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Continuous control-Lyapunov functions for asymptotically controllable time-varying systems

FRANCESCA ALBERTINI{ and E. D. SONTAG{

This paper shows that, for time varying systems, global asymptotic controllability to a given closed subset of the state
space is equivalent to the existence of a continuous control-Lyapunov function with respect to the set.

1. Introduction

We will study continuous-time systems with
dynamics given by di� erential equations of the type

_x…t† ˆ f …t; x…t† ; u…t†† …1†

where x…t† 2 R
n represents the state variable and

u…t† 2 U is the control variable. (Technical assumptions
on f and U are described below.)

We are interested in questions of stabilization rela-
tive to a subset A of the state space R

n. For example, the
set A may be just an equilibrium point, or it may repre-
sent a target subset of a di� erent kind. This target set
might be a desired periodic orbit, or, in the context of
designing observers, equation (1) might represent a
composite state x ˆ …x1; x2† , consisting of the state x1

of the original system together with the state x2 of an
observer; in that case, A would be the set of states x for
which identi® cation has been achieved, that is, the set
consisting of those x for which x1 ˆ x2. (Note that in
this last example, the set A is not bounded.) There are
several motivations for considering time-varying
dynamics. For instance, in this manner one may encom-
pass problems of tracking, in which the di� erence
between some variables and a signal to be followed
evolves according to a di� erential equation which
depends explicitly in t. The purpose of this paper is to
generalize the results of Sontag (1983), which dealt only
with A ˆ f0g and time-invariant systems, to the general
model (1).

A classical technique for stabilization is to look for
Lyapunov-type functions, which play the role of
abstract ènergy’ or c̀ost’ functions that can be made
to decrease in directions corresponding to possible con-
trols, as long as the state is away from A . For smooth
such functions V , and taking for simplicity the case
when V and f are time-invariant, and A ˆ f0g , this
amounts to the requirement that, for each non-zero

state x, there must be some control value u ˆ ux so
that r V …x† : f …x; u† < 0. One uses the generic term
c̀ontrol-Lyapunov function’ (clf ) for such a function.
The clf approach, assuming a V has been found, allows
the search for stabilizing inputs by iteratively solving a
static non-linear programming problem: when at state x,
® nd u such that this inequality holds. Recent expositions
of results about (smooth) clf ’s can be found in Isidori
(1989), KrsticÂ et al. (1995), KrsticÂ and Deng (1998) and
Sontag (1998). An obvious question is whether the exist-
ence of a continuously di� erentiable clf is equivalent to
the possibility of driving every state asymptotically to
the set A (zero in this particular case). The answer is
negative; for instance, if controls are in R

m , and
f …x; u† ˆ f0 ‡

Pm
iˆ1 ui fi…x† is a� ne in u, the existence

of a (smooth) V would imply that there is some feed-
back law u ˆ k…x† so that the origin is a globally asymp-
totically stable state for the closed-loop system
_x ˆ f …x; k…x†† and k is continuous on R n

n f0g . This
was proved by Artstein (1983); see also Sontag (1998)
for an exposition. But continuous feedback may fail to
exist, even for very simple controllable systems (see, e. g.
Sontag 1998, } 5.9). Thus smooth clf ’s do not always
exist, even if the system is asymptotically controllable.

However, it was shown in Sontag (1983) that con-
tinuous clf ’s do exist. Of course, one must modify the
statement of the clf condition, since the gradient is not
well-de® ned if V is not di� erentiable. This modi® cation
can be done in various ways. Here, we proceed as in
Sontag (1983), asking basically that for each state
x 6̂ 0 (or rather, for each state not in A , in the general
case) there exist a trajectory which is de® ned on a small
interval of time and which decreases the value of V . (An
additional technical condition, ensuring that controls do
not `blow up’ as one approaches the set A , is also
imposed.)

The proofs are in general based on the ideas in
Sontag (1983), but when dealing with time-varying
systems, and especially with possibly non-compact sets
A , many technical complications arise. (Of course, one
must allow now for time-dependent V , and the de® ni-
tion of asymptotic controllability must be in some sense
uniform on time, in order to obtain a necessary and
su� cient result.) Although not at all surprising, the
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results in this paper are relevant in so far as the elucida-
tion of the precise technical assumptions and construc-
tions needed in the generalization are concerned. We
also employ several ideas from Lin et al. (1996), which
dealt with set stability but only for systems with no
controls (which allows constructing smooth V ’s).

The existence of continuous clf ’s is a basic ingredient
in the construction of stabilizing feedbacks with respect
to the origin for time-invariant systems, as done in Clark
et al. (1997) and in Sontag (1999). We expect to obtain
generalizations of these stabilization results, to time-
varying systems and general attractor sets, in future
work, using the result from this paper in the same role
that Sontag (1983) is used in Clarke et al. (1997).

2. Basic de ® nitions and main results

We take U to be a locally compact metric space, with
a distinguished 0̀’ element. We denote
Ur ˆ fu j d…u; 0† rg . The map f is supposed to be
measurable in t, and locally Lipschitz in …x; u† uniformly
for t in a bounded interval. The set of control maps
u 2 U are measurable essentially bounded functions
u : ‰ t0; 1 † ! U, with t0 2 R . We denote by uk k the
essential supremum of the map u. Notice that with
these assumptions we guarantee the local existence and
uniqueness of solutions of (1). For a given
…t0; x0† 2 R R

n, and a control map u : ‰ t0; 1 † ! U,
we denote by x…t; t0; x0; u† the maximal solution of (1)
with initial condition x…t0; t0; x0; u† ˆ x0. In general this
solution will be de® ned on an interval of the form ‰ t0; t† .

