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It is well known that biological and social interaction networks have a varying degree of redundancy, though
a consensus of the precise cause of this is so far lacking. In this paper, we introduce a topological redundancy
measure for labeled directed networks that is formal, computationally efficient, and applicable to a variety of
directed networks such as cellular signaling, and metabolic and social interaction networks. We demonstrate
the computational efficiency of our measure by computing its value and statistical significance on a number
of biological and social networks with up to several thousands of nodes and edges. Our results suggest a
number of interesting observations: (1) Social networks are more redundant that their biological counterparts,
(2) transcriptional networks are less redundant than signaling networks, (3) the topological redundancy of the
C. elegans metabolic network is largely due to its inclusion of currency metabolites, and (4) the redundancy of
signaling networks is highly (negatively) correlated with the monotonicity of their dynamics.
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I. INTRODUCTION

The concepts of degeneracy and redundancy are well known
in information theory. Loosely speaking, degeneracy refers to
structurally different elements performing the same function,
whereas redundancy refers to identical elements performing
the same function1. In electronic systems, such measures are
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1We remind the reader that the term “redundancy” is also used in

other contexts in biology unrelated to the definition of redundancy in
this paper. For example, some researchers use redundancy to refer to
paralogous genes that can provide functional backup for one another
[1]. In addition, some researchers use the two terms, redundancy
and degeneracy, interchangeably or use other terminologies for these
concepts.

useful in analyzing properties such as fault tolerance. It is an
accepted fact that biological networks do not necessarily have
the lowest possible degeneracy or redundancy; for example,
the connectivity of neurons in brains suggest a high degree of
degeneracy [2]. However, as Tononi et al. observed in their
paper [3]:

"Although many similar examples exist in
all fields and levels of biology, a specific
notion of degeneracy has yet to be firmly
incorporated into biological thinking, largely
because of the lack of a formal theoretical
framework".

The same comment holds true about redundancy as well. A
further reason for the lack of incorporation of these notions in
biological thinking is the lack of effective algorithmic proce-
dures for computing these measures for large-scale networks
even when formal definitions are available. Therefore, such
studies are often done in a somewhat ad hoc fashion, as
in Ref. [4]. There do exist notions of “redundancy” in the
field of analysis of undirected networks based on clustering
coefficients (see e.g., [5]) or betweenness centrality measures
(see e.g., [6]). However, such notions are not appropriate for
the analysis of biological networks where one must distinguish
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positive from negative regulatory interactions, and where the
study of dynamics is of interest.

II. BRIEF REVIEW OF AN INFORMATION-THEORETIC
DEGENERACY AND REDUNDANCY MEASURES

Formal information-theoretic definitions of degeneracy and
redundancy for dynamic biological systems were proposed
in [3] (see also [7,8]) based on mutual-information contents.
These definitions assume access to suitable perturbation
experiments and corresponding accurate measurements of
the relevant parameters. Thus, they are not directly
comparable to the topology-based redundancy measures that
we propose in this paper. Nonetheless, we next briefly review
these definitions as a way to illustrate some key points of other
measures often used in the literature that motivated us to define
our new redundancy measure.

The authors of [3] consider a system consisting of n

elements that produces a set of outputs O via a fixed
connectivity matrix from a subset of these elements. The
elements are described by a jointly distributed random vector
X that represents steady-state activities of the components
of their system. The degeneracy D(X ; O) of the system is
then expressed as the average mutual information (I) shared
between O and the “perturbed” bi-partitions of X summed
over all bipartition sizes [Eq. (2b) of [3]], that is,

D(X; O) = 1

2
×

n∑
k=1

∑
j

(
IP

(
Xk

j ; O
)

+ IP
(
X \ Xk

j ; O
) − IP

(
X; O

))
, (1)

where Xk
j is a j th subset of X composed of k elements

and the notation IP (A ; O) denotes the mutual information
between a subset of elements A and an output set O, when
A is injected with a small fixed amount of uncorrelated
noise2; see [3,7] for details. One can immediately see a
computational difficulty in applying such a definition: the
number of possible bipartitions could be astronomically large
even for a modest size network. For example, for a network with
100 nodes which is a number smaller than all but one of the
networks considered in this paper, the number of bi-partitions
is roughly 2100 > 1030. Measures avoiding averaging over all
bi-partitions were also proposed in [3], but the computational
complexities and accuracies of these measures remain to be
thoroughly investigated and evaluated on larger networks.

In a similar manner, the redundancy (X;O) of a system X

was defined in [3] as the difference between summed mutual
information upon perturbation between all subsets of size up
to 1 and O, and the mutual information between the entire
system and O [Eq. (3) in [3]], that is,

(X; O) =
n∑

j=1

IP
(
X1

j ; O
) − IP (X; O). (2)

2IP (A; O) = H(A) + H(O) − H(A,O), where H(A) and H(O)
are the entropies of A and O considered independently, and H(A,O)
is the joint entropy of the subset of elements A and the output set O.

Note that a clear shortcoming of this measure is that it
only provides a number, but does not indicate which subset
of elements is redundant. Identifying redundant elements is
important for the interpretation of results, and may also serve as
an important step of the network construction and refinement
process, as we will illustrate in our application to the C. elegans
metabolic network and the oriented PPI network. Tononi
et al. [3] illustrated the above measure on a few model networks
as a proof of concept, but large networks clearly necessitate
alternate measures that allow efficient calculations.

In this paper we propose a new topological measure of
redundancy. A benefit of our new redundancy measure is
that we can actually find an approximately minimal network
and, in the case of multiple minimal networks of similar
quality, a subset of them by enabling a randomization step
in the algorithmic procedure. We determine this redundancy
value for a number of biological and social networks of large
sizes and observe a number of interesting properties of our
redundancy measure.

III. MODELS FOR DIRECTED BIOLOGICAL AND
SOCIAL NETWORKS

There are two very different levels of models for biological
systems. A so-called network topology model (also known
as a “wiring diagram” or a “static graph”) provides a coarse
diagram or map of the physical, chemical, or statistical
connections between molecular components of the network,
without specifying the detailed kinetics. In this type of
model, a network of molecular interactions is viewed as a
graph: Cellular components are nodes in a network, and the
interactions between these components are represented by
edges connecting the nodes. In this paper, we are mainly
concerned with this type of model; exact details are described
in Sec. III A.

In the other type of model, a network dynamics model,
mathematical rules (e.g., systems of Boolean rules or differ-
ential equations) are used to specify the behavior over time
of each of the molecular components in the network. Our
investigation is not directly concerned with such dynamic
models. However, since we will show a correlation of our
redundancy measure for the network topology model with
a property, namely monotonicity, of an associated network
dynamics model, we briefly review this model in Sec. III B.

