (single causal and 
double causal) and its output is a network diagram and a text file 
with the edges of the signal transduction network. We note that 
“nodes” and “vertices” are used interchangeably in the software 
and in this chapter. In the following, we explain a few menu 

2. Materials

2.1. Information  
and Data Sources

2.2. Software

http://m3d.bu.edu/cgi-bin/web/array/index.pl?read=aboutM3D
http://m3d.bu.edu/cgi-bin/web/array/index.pl?read=aboutM3D
http://affymetrix.arabidopsis.info/narrays/experimentbrowse.pl
http://affymetrix.arabidopsis.info/narrays/experimentbrowse.pl
http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
http://www.gene-regulation.com/pub/databases.html#transpath
http://www.gene-regulation.com/pub/databases.html#transpath
http://string.embl.de/


246 Albert, DasGupta, and Sontag

options for NET-SYNTHESIS; a user manual is available at the 
software’s webpage, http://www.cs.uic.edu/~dasgupta/network-
synthesis/help.html.

●● Read. Reads an input file from your local directory. After 
reading, it builds a network for single causal inferences (i.e., 
edges) only.

●● Write. Writes the current result to a text file in your local 
directory.

●● Redundant edges. Finds out and removes if there are dupli-
cate edges in your file or in the current graph.

●● Add pseudonodes. Adds the double causal (i.e., three-vertex) 
inferences in the input file to the network via introducing 
pseudo-nodes if necessary.

●● Collapse pseudonodes. Collapses pseudo-nodes using the PVC 
algorithm.

●● Reduction (slower).	Performs	BTR	on	 the	current	network.	
Recommended for networks of no more than 150 nodes.

●● Reduction (faster).	 Performs	BTR	on	 the	 current	 network.	
Recommended for networks of more than 150 nodes.

●● Collapse degree-2 pseudonodes. Collapses pseudo-nodes that 
have a single incoming edge and a single outgoing edge.

●● Randomize before reduction. The transitive reduction algo-
rithm has steps where ties are broken arbitrarily. If you turn 
on this action, then such tie-breaking steps will be random-
ized, thus potentially giving different solutions at different 
runs of the transitive reduction. This option may be useful if 
you wanted to check out more than one solution for the tran-
sitive reduction step.

●● Info. Shows basic information about the current graph such 
as the number of vertices and edges.

●● Edge handle. Displays the edges more visibly (and, hopefully 
more nicely).

●● Show critical. Shows critical edges with a different color.

●● You can right click on a vertex on the canvas to change the 
name of that node. This may be especially useful in changing 
a real node to a pseudo-node or vice versa because the pro-
gram assumes that nodes whose names start with an asterisk 
(*) are pseudo-nodes.
You can right click on the edge handle to change the nature ●●

of an edge (e.g., from excitatory to inhibitory or vice versa).

2.2.1. File Menu

2.2.2. Action Menu

2.2.3. View Menu

2.2.4. Other Functions

http://www.cs.uic.edu/~dasgupta/network-synthesis/help.html
http://www.cs.uic.edu/~dasgupta/network-synthesis/help.html
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First, thoroughly read the relevant literature concerning the signal 
transduction pathway of interest. After reading all available litera-
ture on the topic, assess whether sufficient information is on hand 
such that network synthesis is necessary. For example, if all that is 
known about a system is that component/process X activates 
component Y which in turn activates component Z, one can draw 
a simple linear network and deduce that knockout of Y will elimi-
nate signaling, but a formal analysis is hardly required.

In assessing the literature, the modeler should especially focus 
on experiments that provide information of the type relevant to 
network construction. Experiments that identify nodes belonging 
to a signaling pathway and the relationships between them include: 
(1) in vivo or in vitro experiments which show that the properties 
(e.g., activity or subcellular localization) of a protein change upon 
application of the input signal or upon modulation of components 
already definitively known to be associated with the input signal; 
(2) experiments that directly assay a small molecule or metabolite 
(e.g., imaging of cytosolic Ca2+ concentrations) and show that the 
concentration of that metabolite changes upon application of the 
input signal or modulation of its associated elements; (3) experi-
ments that demonstrate physical interaction between two nodes, 
such as protein–protein interaction observed from yeast two-
hybrid assays or in vitro or in vivo coimmunoprecipitation;  
(4) pharmacological experiments which demonstrate that the out-
put of the pathway of interest is altered in the presence of an inhib-
itory agent that blocks signaling from the candidate intermediary 
node (e.g., a pharmacological inhibitor of an enzyme or strong 
buffering of an ionic species); (5) experiments which show that 
artificial addition of the candidate intermediary node (e.g., exog-
enous provision of a metabolite) alters the output of the signaling 
pathway; (6) experiments in which genetic knockout or overex-
pression of a candidate node is shown to affect the output of the 
signaling pathway. The first three types of experiments correspond 
to single causal inferences that will become edges of the network; 
the third also corresponds to direct interactions that will become 
critical edges of the network. The fourth to sixth types of experi-
ments correspond to double causal inferences.