A function ® : R 0 ! R 0 is called a K -function if
it is continuous, strictly increasing, and ® …0† ˆ 0; a
K -map ® is called a K 1 -function if lims! 1 ® …s† ˆ 1 .
A function ­ : R 0 R 0 ! R 0 is said to be a KL-
function if for each ® xed t 0 the map ­ … ; t† is a K-
function, and if for each ® xed s the map ­ …s; † is
decreasing to zero as t ! 1 . Given a non-empty closed
set A R

n, we denote by xj j A the distance from x to A .

De® nition 1: Given a non-empty closed set A R n,
we say that A is weakly invariant if there exists a posi-
tive constant · such that for all x0 2 A and all t0 2 R ,
there exists a control map u0 with u0k k · such that
x…t; t0; x0; u0† is de® ned and lies in A for all t t0.

De® nition 2: Let A R n be a closed, weakly invar-
iant, and non-empty set. We say that (1) is globally
asymptotically controllable (gac) to A if there exist a
KL-function ­ … ; † , and a continuous, positive and in-
creasing function ® … † such that: for each
…t0; x0† 2 R R n there exists a control function
u : ‰ t0; 1 † ! U, with uk k ® … x0j j A † , such that the cor-
responding trajectory x…t† ˆ x…t; t0; x0; u† exists for all
t t0 and satis® es

x…t†j j A ­ … x0j j A ; t ¡ t0† for all t t0 …2†

In the previous de® nition, the KL-function ­ … ; †
captures both the stability and the attraction properties
of the invariant set A . An equivalent way to de® ne gac
is given by the following proposition, whose proof is
postponed to } 4.

Proposition 1: L et A R n be a closed, weakly invar-
iant, and non-empty set. The system …1† is gac to A if
and only if there exists a continuous, positive and in-
creasing function ®1 such that

(1) there exists a K1 -map ®2 such that for all " > 0, if
x0j j A ®2…"† and t0 2 R , then there exists

u : ‰t0; ‡ 1 † ! U, with uk k ®1… x0j j A † such that
x…t; t0; x0; u†j j A " for all t t0;

(2) for any r; " there exists a non-negative T 2 R such
that given …t0; x0† 2 R R

n, with x0j j A r, then
there exists u : ‰ t0; 1 † ! U as in 1 such that
x…t; t0; x0; u†j j A " for all t T ‡ t0.

We now recall some standard notions regarding
relaxed controls. The set of relaxed controls W is the
set of measurable functions w : ‰t0; 1 † ! P…U† where
P…U† is the set of probability measures on U equipped
with the weak topology. We let W r denote the set of
those relaxed controls w such that w…t† has support on
Ur for almost all t. An ordinary control u 2 U can be
seen as a relaxed one if u…t† is identi® ed with the Dirac
measure concentrated in u…t† . One de® nes a topology on
W characterized by weak convergence: wk ! w if and
only if

…

T

…

U
g…t; u† dwk…u† dt !

…

T

…

U
g…t; u† dw…u† dt

for all functions g : T U ! R which are continuous in
u, measurable in t, and such that maxf jg…t; u† j ; u 2 Ug is
integrable on T , where T is a bounded interval. With
this topology Ur is dense in W r, and W r is sequentially
compact. We let

wk k ˆ inf f r j w…t† 2 P…Ur† for a.e. tg

(notice that for ordinary controls this is the essential
supremum). Given w 2 P…Ur† , one extends f to relaxed
controls by de® ning

f …t; x; w† :ˆ
…

Ur

f …t; x; s† dw…s†

As for ordinary controls, given …t0; x0† 2 R R
n, and a

relaxed control w : ‰t0; 1 † ! P…U† , we denote by
x…t; t0; x0; w† the solution of (1) with initial condition
x…t0; t0; x0; w† ˆ x0. For more details on relaxed controls
see Arstein (1978).
De® nition 3: A continuous function V : R R n !
R 0 is a control-L yapunov function for the model

Continuous control-L yapunov functions 1631
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(1) with respect to the closed, weakly invariant, and
non-empty set A if the following two properties hold:

(1) There exist two K1 -maps ¬1, ¬2 such that, for all
…t; x† 2 R R

n

¬1… xj j A † V …t; x† ¬2… xj j A †

(2) There exist a continuous, positive and increasing
map ¿ , and a K-function ¬3, such that for each
…t0; x0† 2 R R n, there exist t1 > t0, and
w : ‰t0; t1† ! P…U† with wk k ¿… x0j j A † and

lim inf
t! t‡

0

V …t; x…t†† ¡ V …t0; x0†

t ¡ t0
¡ ¬3… x0j j A † …3†

where x…t† ˆ x…t; t0; x0; w† .

An alternative manner to de® ne control-Lyapunov
functions is via an integral inequality, as follows.

De® nition 4: A continuous function V : R R n !
R 0 is a control-L yapunov integral function for the
model (1) with respect to the closed, weakly invariant,
and non-empty set A if property 1 of De® nition 3
holds, and there exist a continuous, positive and in-
creasing map ¿ , and a K -function ¬3, such that for
each …t0; x0† 2 R R n there exists a relaxed control
w : ‰t0; ‡ 1 † ! P…U† with wk k ¿… x0j j A † such that
x…t† ˆ x…t; t0; x0; w† is de® ned for all t t0 and it
satis® es, for all t t0

V …t; x…t†† ¡ V …t0; x0† ¡
… t

t0

¬3… j x…s† j A † ds …4†

De® nition 5: Given a closed and non-empty set A , we
say that the function f …t; x; u† satis® es the boundedness
assumption with respect to A if it holds that, for each
r1; r2 > 0 there exists a positive constant Mr1;r2 2 R
such that:

sup
xj j A r1

d…u;0† r2

f …t; x; u†j j Mr1;r2 a.e. t 2 R …5†

Notice that, for example, if f is independent of t and A
is compact, then …5† holds.