A. Network topology model

Three common types of molecular biological networks
are as follows: transcriptional regulatory networks, metabolic
networks, and signaling networks. The nodes of transcriptional
regulatory networks represent genes, and edges represent
(positive or negative) regulation of a given gene’s expression by
proteins associated with other genes. The nodes of metabolic
networks are metabolites and the edges represent the enzyme-
catalyzed reactions in which these metabolites participate as
reactants or products. The nodes of signaling networks are
proteins and small molecules, and the edges represent physical
or chemical interactions or indirect positive or negative causal
effects. A unified formalism to describe all these types of
networks uses a directed graph G = (V,E,w) with vertex
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FIG. 1. The network topology model for biological networks. The
parity of the pathway B → C → A � D is 1 × (−1) × (−1) = 1.

set V , edge set E, and an edge labeling function w : E �→
{−1,+1} in which a label of 1 (respectively, −1) represents
an positive (respectively, negative) influence. A pathway is
then a path P from vertex u to vertex v, and the excitory
or inhibitory nature of the pathway is specified by the parity
�e∈P w(e) ∈ {−1,+1} of such a path P ; see Fig. 1 for an
illustration.

Our model for directed social interaction networks is simply
a directed graph in which edges represent significant relation-
ships between the entities, for example, nodes may represent
Web pages and directed edges may represent hyperlinks of
one Web page in another. Obviously, we can think of such a
model as one of the above type in which all edges are labeled
+1 (and, thus all paths have the same parity); this allows us to
treat both social and biological networks in a mathematically
uniform manner for the purpose of designing and analyzing
algorithms.

B. Network dynamics and monotonicity

Consider systems modeled via ordinary differential equa-
tions:
dxi(t)

dt
= fi(x1(t),x2(t), . . . ,xn(t)) for i = 1,2, . . . ,n,

(3)

where xi(t) indicates the concentration of the i th entity in the
model at time t and the fi’s are functions of n variables.
We assume that x(t) = (x1(t),x2(t), . . . ,xn(t)) evolves in an
open subset of Rn, the fi’s are differentiable, and solutions
are defined for t � 0. For example, a simple two-species
interaction could be described by

dx1

dt
(t) = 3x1(t) − 5x2(t),

dx2

dt
(t) = x1(t) + x2(t).

A particularly appealing class of dynamics is that of monotone
systems [9,10]. Informally, the dynamics of a monotone
system preserves a specific partial order (hierarchy) of its
inputs over time. Mathematically, monotonicity can be defined
as follows.

Definition 1 [9,10]. Given a partial order � over Rn, system
(3) is said to be monotone with respect to � if

∀ t � 0:(x1(0), . . . ,xn(0))�(x1(0), . . . ,xn(0))y1(0), . . . ,yn(0))

=⇒ (x1(t), . . . ,xn(t)) � (y1(t), . . . ,yn(t)),

where (x1(t), . . . ,xn(t)) and (y1(t), . . . ,yn(t)) are the solu-
tions of (3) with initial conditions (x1(0), . . . ,xn(0)) and
(y1(0), . . . ,yn(0)), respectively.

We will restrict our attention to orthant orders. These are
the partial orders �s over Rn, for any given s = (s1, . . . sn) ∈
{−1,1}n, defined as (see [10–12])

x �s y ⇐⇒∀ i : si xi � si yi .

In particular, the “cooperative order” is the partial order �s for
s = (1,1, . . . ,1).

Monotone systems constitute a nicely behaved class of
dynamical systems in several ways. For example, for these
systems pathological behaviors (chaotic attractors) are ruled
out. Even though they may have an arbitrarily large dimen-
sionality, monotone systems (under an additional irreducibility
assumption) behave in many ways like one-dimensional sys-
tems; for example, bounded trajectories generically converge
to steady states, and stable oscillatory behaviors do not exist.
Monotonicity with respect to orthant orders is equivalent to
the nonexistence of negative loops in systems; analyzing the
behaviors of such loops is a long-standing topic in biology
in the context of regulation, metabolism, and development,
starting from the work of Monod and Jacob in 1961 [13]. In this
paper, we will define a measure of “degree of monotonicity”
for dynamical systems and relate it to our topology-based
redundancy measure.

IV. A NEW MEASURE OF REDUNDANCY

We will use the following notations for conciseness:
(1) For any two vertices u and v, u

x⇒ v (respectively,
u

x→ v) denotes a path (respectively, an edge) from u to v of

parity x. We include the empty path u
1→ u for each vertex u.

(2) For any E′ ⊆ E, reachable (E′) is the set of all ordered
triples (u,v,x) such that u

x⇒ v exists in the subgraph (V,E′).
For example, for the network in Fig. 1, B

1⇒ D exists
because of the path B � A � D and also because of the
path B → C � A � D, and reachable ({B → C,A � D}) =
{(A, A, 1),(B, B, 1),(C, C, 1),(D, D, 1),(B, C, 1),(A, D,−1),}.

We next state a combinatorial optimization problem that
will be needed in order to introduce our new redundancy
measure.

Problem Name: Binary Transitive Reduction
(BTR ).

Instance: a directed graph G = (V,E) with a
subset of edges Efixed ⊂ E and an edge
labeling function w : E �→ {−1,1}.

Valid Solution: a subgraph G′ = (V,E′) such
that
(1) E′ ⊇ Efixed and
(2) reachable (E′) = reachable (E).
(E \ E′ is referred to as a set of “redundant”
edges.)

Goals: minimize |E′|.
Intuitively, the BTR problem prunes pathways for which

alternate equivalent pathways exist (see e.g., [14,15]). The set
of edges in Efixed in the definition of BTR represents edges
that may not be removed during the algorithm; this is useful
in the context when one wishes to reduce a network while
preserving specific pathways. For the redundancy calculations
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FIG. 2. Choosing one wrong edge may cost too much in BTR .

performed in this paper, we assume no prior knowledge of
direct interactions; thus for the rest of the paper we set Efixed =
∅. As an illustration, in Fig. 1 if we let E′ = E \ { B � A }
then reachable (E′) =reachable (E) because of the path
B → C � A.

Finding a maximum set of edges that can be removed is
nontrivial; in fact, the problem is NP hard [17]. To illustrate the
algorithmic difficulties, consider the network shown in Fig. 2.
Removal of all the black edges provides a nonoptimal solution
of BTR, whereas an optimal solution with about half the
edges compared to the nonoptimal solution can be obtained by
keeping all the black edges and removing all but two of the gray
edges. The special case of BTR with Efixed = ∅ and w(e) = 1
for all edges e is the so-called classical minimum equivalent
digraph problem, and it has been investigated extensively in the
context of checking minimality of connectivity requirements
in computer networks (see e.g., [17]). Other examples of
applications of BTR –type network optimizations include the
work by Wagner [18] employing a special case of BTR to
determine network structure from gene perturbation data in
the context of biological networks and the work by Dubois
and Cécile [19] in the context of social network analysis and
visualization.