The experimental conclusions need to be distilled into two kinds 
of regulation: positive (usually described by the verbs “promotes,” 
“activates,” and “enhances”) and negative (usually described by the 
verbs “inhibits,” “reduces,” and “deactivates”), and represented 
graphically as → and  (see Fig. 2). As the input to NET-SYNTHESIS 
is simple text files, the graphical symbols are replaced by “→” and 
“.” Component-to-component relationships are  represented such 

3. Methods

3.1. Gather the Direct 
Interactions, Single 
Causal Inferences, and 
Double Causal 
Inferences Regarding 
Your Signal 
Transduction Network
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as “A →	B.”	Double	causal	inferences	are	of	the	type	“C	promotes	
the	process	through	which	A	activates	B.”	The	only	way	this	state-
ment can correspond to a direct interaction is if C is an enzyme cata-
lyzing	a	 reaction	 in	which	A	 is	 transformed	 into	B.	We	 represent	
supported enzyme-catalyzed reactions as both A (the substrate) and 
C	(the	enzyme)	activating	B	(the	product).	If	the	interaction	between	
A	and	B	is	direct	and	C	is	not	a	catalyst	of	the	A–B	interaction,	we	
assume that C activates A. In all other cases, we represent the double 
causal inference such as “C → (A →	B).”

Note that some choices may have to be made in distilling the 
relationships, especially in the case where there are two conflict-
ing reports in the literature. For example, imagine that in one 
report it is stated that proteins X and Y do not physically interact 
based on yeast two-hybrid analysis, while in a second report, it is 
described that proteins X and Y do interact, based on coimmuno-
precipitation from the native tissue. The modeler will need to 
decide which information is more reliable, and proceed accord-
ingly. Such aspects dictate that human intervention will inevitably 
be an important component of the literature curation process, 
even as automated text search engines such as GENIES (20–22) 
grow in sophistication.

We will illustrate the five analysis steps following the data-
gathering phase on a sample collection of single and double causal 
inferences. This sample is a small subset of the evidence gathered 
for the signal transduction network responsible for abscicic acid-
induced closure of plant stomata (23). The vertices correspond to 
the	signal,	denoted	“ABA,”	the	output,	denoted	“Closure,”	and	
seven	 mediators	 of	 ABA-induced	 closure,	 the	 heterotrimeric	 G	
protein a subunit (GPA1), the small molecules NO and phospha-
tidic acid (PA), the enzymes Phospholipase C (PLC) and 
Phospholipase D (PLD), K+ efflux through slowly activating out-
wardly rectifying K+ channels at the plasma membrane (KOUT). 
The compilation includes nine single causal inferences, two of 
which correspond to direct interactions and two double causal 
inferences.

The input to NET-SYNTHESIS is given as follows:

ABA	 NO
ABA	→ PLD
ABA	→ GPA1
ABA	→ PLC
GPA1 → PLD Y
PLD → PA
NO  KOUT
KOUT → Closure Y
PA → Closure
PLC →	(ABA	→ KOUT)
PLD →	(ABA	→ Closure)
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The single inferences need to precede the double inferences. 
The direct interactions are marked by the letter “Y” following the 
component-to-component relationship.

To use NET-SYNTHESIS on this example, it needs to be saved into 
a text file, e.g., “example.txt.” After starting NET-SYNTHESIS, 
select the command “Read” from the File menu, and open the 
input file “example.txt.” This will display the vertices and edges 
corresponding to the single inferences. You can move the nodes 
by clicking and holding your left mouse button on them. Try to 
arrange the nodes so the edges do not cross each other. Note that 
the small circles correspond to edge handles (if you have the 
option of edge handles chosen in the View menu) which can also 
be moved to make the graph clearer. Clicking on Info in the View 
menu indicates that currently the network contains eight vertices 
and	nine	edges.	To	perform	BTR,	 select	“Reduction	 (slower)”	
from the Action menu. This reduction method is the better choice 
for networks smaller than 150 vertices. A pop-up window will 
indicate	that	one	edge	was	removed.	Indeed,	the	edge	from	ABA	
to PLD was superfluous as it did not indicate a direct interaction 
and had no effect on the reachability of any node in the 
network.