Theorem 1: L et S be a given model of type …1† , and
A R n be a closed, weakly invariant, and non-empty
set. Assume that the model satis® es the boundedness
assumption with respect to A …De® nition 5† . Then the
following are equivalent:

(1) S is gac to A .
(2) There exists a control-L yapunov function V for

…1† with respect to A …De® nition 3† .
(3) There exists a control-L yapunov integral function

V for …1† with respect to A …De® nition 4† .

Remark 1: Assume that we give a new de® nition of
control-Lyapunov function which is equal to De® ni-
tion 3 except from the fact that we use in equation (3)
the l̀imsup’ instead of l̀iminf ’ . Then it follows from
Theorem 1 that this new de® nition is indeed equivalent
to the one given in De® nition 3. To see this it is su� -
cient to note that if V is a control-Lyapunov integral
function then obviously V is a control-Lyapunov
function which satis® es inequality (3) even if the l̀im-
sup’ is used.

The next section is devoted to the proof that (1) and
(3) are equivalent. It is obvious that (3) implies (2), while
the proof that (2) implies (3) is given in } 4.

3. Control-Lyapunov function characterization

3.1. Su� ciency part
In this section, we assume given a system S of type

(1), a closed, weakly invariant, and non-empty set
A R n, and a control-Lyapunov integral function V
(together with the maps ¬1, ¬2, ¿ , and ¬3). Our aim is
to prove that S is gac to A .

Fix any "0 > 0, and construct a decreasing sequence
f "pg p2 Z such that limp! ‡ 1 "p ˆ 0, limp! ¡ 1 "p ˆ ‡ 1 ,
and for all p 2 Z , 2¬

¡ 1
1 …¬2…"p‡ 1†† < "p. For each ® xed

p 2 Z , let tp > 0 be de® ned by

tp ˆ
¬2…"p¡ 1† ¡ ¬1…"p‡ 1†

¬3…"p‡ 1†

Lemma 1: Fix any p 2 Z . Assume given any …t0; x0† ,
with x0 62 A . If x0j j A < "p¡ 1, then there exists a relaxed
control w : ‰t0; ‡ 1 † ! P…U† with wk k ¿… x0j j A † such
that:

(1) x…t†j j A ¬
¡ 1
1 …¬2… x0j j A †† for all t 2 ‰t0; ‡ 1 † ;

(2) there exists t 2 ‰ t0; t0 ‡ tp Š, such that x…t†j j A <

"p‡ 1.

Proof. Our assumption implies in particular that for
any …t0; x0† there exists a relaxed control
w : ‰t0; ‡ 1 † ! P…U† with wk k ¿… x0j j A † such that

x…t†j j A ¬
¡ 1
1 ¬2… x0j j A † ¡

… t

t0

¬3… x…½ †j j A † d ½ …6†

For this particular control w the ® rst requirement of the
lemma clearly holds, since ¬3 is a positive function.
Assume, by the way of contradiction, that for all
t 2 ‰t0; t0 ‡ tp Š, x…t†j j A "p‡ 1. Then, since ¬3 is an
increasing function, we have ¬3… x…t†j j A † ¬3…"p‡ 1† .
This fact, together with equation (6), implies

x…t0 ‡ tp†
A ¬

¡ 1
1 …¬2… x0j j A † ¡ ¬3…"p‡ 1†tp†

< ¬
¡ 1
1 …¬2…"p¡ 1† ¡ ¬3…"p‡ 1†tp† ˆ "p‡ 1

which gives a contradiction. &

1632 F. Albertini and E. D. Sontag
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For each p 2 Z , let

T … p† ˆ
X

k p
tk

Notice that T … p† 2 R
0

[ f‡ 1 g .

Lemma 2: Given any …t0; x0† , with x0 62 A . If
x0j j A < "p¡ 1, then there exists an ordinary control

u : ‰ t0; ‡ 1 † ! U with uk k ¿… x0j j A † ‡ · such that

for all k p; and for all t 2 t0 ‡
Xk¡ 1

jˆp
tj ; t0 ‡

Xk

jˆp
tj

"

†:

x…t†j j A 2¬
¡ 1
1 ¬2…"k¡ 1†… † …7†

Moreover if T … p† < ‡ 1 , then for all t t0 ‡ T … p† , we
have x…t† 2 A .

Proof: Assume that we have already constructed a
control u…t† for t 2 ‰t0; t0 ‡

Pk¡ 1
jˆp tj Š, with uk k

¿… x0j j A † ‡ · and such that for all p h k ¡ 1 we
have

(a) x…t†j j A 2¬
¡ 1
1 ¬2…"h¡ 1†… † ;

for all t 2 ‰t0 ‡
Ph¡ 1

jˆp tj ; t0 ‡
Ph

jˆp tj Š,

(b) jx…t0 ‡
Ph

jˆp tj† j A < "h:

We want to extend this control to the interval
‰t0 ‡

Pk¡ 1
jˆp tj ; t0 ‡

Pk
jˆp tj Š. Let ~t ˆ t0 ‡

Pk¡ 1
jˆp tj , then

by property (b) we have that x…~t†j j A < "k¡ 1. By
applying Lemma 1 with initial condition …~t; x…~t†† , we
get a relaxed control ~w : ‰~t; ‡ 1 † ! P…U† such that:

~wk k ¿… x…~t†j j A † ¿… x0j j A † , and, for all t ~t

x…t†j j A 2¬
¡ 1
1 …¬2… x…~t†j j A †† 2¬

¡ 1
1 ¬2…"k¡ 1†… †

Moreover there exists t 2 ‰~t; ~t ‡ tk Š such that
x…t†j j A < "k‡ 1. Now, we apply again Lemma 1 with
initial condition …t; x…t†† . Since x…t†j j A < "k‡ 1, there
exists another relaxed control ŵ : ‰ t; ‡ 1 † ! P…U† such
that ŵk k ¿… x…t†j j A † ¿… x0j j A † , and, for all t t

x…t†j j A 2¬
¡ 1
1 …¬2… x…t†j j A †† 2¬

¡ 1
1 ¬2…"k‡ 1†… † < "k

where the last inequality holds by construction. So,
in particular, concatenating the two relaxed controls ~w

and ŵ , we get a relaxed control w : ‰~t; ‡ 1 † ! P…U†
such that

x…~t†j j A 2¬
¡ 1
1 ¬2…"k¡ 1†… † and x…~t ‡ tk†j j A < "k

Now, since 8 r > 0 Ur is dense in W r, it is clear that we
can extend the control u to the interval
‰t0 ‡

Pk¡ 1
jˆp tj ; t0 ‡

Pk
jˆp tj Š preserving the required

properties.
If T … p† ˆ ‡ 1 we have ® nished our construction.