Based on the BTR problem, we propose a new combinato-
rial measure of redundancy that can be computed efficiently.
Note that BTR does not change pathway level information of
the network and removes edges from one node to another only
when a similar alternate pathway exists, thus truly removing
redundant connections. Thus, |E′|

|E| provides a measure of
global compressibility of the network and our proposed new
redundancy measure new is defined to be

new = 1 − |E′|
|E| . (4)

The |E| term in the denominator of the above definition
translates to a “min-max normalization” of the measure [20],
and ensures that 0 < new < 1. Note that the higher the value
of new is, the more redundant the network is.

A. Properties of our topological redundancy measure and
applications of a minimal network

Any topological redundancy measure should have a de-
sirable property: The measure must not only reflect simple
connectivity properties such as degree sequence or average
degree, it must also depend on higher-order connectivity.
Our redundancy measure indeed has this property, since
paths of arbitrary length are considered for removal of an
edge. For a concrete example, consider two graphs shown in

v1v1v1 v2v2v2 v4v4v4 v3v3v3 v5v5v5 v6v6v6 v8v8v8 v7v7v7

v1v1v1

v2v2v2 v3v3v3 v4v4v4

v5v5v5

v6v6v6v7v7v7v8v8v8

FIG. 3. Two n-node graphs with same degree sequence but with
different values of *new, shown for n = 8. The top graph has no
redundant edges, thus for it *new = 0. The dashed edges for the bottom
graph can be removed, giving *new = 3

11 .

Fig. 3; the in-degree and out-degree sequence of each graph
is 1,1, . . . ,1,1︸ ︷︷ ︸

n
2 +1

,2,2, . . . ,2︸ ︷︷ ︸
n
2 −1

, but their redundancy values are

drastically different. Similarly, higher average degree does not
necessarily imply higher values of redundancy; for example,
the network in Fig. 3, when generalized on n nodes, has an
average degree below 2 and a redundancy value of roughly
0.33, whereas the graph Kn

2 . n
2

(a completed bipartite graph
with each partition having n/2 nodes and all edges directed
from the left to the right partition) has an average degree of
n/2 but a redundancy value of 0.

B. Computing new

Although solving BTR exactly is an NP-hard problem,
it has a rich combinatorial structure that allowed us to
design an efficient approximation algorithm. The resulting
algorithms were incorporated in our NET-SYNTHESIS software
[15] (publicly available at [16]).

Although it is impossible to provide all details of the
algorithmic approaches that was used for NET-SYNTHESIS,
we provide some high-level details of the algorithm used;
the reader can find further details, correctness proofs, and
algorithmic analysis in [14,21]. It was proved in [21] that any
strongly connected component (SCC) of the given graph G =
(V,E), say (V1,E1) with V1 ⊆ V and E1 = (V1 × V1) ∩ E,
can be classified as one of the two types: a single parity SCC
if, for any two vertices u,v ∈ V1, u

x⇒ v exists in the SCC
for exactly one x from {−1,1}, and a multiple parity SCC if,
for any two vertices u,v ∈ V1, u

x⇒ v exists in the SCC for
both x = 1 and x = −1. A high-level view of the algorithmic
approach is shown in Fig. 4.

The running time of NET-SYNTHESIS is dominated by
Step 2. Theoretically, the worst-case running time of the
algorithm is O(n3) when n is the number of vertices in G,
but empirically the implementation allows us to calculate new

for networks up to about five to ten thousand nodes, thereby
allowing us to compute the redundancy parameter for large
networks. We expect that a future improved implementation of
BTR will allow the calculation of redundancy values for even
larger networks. Regarding optimality of the computed solu-
tion, theoretically NET-SYNTHESIS returns a solution that is a
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1. Partition G into SCCs, say C1 = (V1, E1), C2 = (V2, E2), . . . , Cp = (Vp, Ep)

2. An SCC is a single parity component if, for every pair of nodes u and v, both u
−1⇒ v and u

1⇒ v do
not exist in the SCC; otherwise it is a multiple parity component. Classify each SCC as single or multiple
parity via a dynamic programming algorithm.

3. for each strongly connected component Ci do
Use a heuristic to compute a solution, say Ei, of BTR for Ci.
The heuristic repeatedly selects an edge u

x→ v that can be removed until no such edges exist in the
SCC.

Several criteria are used to select u
x→ v, such as:

• parity of Ci (computed in Step 2)
• length of the alternate path u

x⇒ v
• size (number of nodes) of Ci

endfor

4. Build the following directed acyclic graph GS = (VS , ES) from G. At the end of the transformation,
every edge e of G will be replaced by at most four edges in GS ; we say that these (at most four) edges are
“generated” by e. The proof of correctness of the algorithm shows that, for each edge e, all or none of the
edges generated by e will be in the computed solution of GS in Step 5.

for i = 1, 2, . . . , p do
if Ci is of multiple parity then

replace Ci by a node yi

if there is a directed edge (u, v) with u Ci and v ∈ Ci then add the two edges u
−1→ yi and

u
1→ yi

if there is a directed edge (u, v) with u ∈ Ci and v Ci then add the two edges yi
−1→ v and

yi
1→ v

endif
if Ci is of single parity then

pick any vertex v ∈ Ci; let I+ = {x ∈ Ci | v 1⇒ x exists in Ci}, and I− = {x ∈
Ci | v −1⇒ x exists in Ci}

replace Ci by four nodes y+
i , y++

i , y−
i , y−−

i , and four edges y+
i

1→ y++
i , y+

i
−1→ y−−

i , y−
i

−1→ y++
i , y−

i
1→

y−−
i

for every edge u
x→ v with u Ci and v ∈ Ci do

if v ∈ I+ then add the two edges u
x→ y+

i and u
−x→ y−

i

if v ∈ I− then add the two edges u
−x→ y+

i and u
x→ y−

i

endfor
for every edge u

x→ v with u ∈ Ci and v Ci do
if v ∈ I+ then add the two edges y++

i
x→ v and y−−

i
−x→ v

if v ∈ I− then add the two edges y++
i

−x→ v and y−−
i

x→ v
endfor

endif
endfor

5. Solve BTR for GS optimally by a greedy approach; let ES ⊆ ES be this solution.

6. Our solution Esolution of BTR for G is as follows:
Include all the edges in (∪p

i=1Ei) in Esolution

for every edge e of G do
if the set of edges generated by e is in ES then include e in Esolution

endfor

FIG. 4. A high-level view of the algorithmic approach in NET-SYNTHESIS to perform BTR .
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(a)

hh1
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EN1

CI1
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CN1
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HH m1

PH m2

to PH m4

PH m1

PTC m1

WG m1

en2

to en4

Cell membrane

HH m2

WG m2

from HH m4

next cell

(b)

{ ⇑⇑⇑
FIG. 5. (a) The Drosophila segment polarity network for a single cell, redrawn from [22]. (b) A network of four cells. The redundant edges

in each cell are colored light gray. The dark gray edges form an alternate pathway of same parity for the edge WG 1 → wg 1.

3-approximation [14] (i.e., |Esolution| is no more than three
times of that in an optimal solution in the worst case). However,
extensive empirical evaluations reported in [14] suggest that
in practice |Esolution| is almost always close to optimal (within
an extra 10% of the optimal).