To read in the double causal inferences, select “Add pseudonodes” 
from the Action menu. The pop-up window will indicate that two 
pseudo-vertices and six edges were added to account for the two 
double causal inferences. Rearrange the nodes to see what is new. 
Indeed, the PLD →	(ABA	→ Closure) inference created a new 
pseudo-vertex, indicated by a circle with a star in it, and three 
new	edges,	one	from	PLD	to	the	pseudo-vertex,	one	from	ABA	
to the pseudo-node, and one from the pseudo-node to Closure. 
The second inference was incorporated in a similar manner. The 
newly added edges created new redundancies in the network. For 
example,	 the	 newly	 introduced	 pseudo-node	 connecting	 ABA	
and PLD to Closure has the same in and out reachability as the 
node	PA,	i.e.,	it	can	be	reached	from	ABA,	GPA1,	and	PLD	and	
it can reach Closure. Therefore, the pseudo-vertex is a candidate 
for PVC.

To perform PVC, select “Collapse pseudonodes” from the Action 
menu. The pop-up window will indicate that one pseudo-node 
was removed. An inspection of the network will tell you that 
indeed the pseudo-vertex indicated above was collapsed with the 
real node PA. This decreased the number of vertices by one and 
the	number	of	edges	by	two.	As	an	effect	of	the	collapse,	ABA	is	
now directly connected to PA in addition to being connected by 
the	 chain	 GPA1–PLD.	 The	 ABA	→ PA edge is redundant with 
the	 path,	 thus	 it	 is	 a	 candidate	 for	 BTR.	 In	 addition,	 an	 edge	

3.2. Read the Single 
Inferences into 
NET-SYNTHESIS to 
Form a Graph. Perform 
BTR on the Graph

3.3. Integrate the 
Double Causal 
Inferences into  
the Graph

3.4. Perform PVC
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among	 the	 three	 that	 connect	 ABA,	 PLC,	 and	 the	 remaining	
pseudo-vertex is also redundant. Thus, we should try to simplify 
the network further.

Select “Reduction (slower)” again and you will see that indeed 
the two edges have been removed. The remaining pseudo-vertex 
is	now	simply	a	mediator	between	PLC	and	KOUT.	But	because	
its existence does not add any further information, it should be 
removed. You can do that by selecting “Collapse degree-2 
pseudonodes” from the action menu. Now the network has eight 
vertices and nine edges. Select “Reduction (slower)” to make 
sure no more reduction is possible.

In the example above, we succeeded in integrating single and 
double causal inferences into a signal transduction network whose 
nodes are all known (i.e., they are not pseudo-nodes). For a real 
situation, as opposed to an illustrative example, the resulting net-
work can be quite large and complex. In cases when some of the 
nodes are clearly more documented, more important, or more 
interesting than others, it may be beneficial to focus on the reach-
ability among these more important nodes and disregard the oth-
ers without explicitly removing them. One can do this by 
designating the less important nodes as pseudo-nodes and then 
simplifying	the	network	by	using	PVC	and	BTR.

Let us designate the node NO as a pseudo-node. We can do 
this by right-clicking on the node, prepending a * to the node 
name that appears in a pop-up window, and press Enter. The 
node will now become a pseudo-node, indicated by the fact that 
the symbol corresponding to the node becomes a small circle 
with a star in the middle. Selecting “Collapse degree-2 
pseudonodes”	will	 remove	 the	pseudo-node	and	connect	ABA	
and KOUT with a positive edge. This is because a path with an 
even number of negative edges is positive. The new edge is 
redundant with the path going through PLC and “Reduction 
(slower)” will delete it.

We have previously successfully illustrated the usefulness of our 
software by applying it to synthesize an improved version of a pre-
viously published signal transduction network (7, 23) and by using 
it to simplify a novel network corresponding to activation-induced 
cell death of T cells in large granular lymphocyte leukemia (7, 24). 
It is our hope that this method, in assistance with interactive 
human intervention as discussed before, will be useful in the future 
in synthesizing and analyzing networks in a broader context.

3.5. Perform a 
Follow-up Round  
of BTR and Vertex 
Collapse Until  
the Graph Cannot  
be Reduced Further

3.6. If Warranted, 
Simplify the Graph 
Further by Designating 
Known Vertices as 
Pseudo-vertices and 
Performing PVC

4. Conclusion
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