Assume that T … p† < ‡ 1 . Then, since uk k
¿… x0j j A † ‡ · and x…s†j j A 2¬

¡ 1
1 ¬2…"p¡ 1†

¡
, for all

s 2 ‰ t0; t0 ‡ T … p†† , from the boundedness assumption
we have that there exists L > 0 such that

j f …s; x…s† ; u…s†† j L ; 8 s 2 ‰ t0; t0 ‡ T … p††

which implies, for all t 2 ‰ t0; t0 ‡ T … p††

jx…t† j j x0j ‡ L T … p†

So we can extend our trajectory to the endpoint
t̂ ˆ t0 ‡ T … p† . Moreover, we have

lim
t! t0‡ T … p†

x… t†j j A ˆ 0

which implies that x…t0 ‡ T … p†† 2 A . Thus, for
t > t0 ‡ T … p† we may extend the control u by using
the control u0 given by the weakly invariant assumption
which is in norm ·. &

Lemma 3: There exists a KL-function ­ … ; † such that,
for each p 2 Z , if "p s < "p¡ 1, then

(1) ­ …s; 0† 2¬
¡ 1
1 …¬2…"p¡ 1†† ;

(2) if t 2 ‰
Pk¡ 1

jˆp tj ;
Pk

jˆp tj † , then ­ …s; t†
2¬

¡ 1
1 ¬2…"k¡ 1†… † .

Proof: Let lp ˆ 2¬¡ 1
1 …¬2…"p† , and, for k i, let

si;k ˆ
Pk

jˆi tj . First, for i 2 Z , we let:

~­ …"i ; t† ˆ

li¡ 1 t 2 ‰0; ti†

lk¡ 1 t 2 ‰si;k ; si;k‡ 1†

0 t T … i†

8
><

>:

Then clearly limt! ‡ 1
~­ …"i; t† ˆ 0, and ~­ …"i ; t† is

decreasing as a function of t. Moreover it holds that,
if "i < "j then

~­ …"i; t† ~­ …"j ; t† …8†

To prove (8) we argue as follows. If t T … i† then
the inequality is obvious. If t 2 ‰0; ti† then t < tj ‡

‡ ti thus

~­ …"j ; t† ~­ …"j ; sj;i† ˆ li¡ 1 ˆ ~­ …" i; t†

Otherwise, there exists k i such that t 2 ‰si;k ; si;k‡ 1† . In
particular t < sj;k‡ 1, thus, again we have

~­ …"j ; t† ~­ …"j ; sj;k‡ 1† ˆ lk¡ 1 ˆ ~­ …"i ; t†

So (8) is proved. Now we let

~­ …s; t†

ˆ
0 if s= 0

~­ …" i; t†
s ¡ "i¡ 1

"i ¡ "i¡ 1
‡ ~­ …"i¡ 1; t†

s ¡ "i

"i¡ 1 ¡ "i
"i s < "i¡ 1

(

Clearly the function ~­ …s; t† satis® es both required
properties (1) and (2). Moreover, it satis® es all the
requirements of being a KL-function, except possibly
for the fact that it is only non-decreasing in the s
variable and it can be zero. So, to have the desired
KL-function, we de® ne

Continuous control-L yapunov functions 1633

D
ow

nl
oa

de
d 

by
 [

R
ut

ge
rs

 U
ni

ve
rs

ity
] 

at
 0

9:
36

 0
7 

O
ct

ob
er

 2
01

4 



­ …s; t† ˆ ~­ …s; t† ‡ ­̂ …s; t†

where ­̂ …s; t† is any KL-function. &

Proof of Su� ciency: Let S be a model of type (1),
and V be a control-Lyapunov integral function for S
with respect to the closed, weakly invariant, and non-
empty set A R n. Let ­ …s; t† be the KL-function given
by Lemma 3, and let ® … p† ˆ ¿… p† ‡ ·: Then, combin-
ing together the results given by Lemmas 2 and 3, we
conclude that S is gac to A .

3.2. Necessity part
In this section, we assume given a model S of type

(1) and a closed, weakly invariant, and non-empty set
A R

n. Moreover we assume S to be gac to A . Our
aim is to construct a control-Lyapunov integral function
for S with respect to the set A . The idea of the construc-
tion is similar to the one given in Sontag (1983). The
next proposition establishes a technical property of KL-
functions.

Proposition 2: L et ­ … ; † be KL-function, and choose a
strictly increasing sequence of positive real numbers,
f "ig i 0, such that limi! ‡ 1 "i ˆ ‡ 1 . Then there exists a
continuous, strictly decreasing function g : R 0 ! R 0,
and a strictly increasing sequence fT ig i 0, with T0 ˆ 0,
such that:

(i) limt! ‡ 1 g…t† ˆ 0;

(ii) limi! ‡ 1 T i ˆ ‡ 1 ;

(iii) if p < "i then ­ … p; t† g… t† for all t T i.