C. Illustration of redundancy calculation for a small
biological networks

Our results of redundancy calculations on large-size biolog-
ical and social networks are reported later, in Sec. VII, but here
we illustrate the redundancy and minimal network calculations
on a biological network that arises from the repetition of a
fixed gene regulatory network over a number of cells. This
gene regulatory network is formed among products of the
segment polarity gene family, which plays an important role in
the embryonic development of Drosophila melanogaster. The
interactions incorporated in this network include translation
(protein production from mRNA), transcriptional regulation,
and protein-protein interactions. Two of the interactions are
intercellular: Specifically, the proteins wingless and hedgehog
can leave the cell they are produced in and can interact with
receptor proteins in the membrane of neighboring cells. We
select this network for several reasons. First, the core part of
the network for a single cell is small, consisting of 13 nodes

and 22 edges, which enables analytical calculations of redun-
dancy and visual depiction of redundant edges. Secondly, in
spite of its simplicity and regularity, the associated multicell
network does exhibit nontrivial redundancies due to the
intercellular interactions and the cyclic arrangement of cells.
The network for a single cell was first published in [22] and
later in slightly modified form in [23,24]. Figure 5 (a) shows
the network of [22] with the interpretation of the regulatory
role of PTC m on the reaction CI → CN as PTC m → CN
and PTCm � CI . We note that the intercellular interactions
are present at the whole cell membrane and not just the right
boundary as shown for simplicity in all reconstructions. In
a manner similar to that in other papers (e.g.,, see [11]), we
build a one-dimensional multicellular version by considering
a row of y cells, each of which has separate variables for
each of the compounds, letting the cell-to-cell interactions be
as in Fig. 5 (a), but acting on both left and right neighbors,
and using cyclic boundary conditions; see Fig. 5 (b) for an
illustration.

If the network contains y > 2 cells, then
(1) The number of vertices and edges are 13y and 22y,

respectively; and
(2) NET-SYNTHESIS, after performing BTR , keeps 16y − 2

edges, giving new = 6y+2
22y

≈ 3
11 .
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TABLE I. Network data with sources. If duplicated edges were present in the original network, they were removed in calculation of number
of edges.

Number of Number of Average
nodes (n) edges (m) degree (m/n) Brief description and reference

Biological networks

(1) 311 451 1.45 E. coli transcriptional regulatory network constructed by Shen-Orr et al. in [25]
for direct regulatory interactions between transcription factors and the genes or
operons they regulate; see [41].

(2) 512 1047 2.04 Mammalian network of signaling pathways and cellular machines in the hippocampal
CA1 neuron constructed by Ma’ayan et al. [42]; see [43].

(3) 418 544 1.3 E. coli transcriptional regulatory network (updated version of the network
constructed by Shen-Orr et al. in [25]); see [26].

(4) 59 135 2.28 T-cell large granular lymphocyte (T-LGL) survival signaling network constructed
by Zhang et al. [44]; see [45].

(5) 690 1082 1.56 S. cerevisiae transcriptional regulatory network constructed by Milo et al. [46]
showing interactions between transcription factor proteins and genes; see [47].

(6) 651 2040 3.13 C. elegans metabolic network constructed by Jeong et al. [48] and also used by
Duch and Arenas in [49].

(7) 786 2453 3.12 An oriented version of an unweighted PPI network constructed from S. cerevisiae
interactions in the BIOGRID database by Gitter et al. [50].

Social networks

(8) 198 2742 13.84 Network of Jazz musicians [51].
(9) 1133 10903 9.62 List of edges of the network of e-mail interchanges between members of the

University Rovira i Virgili (Tarragona) [52].
(10) 11240 24316 2.16 Network of users of the Pretty-Good-Privacy algorithm for secure information

interchange; edges connect users that trust each other [53].
(11) 1169 1912 1.63 Enron e-mail network; available from UC Berkeley Enron Email Analysis [54].

Identifying a molecule in the i th cell via a subscript i, NET-
SYNTHESIS removed the following edges:

(1) the two edges WG m2 → en1 and WG m1 → en2,
and

(2) the set of six edges from each cell i : PTC mi →
PH mi , PTC mi � CIi , WGi → wgi , CNi � eni , CIi →
wgi , and CIi → ptci .

As can be seen, the redundancies depend in a nontrivial
manner on higher-order connections. For example, the light
gray edge WG 1 → wg 1 is redundant because of the alternate
dark gray pathway shown in Fig. 5.

D. Computing the confidence parameter for new

We apply our redundancy measure on seven biological
networks and four social networks (see Table I). For each
(social or biological) network G in Table I, except networks
(9) and (10), having a redundancy value of new(G), we
generated 100 random networks, and computed the redundan-
cies new(Grandom1 ), new(Grandom2 ), . . ., new(Grandom100 ) of
these random networks. We then use a (unpaired) one-sample
student’s t test to determine the probability that new(G)
can be generated by a distribution that fits the data points

new(Grandom1 ), . . ., new(Grandom100 ).
The current implementation of NET-SYNTHESIS runs slowly

due to its intensive disk access on networks (9) and (10) in

Table I because network (9) is very dense (an average degree
of 9.62 on 1133 nodes) and network (10) has a very large
number of edges (24 316 edges). Redundancy analysis of a
single random graph generated for either of these two networks
requires a week or more, and any meaningful statistics would
require on the order of 100 random graphs for each network.
Due to the prohibitive time requirements we were not able to
report p values for these two networks Since the characteristics
of various biological and social networks are of different
nature, we generate random networks for the various networks
using two different methods as explained below.

Ideally, for networks of a particular type, one would prefer
to use an accurate generative null model for highest accuracy
in p values. For signaling and transcriptional biological
networks [networks (1)–(5) in Table I], Ref. [14], based
on extensive literature review of similar kinds of biological
networks in prior papers, arrived at the characteristics of
a generative null model that is described below and used
by us for these networks3. One of the most frequently
reported topological characteristics of such networks is the

3Our simulations with the alternate Markov-chain model used for
the remaining networks show that the p values still remain negligibly
small; this is consistent with similar observations in another context
made by Shen-Orr et al. [25].
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distribution of in-degrees and out-degrees of nodes, which
exhibit a degree distribution that is close to a power law or
a mixture of a power law and an exponential distribution
[27–29]. Specifically, transcriptional regulatory networks have
been reported to exhibit a power-law out-degree distribution,
while the in-degree distribution is more restricted [25,30].
Based on such topological characterizations of signaling and
transcriptional networks reported in the literature, Ref. [14]
used the following degree distributions for the purpose of
generating random networks for the biological transcriptional
and signaling networks such as the ones in (1)–(5) in Table I:

(1) The number of vertices is the same as the network G

whose redundancy value was computed.
(2) The in-degree and out-degree distributions of the ran-

dom networks are as follows:

The distribution of in-degree of the networks is
exponential, that is, Pr[in-degree =x]= c1 e−cx

with 1
2 < c1 < 1

3 and a maximum in-degree of 12.