Proof: Let T0 ˆ 0 and, for i 1, de® ne, inductively
on i

¬ i ˆ ­ …"i¡ 1; T i¡ 1 ‡ 1=i† ;

and T i be such that ­ …"i ; T i† ¬ i=2 ˆ gi

Note that such a T i exists since ­ …s; † is decreasing to
zero as t ! 1 . Since ­ …"i ; T i¡ 1 ‡ 1=i† > ¬ i, it holds that

T i > T i¡ 1 ‡ 1=i ) T i >
Xi

jˆ1
1=j; for i 1

Thus the sequence fT ig i 0 is strictly increasing and
satis® es (ii). Moreover, since

¬ i‡ 1 ˆ ­ "i ; T i ‡
1

i ‡ 1
< ­ …"i ; T i†

¬ i

2

we have

¬ i‡ 1
¬1

2i 8 i 1; ) lim
i! ‡ 1

¬ i ˆ 0 …9†

Let g¡ 1 and g0 be two constants such that
g¡ 1 > g0 > 2g1, and, for i 0, let Pi be the point
…T i; gi¡ 1† . Let lPiPi‡ 1

… † be the linear function such that

lPiPi‡ 1
…T i† ˆ gi¡ 1, and lPiPi‡ 1

…T i‡ 1† ˆ gi . It is easy to see
that, by choosing g¡ 1 su� ciently large, we may assume

­ …x; t† < lP0P1
…t† 8 t 2 ‰T0; T1 Š; 8 x < "0 …10†

Now let

g…t† ˆ lPiPi‡ 1
…t† for t 2 ‰T i; T i‡ 1 Š

Then clearly the map g… † is continuous and strictly
decreasing. Moreover, by equation (9), we have
limt! ‡ 1 g…t† ˆ 0 (thus (i) holds). Now we establish
(iii). Let p 2 R , and assume p < "i. If i ˆ 0 and
t 2 ‰T0; T1Š, then property (iii) holds by construction
(equation (10)). So we may assume t T1. Let t T i ,
then t 2 ‰T j ; T j‡ 1Š with j i 1. Then we have

g…t† gj ˆ ¬ j=2 ­ …"j ; T j †

On the other hand, if x < "i and t 2 ‰T j ; T j‡ 1 Š, we also
have

­ …x; t† < ­ …"i; t† ­ …"j ; t† ­ …" j ; T j† gj g…t†

so (iii) holds. &

Let ® … † and ­ … ; † be respectively the continuous,
positive and increasing, and KL maps given by
De® nition 2. Choose any "0 > 0, and let f "ig i 0 be any
strictly increasing sequence such that

lim
i! ‡ 1

"i ˆ ‡ 1 ; "i‡ 1 > min f ­ …"i; 0† ; ® …"i†g

and "i‡ 2 > 2" i‡ 1 ¡ "i

Now let fT ig i 0, and g… † be the sequence and the
function given by Proposition 2. Since the map g is
strictly decreasing, and g : R 0 ! …0; g…0† Š, we may let

h… p† ˆ
g¡ 1… p† if p 2 …0; g…0† Š

0 if p > g…0†

(

Notice that h : R >0 ! R 0 is decreasing, continuous,
and limp! 0‡ h… p† ˆ ‡ 1 . Now we de® ne

N… p† ˆ
0 if p ˆ 0

p exp f¡ h… p†g if p > 0
…11†

Note that:

(i) N is a continuous and strictly increasing map;

(ii) limp! ‡ 1 N… p† ˆ ‡ 1 ;

(iii) if p ¬ then N… p† ¬.

For each i 0, let Mi ˆ M…"i‡ 2; "i‡ 2† , where
M…"i‡ 2; "i‡ 2† are the constants given by the boundedness
assumption, i. e.

sup
jxj A " i‡ 2

d…u;0† " i‡ 2

j f …t; x; u† j Mi for a.e. t 2 R

Clearly Mi Mi‡ 1.

1634 F. Albertini and E. D. Sontag
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Now let M : R 0 ! R 0 and ¯ : R 0 ! R 0 be any
two continuous and increasing maps such that

M… p†
M0 if p < "0=2
Mi if "i¡ 1=2 p < "i=2

…12†

¯… p† ® … p† for all p 0 …13†

Moreover, for i 1, we require that, if "i‡ 1 < p " i‡ 2,
then

¯… p† > ¯…® …"i†† ‡ M… ­ …"i ; 0†† N… ­ …"i ; 0††T i ‡ ­ …"i ; 0†‰ Š

…14†

and, for i 0

M…"i‡ 1† >
2Mi

N…"i‡ 1†
1

"i‡ 2 ¡ "i‡ 1

fM… ­ …"i ; 0††‰N… ­ …"i; 0††T i

‡ ­ …"i ; 0† Š ‡ ¯…® …"i††g …15†

Note that, since min f ­ …"i ; 0† ; ® …"i†g < "i‡ 1, one shows
easily that two continuous and increasing functions
satisfying inequalities (12), (13), (14) and (15) exist.

Finally, we let

F… p† ˆ M… p†N… p† ˆ M… p†p exp f ¡ h… p†g …16†

Fix …t0; x0† 2 R R
n. For each relaxed control w ,

denote by x…t† ˆ x…t; t0; x0; w† and let

Q… t0; x0; w† ˆ
… ‡ 1

t0
F… x…t†j j A † dt

‡ max f ¯… wk k† ¡ ¯…® …"0†† ; 0g …17†

if x…t† exists for all t t0, let Q…t0; x0; w† ˆ ‡ 1
otherwise. Then we let

V …t0; x0† ˆ inf
w2 W

Q…t0; x0; w† …18†

We want to prove that the function V de® ned above is a
control-Lyapunov integral function for the model (1)
with respect to the set A .

Lemma 4: L et … t0; x0† 2 R R n, and i 0 be the ® rst
index such that x0j j A < "i. Then there exists an ordinary
control u, with uk k ® … x0j j A † , such that

Q…t0; x0; u† F… ­ … x0j j A ; 0††T i

‡ M… ­ … x0j j A ; 0†† ­ … x0j j A ; 0†

‡ maxf ¯…® … x0j j A †† ¡ ¯ …® …"0†† ; 0g …19†

and x…t†j j A < "i‡ 2 for all t t0.

Proof: Given …t0; x0† 2 R R n with x0j j A < "i , let u

be the control function given by the gac property.
Then uk k ® … x0j j A † , moreover the corresponding
trajectory x…t† is de® ned for all t t0 and satis® es

x… t†j j A ­ … x0j j A ; t ¡ t0† < ­ …"i ; 0† < "i‡ 2

Moreover, for t T i ‡ t0, we have:

x…t†j j A ­ … x0j j A ; t ¡ t0† < ­ …"i ; t ¡ t0† < g…t ¡ t0†

Thus, for all t T i ‡ t0, h… x…t†j j A † h…g…t ¡ t0†† ˆ
t ¡ t0. So we have

Q…t0; x0; u† ˆ
… t0‡ T i

t0

F… x…t†j j A † dt

‡
… ‡ 1

t0‡ T i

F… x…t†j j A † dt

‡ max f ¯… uk k † ¡ ¯…® …"0†† ; 0g

F… ­ … x0j j A ; 0††T i

‡ M… ­ … x0j j A ; 0†† ­ … x0j j A ; 0††

‡ max f ¯…® … x0j j A †† ¡ ¯…® …"0†† ; 0g

Thus the lemma is proved. &

Remark 2: Notice that, from the previous lemma, we
have in particular:

(a) if x0j j A < "0, then T0 ˆ 0 and the max is also
zero, so: V …t0; x0† M… ­ … x0j j A ; 0†† ­ … x0j j A ; 0† ;

(b) if "i¡ 1 x0j j A < "i , with i 1, then

V …t0; x0† ¯…® …"i†† ¡ ¯…® …"0††

‡ M… ­ …"i; 0†† N… ­ …"i ; 0††T i ‡ ­ …"i ; 0†‰ Š

Lemma 5: There exists a K1 -map ¬2… † such that, for
all …t0; x0† 2 R R n, it holds that

V …t0; x0† ¬2… x0j j A † …20†

Proof: For " i¡ 1 p < "i ("¡ 1 ˆ 0), let

~¬2… p† ˆ F… ­ …p; 0††T i ‡ M… ­ … p; 0†† ­ …p; 0††

‡ max f ¯…® … p†† ¡ ¯…® …"0†† ; 0g

Then ~¬2… † is increasing and ~¬2…0† ˆ 0. Now let ¬2… † be
any K 1 -function such that ~¬2… p† ¬2… p† . For each
…t0; x0† 2 R R

n, let u be the control map given by
Lemma 4. Then, from equation (19), it follows that

V …t0; x0† Q…t0; x0; u† ~¬2… x0j j A † ¬2… x0j j A † &

Lemma 6: For each …t0; x0† 2 R R n, let i 0 be the
® rst index such that x0j j A < "i, and let u0 be the control
map given by L emma 4. If w is any control such that

Q…t0; x0; w† Q…t0; x0; u0†

then wk k "i‡ 2, and the corresponding trajectory x…t† is
such that

x…t†j j A < "i‡ 2 …21†

Continuous control-L yapunov functions 1635
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Proof: First notice that if Q… t0; x0; w† < ‡ 1 , then, in
particular x…t† is de® ned for all t t0. Assume that

wk k > " i‡ 2. Then it holds that

Q…t0; x0; w† ¯… wk k† ¡ ¯…® …"0†† ¯…"i‡ 2† ¡ ¯…® …"0††

> F… ­ …"i; 0††T i ‡ M… ­ …"i ; 0†† ­ …"i ; 0††

‡ ¯…® …"i†† ¡ ¯…® …"0††

where, to get the last inequality, we have used (14).
This last inequality contradicts the assumption
Q…t0; x0; w† Q…t0; x0; u0† . Now, assume that wk k
"i‡ 2, but that the inequality (21) is not satis® ed. Then
there exists T1 < T2 such that

x…T1†j j A ˆ "i‡ 1 and x…t†j j A "i‡ 2 8 t 2 ‰t0; T2 Š

x…T2†j j A ˆ "i‡ 2 and x…t†j j A "i‡ 1 8 t 2 ‰T1; T2Š

It must hold that

T2 ¡ T1
"i‡ 2 ¡ "i

2Mi
…22†

otherwise

x…T2†j j A x…T1†j j A ‡ jx…T1† ¡ x…T2† j

< "i‡ 1 ‡
"i‡ 2 ¡ "i

2
< "i‡ 2

So, we have

Q…t0; x0; w†
… T2

T 1

F… x…t†j j A † dt

M…"i‡ 1†N…"i‡ 1†
"i‡ 2 ¡ "i‡ 1

2Mi

F… ­ …"i ; 0††T i ‡ M… ­ …" i; 0†† ­ …"i; 0†

‡ ¯…® …"i††

where the last inequality holds by equation (15). Thus,
the assumption that

Q…t0; x0; w† Q…t0; x0; u0†

is again contradicted. &

Remark 3: Fix any …t0; x0† 2 R R n and let i 0 be
the ® rst index such that x0j j A < "i . From the result
proved in the previous lemma, we get

V …t0; x0† ˆ inf
w2 W

Q…t0; x0; w†

ˆ inf
w2 W "i‡ 2 ;

x… t†j jA <" i‡ 2

Q…t0; x0; w† …23†

Lemma 7: There exists a K 1 -map ¬1… † such that, for
all …t0; x0† 2 R R n, it holds that

¬1… x0j j A † V …t0; x0† …24†

Proof: Fix any …t0; x0† 2 R R n, and let i 0 be the
® rst index such that x0j j A < "i . Let w be any control

function such that wk k "i‡ 2 and the corresponding
trajectory is de® ned for all t t0 and satis® es
x…t†j j A "i‡ 2. Let

¯x0
ˆ

x0j j A

2Mi

Fact: If t 2 ‰t0; t0 ‡ ¯x0 † , then x…t†j j A > x0j j A =2.