The distribution of out-degree of the networks
is governed by a power law, that is, for
x � 1, Pr[out-degree =x]= c2 x−c, for x = 0
Pr[out-degree = 0]� c2 with 2 < c2 < 3 and a
maximum out-degree of 200.

The parameters in the above distribution are
adjusted such that the sum of in-degrees of all
vertices are equal to the sum of out-degrees of all
vertices and the expected number of edges is the
same as G.

(3) The percentage for activation/inhibition edges in the
random network is the same as in G.
Each of the r random networks with these degree distributions
are generated using our private implementation of the method
suggested by Newman et al. in [31].

For social networks, for the C. elegans metabolic network
and for the oriented PPI network [networks (6)–(11) in
Table I], in the absence of a consensus on an accurate
generative null model, we generated the r random networks
using a Markov-chain algorithm [32] in a similar manner
as in, say [25], by starting with the real network G and
repeatedly swapping randomly chosen pairs of connections
in the following manner4:
repeat

choose two edges of G = (V,E), a
x→ b and c

y→ d,
randomly and uniformly (x,y ∈ {−1,1})

if x �= y or a = c or b = d

or a
x→ d ∈ E or c

y→ b ∈ E

then discard this pair of edges
else the random network contains the edges

a
x→ d and c

y→ b instead of a
x→ b and c

y→ d

until 20% of edges of G has been swapped

4Shen-Orr et al. [25] consider swapping about 25% of the edges.

x1x1x1 x2x2x2 x3x3x3

FIG. 6. Network for the system in Eq. (5).

V. MEASURE OF MONOTONICITY FOR BIOLOGICAL
NETWORKS

To explain the intuition behind the computation of a
monotonicity measure of the dynamics of a biological system,
we start by relating the time dynamics of the system with
the graph-theoretic model of the network in the following
way [10–12]. The time-varying system as defined by Eq. (3)
defines a labeled-graph model G = (V,E,w) of the biological
network in the following manner:

V = {x1, . . . ,xn};
if ∂fj

∂xi
� 0 for all x(t) = (x1(t),x2(t), . . . ,xn(t)) and

∂fj

∂xi
> 0 for some x(t),

then (xi,xj ) ∈ E and w(xi,xj ) = 1;
if ∂fj

∂xi
� 0 for all x(t) and ∂fj

∂xi
< 0 for some x(t),

then (xi,xj ) ∈ E and w(xi,xj ) = −1.
(we assume that, for each i and j , either ∂fj

∂xi
� 0 for all x

or ∂fj

∂xi
� 0 for all x.)

As an example, consider the following biological model of
testosterone dynamics [33,34]:

dx1

dt
(t) = A

K + x3(t)
− b1x1(t),

dx2

dt
(t) = c1x1(t) − b2x2(t), (5)

dx3

dt
(t) = c2x2(t) − b3x3(t).

The corresponding labeled network for this system is shown
in Fig. 6. It is easy to show that (5) is not monotone with
respect to �s , for all possible s. On the other hand, if we
remove the term involving x3 in the first equation, we obtain
a system that is monotone with respect to �s , s = (1,1,1). A
cause of nonmonotonicity of the system is the existence of
sign-inconsistent paths between two nodes in an undirected
version of the network (i.e., the existence of both an activation
and an inhibitory path between two nodes when the directions
of the edges are ignored). To be precise, define a closed
undirected chain in the labeled graph G as a sequence of
vertices xi1 , . . . ,xir such that xi1 = xir , and such that for
every λ = 1, . . . ,r − 1 either (xiλ ,xiλ+1 ) ∈ E or (xiλ+1 ,xiλ ) ∈ E.
Then, the following result holds [11] (see also [35] and [36],
page 101]).

Lemma 2 [11] Consider a dynamical system (3) with
associated directed labeled graph G. Then, (3) is monotone
with respect to some orthant order if and only if all closed
undirected chains of G have parity 1.

Note that the combinatorial characterization of monotonic-
ity in Lemma 2 is via the absence of undirected closed chains
of parity 1. Thus, in particular, any monotone system has

(a) no negative feedback loops, and
(b) no incoherent feed-forward loops.
However, some systems may not be monotone even if (a)

and (b) hold; see Fig. 7 for an example.
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A B C

D

FIG. 7. A nonmonotone system with no negative feedback loops
and no incoherent feed-forward loops.

Lemma 2 leads in a natural manner to the following sign
consistency (SC ) problem to determine how monotone a
system is [11,37].

Problem name: Sign Consistency (SC ).
Instance: a directed graph G = (V,E) with an

edge labeling function w : E �→ {−1,1}.
Valid Solution: a vertex labeling function

L : V → {−1,1}.
Goal: maximize |F | where F = {(u,v) | w(u,v) =

L(u)L(v)} is a set of “consistent” edges.
Similar to our redundancy measure, we define the degree

of monotonicity of a network to be

M = |F |
|E| , (6)

where F is the set of consistent edges in an optimal solution.
The |E| term in the denominator of the above definition
translates to a min-max normalization of the measure, and
ensures that 0 < M < 1. Note that the higher the value of M
is the more monotone the network is (cf. [11,37]).

A. Computing M

In [11] a semidefinite-programming (SDP) based approx-
imation algorithm is described for SC that has a worst-case
theoretical guarantee of returning at least about 88% of the
maximum number of edges. The algorithm was implemented
in MATLAB (the MATLAB codes are publicly available at [38]).
Other algorithmic implementations of the SC problems are
described in [37,39].

B. Computing correlation between M and new

After obtaining the ordered pair of six values
(M1, new1 ), . . . ,(M6, new6 ) of M and new for the first
six networks in Table I, we computed the stan-
dard Pearson product moment correlation coefficient

r =
∑6

i=1( newi
− new)(Mi − M)√∑6

i=1( newi
− new)2

∑
(Mi − M)2

, where new =
∑6

i=1 newi

6
and M =

∑6
i=1 Mi

6
are the average redundancy

and monotonicity values, respectively. The possible values of
r always lie in the range [−1,1], and values −1 and 1 signify
strongest negative and positive correlations, respectively. A
p value for this correlation was calculated by a T test with
two-tailed distribution and unequal variance to show the
probability of getting a correlation as large as the observed
value by random chance when the true correlation is zero.

Cellular organisms

Eukaryota

Metazoa

Coelomata

Deuterostomia

Mammalia

Protostomia

Drosophila

Pseudocoelomata

C. elegans

Fungi

S. cerevisiae

Bacteria

E. coli

FIG. 8. An unweighted species tree of the organisms for our
biological networks, constructed using the Taxonomy Browser
resources of NCBI [40]. The tree is not drawn to scale.

VI. NETWORK DATA

We selected a total of 11 networks, seven biological ones
and four social ones. We selected these networks with the
following criteria in mind:

(1) The biological networks were selected with an eye
toward covering a diverse set of species on the evolutionary
scale and toward covering networks of diverse natures (e.g.,
metabolic, transcriptional); a species tree of the biological
organisms for our networks is shown in Fig. 8.