Proof of Fact: If the conclusion does not hold, then,
by continuity, there exists a t 2 ‰t0; t0 ‡ ¯x0 † , such that
x…t†j j A ˆ x0j j A =2. However, we have

j x… t† ¡ x0 j Mi… t ¡ t0† < Mi¯x0
ˆ x0j j A =2

which implies

x0j j A x…t†j j A ‡ jx…t† ¡ x0j <
x0j j A

2
‡

x0j j A

2
ˆ x0j j A

So the fact is established.
Now we have

Q…t0; x0; w†
… t0‡ ¯x0

t0

M… x…t†j j A †N… x…t†j j A † dt

M… x0j j A =2†N… x0j j A =2†
x0j j A

2Mi

Next, by combining equation (12) with the previous
inequality, one gets

Q…t0; x0; w†
x0j j A

2
N… x0j j A =2† …25†

So, by using equation (23), we conclude

x0j j A

2
N… x0j j A =2† inf

w2 W " i‡ 2 ;

x…t†j j A <"i‡ 2

Q…t0; x0; w† ˆ V …t0; x0†

Thus, by letting ¬1… p† ˆ p=2N…p=2†, the conclusion
follows. &

Thus the function V … ; † satis® es property (1) of
De® nition 3. It remains to show that V is continuous
and that equation (4) holds. First, we prove continuity
at the points …t0; x0† 2 R A .

Lemma 8: The function V … ; † is continuous at
…t0; x0† 2 R A . Moreover it holds that for each " > 0
there exists a ¯ > 0 such that if xj j A ¯ then

j V …t; x† j " 8 t 2 R …26†

Proof: It is clear that it su� ces to prove (26), since
V …t0; x0† ˆ 0 for all …t0; x0† 2 R A . Given " > 0,
choose 0 < ¯ < "0 such that M… ­ … p; 0†† ­ … p; 0† " for
all p ¯ . Now if xj j A ¯ , then by Remark 2, property
(a), we have

V …t; x† M… ­ … xj j A ; 0†† ­ … xj j A ; 0† "

as desired. &

1636 F. Albertini and E. D. Sontag
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Lemma 9: L et tn ! t0, xn ! x0, and wn ! w0, be such
that wnk k r1, and all the solutions xn…t† ˆ
x…t; tn; xn; wn† exist for all t tn and satisfy
xn…t†j j A r2, where r1; r2 are two positive real constants.
Then the solution x…t† ˆ x…t; t0; x0; w0† exists for all
t t0, it is such that

xn… t† ! x…t† as n ! 1 and x…t†j j A r2

again for all t t0.

Proof: Since xn ! x0, we have x0j j A r2. Given w0,
by local existence of solutions, there exists a maximal
interval ‰t0; t† , in which x…t† is de® ned. Moreover, we
may assume that xn 2 clos B…x0; 1† , and tn 2 ‰t0 ¡ 1;

t0 ‡ 1Š for all n 1. For each t > t0, we let

A…t† ˆ f xn…½ † j ½ 2 ‰tn; tŠ g R n

Then A…t† is bounded, and in fact

jxn…½ † j jxn j ‡
… t

tn

j f …s; xn…s† ; u…s†† j ds

jxn j ‡ Mr1r2
…½ ¡ t† jx0 j ‡ 1 ‡ Mr1r2 ¯…t†

where Mr1r2
ˆ sup j f …t; x; u† j for xj j A r2, and uk k r1,

and ¯…t† ˆ …t ¡ t0 ‡ 1† . First we prove the following
fact.

Fact: If x…t† exists for all t 2 ‰t0; t 0 Š, then xn…t† ! x…t†
as n ! 1 for all t 2 ‰t0; t 0 Š.

Proof of Fact: Let

K ˆ clos A…t 0 † [ f x…t† j t 2 ‰ t0; t 0 Š g

then K is a compact set. Let L K;r1 , and ~M be the
Lipschitz constant and a bound for f with x 2 K,
uk k r1, and t 2 ‰t0 ¡ 1; t 0 Š. Then one gets

j xn…t† ¡ x…t† j jxn ¡ x0 j ‡ ~Mjtn ¡ t0 j

‡ L k;r1

… t 0

t0_ tn

wn…s† ¡ w0…s†k k

‡ jxn…s† ¡ x…s† j ds

where t0 _ tn indicates max f t0; tng . Using the Bellman±
Gronwall inequality, one gets

jxn…t† ¡ x…t† j …jxn ¡ x0j ‡ ~Mjtn ¡ t0 j

‡ L k;r1

… t 0

t0_ tn
wn…s† ¡ w0…s†k k ds†

eL k;r1
… t 0 ¡ t0_ tn†

From this last inequality the fact easily follows.
Now we prove that x…t† exists for all t t0. Assume

that x…t† exists only for t 2 ‰t0; t† . Since, for t 2 ‰t0; t† , we
have xn…t† ! x…t† (from the previous fact), it holds that

x…t† 2 clos A…t†

Since clos A…t† is a compact set, this contradicts the fact
that x…t† does not exist for t ˆ t. &

Lemma 10: L et …tn; xn† ! …t0; x0† and wn ! w0. L et
i 0 be the ® rst index such that x0j j A < "i. Assume that
all Q…tn; xn; wn† are ® nite, that wnk k "i‡ 2, and that
xn…t†j j A "i‡ 2. Then