(2) The social networks were selected covering interactions
in different social environments.

(3) The networks span a wide range on size (number of
edges ranging from 135 to 24 316) and density (average
degree ranging from 1.3 to 13.4) to demonstrate that our new
redundancy measure can be computed efficiently for a large
class of networks.
Table I provides more details and sources for these networks.

VII. RESULTS AND DISCUSSIONS

In Table II we show the tabulation of redundancy and,
when appropriate, also monotonicity values for our networks.
Because of their large sizes, p values for the redundancy
measure could not be estimated very reliably for networks (9)
and (10) since they require runs on many random networks,
each of which would take upward of a week; thus we do not
report p values for these networks. The extremely low p values
in Table II indicate that the real networks’ redundancy values
cannot be generated by a distribution that fits the redundancies
of the equivalent random graphs.

If one prefers, a normalization of the redundancy values
of the networks for which randomly generated networks are
available can be performed as follows. For each of the nine
networks, we first computed the standardized redundancy
value for each of the 100 random networks to eliminate
sampling bias (for a sample x1,x2, . . . ,xm with average μ

and standard deviation σ , the standardized value of xi is
given by xi−μ

σ
). Then, we calculated the standardized range

(difference between maximum and minimum) of these 100
standardized redundancy values. Finally, we normalized orig-
inal redundancy value by dividing them by this standardized
range. The resulting normalized values are shown in Table III
(for comparison purposes, the normalized redundancy values
are scaled so that their summation is exactly the same as the
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TABLE II. (a) Topological redundancy and (b) monotonicity values. Higher values of new (respectively, M) imply more redundancy
(respectively, monotonicity). In general, a p value below 10−4 indicates statistical significance. N/A means not applicable; — indicates p value
could not be computed in reasonable time with the current implementation of NET-SYNTHESIS because of its extensive disk access for networks
that are too large or dense. Note that the p values depend not only on the average redundancies of the random networks but also on the higher
order moments.

(a)
Redundancy (b)

Average redundancy Monotonicity
Network new p value of random networks M

Biological networks

(1) E. coli transcriptional 0.062 1.43 × 10−29 0.188 0.796
(2) Mammalian signaling 0.434 4.4 × 10−52 0.576 0.593
(3) E. coli transcriptional 0.068 2.61 × 10−9 0.099 0.862
(4) T-LGL signaling 0.438 1.15 × 10−11 0.350 0.867
(5) S. cerevisiae transcriptional 0.060 9.34 × 10−43 0.228 0.926
(6) C. elegans metabolic 0.669 2.2 × 10−147 0.790 0.444
(7) Oriented S. cerevisiae protein interactions 0.481 3.68 × 10−111 0.593 N/A

Social networks

(8) Jazz musicians network 0.897 1.06 × 10−107 0.929 N/A
(9) E-mail network at University Rovira i Virgili 0.840 – – N/A
(10) Secure information interchange user network 0.486 – – N/A
(11) Enron e-mail network 0.352 2.14 × 10−68 0.377 N/A

summation of original redundancy values). As can be seen, the
ranks of both original and normalized values are almost the
same [in the order (5), (1), (3), (11), (2), (4), (7), (6), (8) and (5),
(1), (3), (11), (4), (2), (7), (6), (8), respectively] and the relative
magnitudes of the values are similar whether one uses the
normalized or original values, and thus all of our conclusions
are valid in either case. Thus, in the rest of the paper, we use
the original redundancy values with the understanding that all
of our conclusions are valid for the normalized values as well.

In spite of our somewhat limited set of experiments, our
results do point to some interesting hypotheses, which we
summarize below.

A. new can be computed quickly for large networks and is
statistically significant

As our simulations show, the new redundancy measure can
be computed quickly for networks up to thousands of nodes; for
example, typically NET-SYNTHESIS takes from a few seconds up
to a minute for networks having up to 1000 nodes or edges. This
is a desirable property of any redundancy measure so that it can
be used by future researchers as biological and social networks

grow in number and size. Moreover, the extremely low p values
suggest statistical significance of the new measure.

B. Redundancy variations in biological networks

We focus our attention to the variations of the redundancy
values for the five transcriptional/signaling biological net-
works in our data set and make the following observations.

a. Transcriptional versus signaling networks. Networks
(1), (3), and (6) are transcriptional networks with all having
similar low redundancies (0.062, 0.068, and 0.06). On the
other hand, network (2) is a signaling network and network
(4) is also predominantly signaling, though it includes four
transcriptional edges; these two mammalian signal transduc-
tion networks have similar midrange redundancies, namely
0.434 and 0.438, respectively. We hypothesize that in general
transcriptional networks are less redundant than signaling
networks. A straightforward supporting evidence for this is
the higher average degree of signaling networks as compared
to the transcriptional ones. Transcriptional networks have
indeed been reported to have a feed-forward structure with few
feedback loops and relatively low cross-talk [55], whereas [42]

TABLE III. Normalization keeps relative magnitudes and ranks of values similar to that in the original.

Networks

(1) (2) (3) (4) (5) (6) (7) (8) (11)

Original redundancy new 0.062 0.434 0.068 0.438 0.06 0.669 0.481 0.897 0.352

Normalized redundancy n̂ew 0.048 0.364 0.070 0.319 0.043 0.708 0.497 1.112 0.295
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reports a large strongly connected component for their studied
signaling networks (which makes it possible to reach almost
any node from any input node).

b. Role of currency metabolites in redundancy of metabolite
networks. Our data source for the C. elegans metabolic
network includes two types of nodes, the metabolites and
reaction nodes, and the edges are directed either from those
metabolites that are the reactants of a reaction to the reaction
node, or from the reaction node to the products of the reaction.
In this representation, redundant edges appear if both (one of)
the reactant(s) and (one of) the product(s) of a reaction appear
as reactants of a different reaction, or conversely, both (one
of) the reactant(s) and (one of) the product(s) of a reaction
appear as products of a different reaction. Because a reaction
cannot go forward if one of its reactants is not present, the
redundant edges are not biologically redundant and cannot
be eliminated. Our result of a surprisingly high redundancy
value for the metabolic network nevertheless indicates a high
abundance of a pattern, which warrants further investigation.

One possibility we considered is that one of the reactions
is essentially a dimerization of a compound and its slightly
modified variant. However, we found no strong support for this
case. Another possibility is that metabolites that participate
in a large number of reactions will have a higher chance to
be the reactant or product of such “redundant” edges. There
is a biological basis for this possibility in the existence of
currency metabolites. Currency metabolites (sometimes also
referred to as carrier or current metabolites) are plentiful
in normally functioning cells and occur in widely different
exchange processes. For example, ATP can be seen as the
energy currency of the cell. Because of their wide participation
in diverse reactions, currency metabolites tend to be the highest
degree nodes of metabolic networks. There is some discussion
in the literature on how large the group of currency metabolites
is, but the consensus list includes H20, ATP, ADP, NAD and
its variants, NH4+, and PO43− (phosphate) [56,57].

Our data source for the C. elegans metabolic network
indicates the identity of the 10 highest in-degree nodes (as
a group) and the 10 highest out-degree nodes (as a group). Out
of the 13 distinct nodes in the aggregate of these two groups, 11
belong in the consensus list of currency metabolites, leaving
out co-enzyme A and L glutamate. We found that when
we rank the nodes of the network by the number of redundant
edges (as found by NET-SYNTHESIS) incident upon them and
consider the top 17 nodes in this rank order, they include all
the 13 highest degree nodes in the original networks. Thus we
can conclude that the topological redundancy of the C. elegans
metabolic network is largely due to its inclusion of currency
metabolites.

C. Redundancy of social versus biological networks

The results in Table II seem to suggest that social networks
are more redundant than biological networks. In fact, the
two most redundant networks in the table are the two social
networks (8) and (9) which have redundancies about twice that
of any biological networks considered, and the remaining two
social networks have redundancies comparable to the highest
redundancy of the biological networks. We hypothesize that

=⇒=⇒=⇒

FIG. 9. Adding the edge colored light gray may increase the
redundancy of the social network drastically (removed edges shown
as dotted).

in general this is the case. This hypothesis is perhaps not very
surprising in the context of past research as explained below.

The research work of Navlakha and Kingsford [58] suggests
that biological networks may grow and evolve quite differently
than social networks. In particular, they show that models for
biological networks may perform poorly for social networks
and vice versa. It is conceivable that different models may give
rise to different magnitudes of redundancy.

Some previous research works (see e.g., [59–61]) ascertain
that social networks tend to exhibit assortativity (i.e., highly
connected nodes tend to be connected with other high
degree nodes), whereas biological networks typically show
dissortativity (i.e., high degree nodes tend to attach to low
degree nodes). It is not difficult to see that such properties
may lead to the difference in redundancies for the two types
of networks; For example, in Fig. 9 an edge between two
nodes of high degree results in removal of a large number of
edges. To check the general hypothesis of assortativity for our
specific networks, we computed the assortativity coefficient
for a network as defined in [60]. This coefficient is calculated
in the following manner. First, we ignore the direction of
edges obtaining an undirected graph G = (V,E) from the
given directed graph. Then, the assortativity coefficient r is
computed by the following formula:

r =
1

|E|
∑

{u,v}∈E dudv −
[

1
2 |E|

∑
{u,v}∈E(du + dv)

]2

1
2 |E|

∑
{u,v}∈E[(du)2 + (dv)2] − [

1
2 |E|

∑
{u,v}∈E

(
du + dv

)]2 ,

where du denotes the degree of a node u. It is known that
−1 � r � 1, and more negative (respectively, more positive)
values of r indicating more disassortativity (respectively, more
assortativity) of the given network. As Table IV shows, all
biological networks are disassortative, whereas all but one
social network are assortative.

Finally, social networks that are related to human behavior
are often expected to exhibit a high degree of transitivity
[62–64]. For example, the classical work of Leinhardt [64]
asserts that the structure of interpersonal relations in children’s
groups will progress in consistent fashion from less to more
transitive organization as the children become older. Transi-
tivity in this type of behavioral context translates to coherent
type 1 feed-forward loops (i.e., feed-forward loops of the
form A → B, B → C, and A → C), each of which contains
a redundant edge, and thus higher transitivity immediately
implies higher redundancy in our context. To check how
far this general hypothesis holds for our specific networks,
we calculated the transitivity coefficient for our networks.
The transitivity coefficient τ of a directed network [65] is
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TABLE IV. Values of the assortativity coefficient r and the transitivity coefficient τ . Negative values of r indicate disassortativity whereas
positive values of r indicate assortativity.

Network index

Biological Social

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
r = −0.149 −0.106 −0.204 −0.089 −0.398 −0.060 −0.1377 +0.02 +0.07 +0.239 −0.44
τ = 0.037 0.010 0.007 0.043 0.005 0.047 0.017 0.255 0.058 – 0.013

given by μ3

μ2+μ3
where μ2 and μ3 are the number of ordered

triplets of vertices that have two and three edges among
them, respectively. We used an obvious algorithm to calculate
this value; τ could not be calculated within reasonable time
for the social network (10) in Table I because of its large
number of nodes and edges. As shown in Table IV, all
the biological networks have small transitivity coefficients,
and among the social networks, network (8) has a value
of τ that is significantly more than any of the biological
networks.

D. Redundancy, minimality, and orienting PPI networks

Protein interaction networks represent physical interactions
among proteins. While many protein interactions have an
orientation, the current maps of protein-protein interaction
(PPI) networks are often unoriented (undirected) in part due to
the limitations of the current experimental technologies such
as [66]. Thus, there is an obvious interest in trying to orient
these networks by, say, combining causal information at the
cellular level. Unfortunately, most versions of the orientation
problem is theoretically NP hard [67,68], and thus heuristics
for such orientations may either not lead to all pathways
of interest or lead to extra spurious pathways that are not
supported [50,68].

Our calculation of redundancy values and minimal net-
works provides a way to gain insight into a predicted
orientation of a PPI network and to determine whether the
predicted oriented network has a level of redundancy similar
to those in known biological networks. Obviously, the lower
the value of new is, the more compact is the construction
of the oriented network. However, one must also ensure that
the minimal network also contains the right kind of pathways,
(e.g., paths in the “gold standard”). To this effect, we describe
the results of this approach via the NET-SYNTHESIS software on
an oriented PPI network from [50].

We first briefly review the method by which the oriented
PPI network used by us was generated. The starting point for
the network consisted of all physical interactions among yeast
proteins from version 2.0.51 of BIOGRID [69]. Edge weights
were assigned based on the type and quantity of experimental
support for each interaction, and low-weight edges were
removed from the network. The network was oriented so as
to maximize the weighted number of length-bounded paths
between predetermined sources and targets, which were taken
from yeast MAPK signaling pathways. The final set of 2435
edges included all oriented edges that belonged to any path
with five or fewer edges between a source and target and edge

weights were dropped for subsequent analysis. The sources,
targets, PPI filtering, and orientation algorithm are described
more fully in [50].

Now we discuss the paths in the nonredundant network
(after reduction via NET-SYNTHESIS) that are present in the gold
standard. Several of the short source-target paths in this net-
work correspond to known yeast MAPK signaling pathways,
specifically the pheromone response and filamentous growth
pathways [70]. Figure 10 depicts the union of all linear paths
in the nonredundant network that have multiple consecutive
edges that match a gold standard path. The paths that matched
a gold standard path are highly similar, and the common gold
standard edges in these hits are Ste7→Fus3, Fus3→Dig1, and
Dig1→Ste12.

E. Correlation between redundancy and network dynamics

The Pearson correlation coefficient between M and new is
about −0.8 with a p value of 0.0066. Thus, monotonicity
is negatively correlated to redundancy (i.e., higher values
of redundancy are expected to lead to lower values of
monotonicity and vice versa).

As explained before, monotonicity is known to be nega-
tively correlated to negative feedback loops [11,71]. Negative
feedback loops also tend to increase the redundancy of signal
transduction networks; see Fig. 11 for an illustration. Indeed,
strongly connected components with at least one negative
feedback loop were called multiple parity components in [21]
and played a significant role in redundancy calculations.

Furthermore, recent results of Kwon and Cho [72] on the
correlation between topological properties and robustness of
networks are also consistent with the negative correlation that
we obtained. The authors of that paper considered a weighted
network model in which the state of each node is a real
number in the range {−1,1} and the positive and negative
weights of the connections represent the strengths of the
excitory or inhibitory connections, respectively. A negative
(respectively, positive) feedback loop is then defined to be
a simple cycle with an odd (respectively, even) number of
negative weights in the cycle, and the degree of robustness
of a network is then defined by selecting a group of nodes
randomly, perturbing the values of their states, and measuring
the extent of change of states of various nodes in the network by
computing the ratio of state values converging to a same final
state to which the original initial state converged (biologically,
this concept of robustness means the extent of maintaining
the original stable state against given perturbations). Based
on extensive simulation results, the authors concluded that

036117-12



COMPUTATIONALLY EFFICIENT MEASURE OF . . . PHYSICAL REVIEW E 84, 036117 (2011)

Sin3 MF(alpha)2

Fun19 Ste2

Sho1

Msb2 Mid2

Hek2

Tec1 Ste7

Fus3

Dig1

Ste12

FIG. 10. (Color online) Paths in the nonredundant oriented PPI
network that match known yeast signaling pathways. Solid edges
are present in the gold standard and dashed edges represent novel
predictions.

networks with fewer negative feedback loops are likely to be
more robust in their sense. More robustness with respect to
perturbations suggests less influence of one node on another,
and consequently fewer alternate pathways of the same nature
from a node to another, indicating less redundancy values,
whereas fewer negative feedback loops correspond to a higher
degree of monotonicity. Thus, their observation is, at least on
an intuitive level, consistent with our finding.

F. Significance of a minimal network

It is certainly an interesting question to ask if a topolog-
ically minimal network has similar dynamical or functional
properties as the original network. Note that the question does
not make sense for the four (static) social networks [networks
(8), (9), (10), and (11) in Table I], since the individual nodes
in these networks usually do not have well-defined functions
or dynamics, and one of their most interesting properties,
namely connectivity, is preserved in the minimal network. The
redundancy issue of the metabolic network [network (6) of

.........

..................
v1

v2

v3

v4

v5

vn

FIG. 11. The network shown has no negative feedback loops and
no redundant edges. However, if we replace the gray activation edge
v3 → v2 to an inhibition edge v3 � v2, a negative feedback loop
is created and this makes all the remaining inhibitory edges in the
network redundant (e.g., the edge v1 � v4 is redundant because of the
path v1 → v2 → v3 � v2 → v4).

Table I] is explained separately in detail in Sec. VII B. There
is no associated dynamics with the oriented PPI network
[network (7) of Table I]. Thus, this question only applies
for the first five biological networks [networks (1), (2), (3),
(4), and (5)] in Table I. A dynamic description/model of
these networks would characterize dynamic behaviors, such as
stability and response to external inputs. When the network has
designated outputs or read-outs, such as gene expression rates
in transcriptional networks, it may be of interest to characterize
the behavior of these outputs as a function of the inputs.

A topologically minimal network has the same input-output
connectivity (reachability) as the original and thus the excitory
or inhibitory influence between each input-output pair is
preserved. It is minimal in the “information theoretic” sense in
that any network with the same output behavior must be of at
least this size. A correlation of the redundancy measure with
the monotonicity of dynamics is explored in Sec. VII E. Will
a topologically minimal network also have the same output
behavior as the original one for the same input? In general,
there is no such guarantee since the dynamics depend on
what type of functions (“gate”) are used to combine incoming
connections to nodes and the “time delay” in the signal
propagation, both of which are omitted in the graph-theoretic
representation of regulatory and signal-transduction networks
such as (1)–(5) in Table I. For example, consider the two
networks shown in Fig. 12 in which network (b) has a
redundant connection A → C. The functions of these two
circuits could be different, however, depending on the “gate”
function used to combine the inputs B → C and A → C in
network (b). Due to the shared A → B → C connectivity in
the two networks, in both cases node C will be activated
if A is continuously supplied. However, while network (a)
merely implements a delay between C and A, the coherent
type-1 feed-forward loop indicated in (b) is what [73] calls
a “sign-sensitive delay element” that filters spikes in signals
(low-pass filter) provided that an “AND” gate combines the
inputs to node C; one example of such a circuit is that of the
Arabinose system in E. coli [74]. In summary, deleting edges
may result in functionalities that are not exactly the same.
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A B C A B C

(a) (b)

FIG. 12. Equivalence of dynamics depends on node functions.

However, despite the fact that a minimal network may
not preserve all dynamic properties of the original one,
a significant application of finding minimal networks lies
precisely in allowing one to identify redundant connections
(edges). In this manner, one may focus on investigating
the functionalities of these redundant edges (e.g., identifying
the manner in which their effect is cumulated with those of
the other regulators of their target nodes could be a key step
toward understanding the behavior of the entire network).

Thus, the tools developed here are of general interest as they
not only provide a quantified measure of overall redundancy of
the network, but also allow their identification of redundancies
and hence help direct future research toward the understanding
of the functional significance of the added links.

VIII. AVAILABILITY OF DATA AND SOFTWARE

Most of the data for the original network as well as those
for the random networks used in the calculation of p values for

new are available from our Web site [75]. The NET-SYNTHESIS

software for calculating redundancies is available from our
Web site [16]. MATLAB codes for computing monotonicity
values are available from our Web site [38].

IX. CONCLUSIONS

In this paper we have defined a new combinatorial measure
of redundancy of biological and social networks, and have

illustrated its efficient computation on several small and large
networks. We also noted some interesting hypotheses that one
could draw from these results such as:

(1) Transcriptional networks are likely to be less redundant
than signaling networks.

(2) The topological redundancy of the C. elegans metabolic
network is largely due to its inclusion of currency metabolites.

(3) Social networks are prone to be more redundant than
biological networks.

(4) Our calculation of redundancy values and minimal
networks provides a way to gain insight into a predicted
orientation of a protein-protein-interaction (PPI ) network and
determine whether the predicted oriented network has a level
of redundancy similar to those in known biological networks.

(5) Our topology-based redundancy measure for biologi-
cal signaling networks is statistically correlated with some
measure of the dynamics of the network, namely higher
redundancy is correlated to lower monotonicity and vice versa.

We believe that our fast and accurate computation of
redundancy measure will help future researchers to further
fine tune the measure and test it on a large-scale basis. An
interesting question that has been partially addressed in the past
literature but deserves further investigation is to determine the
reasons of redundancy of various kinds of biological networks.
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