Q…t0; x0; w0† lim inf
n! ‡ 1

Q…tn; xn; wn†

Proof: From Lemma 9, it holds that x0…t† is de® ned
for all t t0. Moreover it is also true that

F… xn…t†j j A † ! F… x0…t†j j A †

Given " > 0 there exists ¯ > 0 such that
… t0‡ ¯

t0
F… x0…t†j j A † dt < "

By Fatou’s Lemma, we get (notice that for n large
tn t0 ‡ ¯)

… 1

t0‡ ¯

F… x0… t†j j A † dt lim inf
n! 1

… 1

t0‡ ¯

F… xn…t†j j A † dt

On the other hand, one easily sees that

max f ¯… w0k k† ¡ ¯…® …"0†† ; 0g

lim inf
n! ‡ 1

max f ¯… wnk k † ¡ ¯…® …"0†† ; 0g

Summing up, we conclude

Q…t0; x0; w0† " ‡
… 1

t0‡ ¯

F… x0…t†j j A † dt

‡ max f¯… w0k k † ¡ ¯…® …"0†† ; 0g

which is upper bounded by

" ‡ lim inf
n! 1

… 1

t0‡ ¯

F… xn…t†j j A † dt

‡ lim inf
n! ‡ 1

max f ¯… wnk k † ¡ ¯…® …"0†† ; 0g

and is itself bounded by

" ‡ lim inf
n! ‡ 1

Q…tn; xn; wn†

From which the conclusion follows since " was
arbitrary. &

The arguments used in the proofs of the next lemmas
are similar to the one used in Sontag (1983) to prove the
corresponding results.

Lemma 11: For each …t0; x0† 2 R R n there exists w0

such that
V …t0; x0† ˆ Q…t0; x0; w0†

Proof: Assume that i 0 is the ® rst index such that
x0j j A < "i. Let wn be a minimizing sequence, then, by

Continuous control-L yapunov functions 1637
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Lemma 6, it must hold that wnk k "i‡ 2 and
xn…t†j j A < "i‡ 2. Thus, by sequential compactness of

W " i‡ 2 , we may assume that wn ! w0 (possibly extract-
ing a subsequence). From Lemma 10, we have

Q…t0; x0; w0† lim inf
n! 1

Q…t0; x0; wn†

ˆ V …t0; x0† Q…t0; x0; w0† &

Lemma 12: The function V … ; † is lower semicontinu-
ous.

Proof: Let …tn; xn† ! …t0; x0† . Then if i 0 is the ® rst
index such that x0j j A < "i , we may also assume that
xnj j A < "i. Let wn be such that V …tn; xn† ˆ Q…tn; xn; wn† ,
then, by Lemma 6, wnk k "i‡ 2 and xn…t†j j A < " i‡ 2.
Since W "i‡ 2 is sequentially compact, we may assume
that wn ! w0. By applying Lemma 9, we know that
the trajectory x0…t† ˆ x…t; t0; x0; w0† exists for all t t0

and it is the limiting trajectory. Moreover by Lemma
10, we have

V …t0; x0† Q…t0; x0; w0† lim inf
n! 1

Q…tn; xn; wn†

ˆ lim inf
n! 1

V …tn; xn† &

Lemma 13: The function V … ; † is continuous.

Proof: We need only to prove upper semicontinuity.
Fix " > 0, and let 0 < ¯ < "0 be such that if xj j A ¯

then V …t; x† "=3 for all t 2 R (use Lemma 8). Fix
any …t0; x0† 2 R R n. Let i 0 be the ® rst index such
that x0j j A < "i , and w0 be such that V …t0; x0† ˆ
Q…t0; x0; w0† . Then w0k k "i‡ 2 (Lemma 6). Denote by
x…t† ˆ x…t; t0; x0; w0† , then there exists T such that
x…T †j j A < ¯ . By continuity, there exists a neighbour-
hood J H of …t0; x0† such that, for all …t 0

; z† 2
J H, zj j A < "i, z…t† ˆ x…t; t 0

; z; w0† exists for all
t 2 ‰ t 0

; T Š, z…T †j j A < ¯ and
… T

t 0
F… z…t†j j A † <

… T

t0
F… x…t†j j A † ‡ "=3

Now we have

V …t 0
; z† "=3 ‡

… T

t 0
F… z…t†j j A †

‡ max f ¯… w0k k † ¡ ¯…® …"0†† ; 0g

<

… T

t0

F… x…t†j j A † ‡
2"

3

‡ max f ¯… w0k k † ¡ ¯…® …"0†† ; 0g

V …t0; x0† ‡ "

Thus V is upper semicontinuous. &

Lemma 14: The function V … ; † is a control-L yapunov
integral function.

Proof: We have already shown that V is continuous
and satis® es property (1) of De® nition 3. We need only
to prove that equation (4) holds. Fix any
…t0; x0† 2 R R n. Let i 0 be the ® rst index such that
x0j j A < "i , and w0 be such that V …t0; x0† ˆ Q…t0; x0; w0† .
Let ®1 be any continuous, positive and increasing map
such that ®1… p† "i‡ 2 for "i¡ 1 p < "i , for i 0 (set
"¡ 1 ˆ 0). Then w0k k "i‡ 2 ®1… x0j j A † . Denote by
x…t† ˆ x…t; t0; x0; w0† , and by w

0
0 the translation of w0

by …¡ t† . It holds

V …t; x…t††
… 1

t
F… x…s†j j A † ds

‡ max f ¯… w
0
0 † ¡ ¯…® …"0†† ; 0g

thus (note that w
0
0 w0k k )

V …t; x…t†† ¡ V …t0; x0† ¡
… t

t0

F… x…s†j j A † ds

So also property (2) holds with ¬3 ˆ F, and ¿ ˆ ®1. &

4. Remaining proofs and comments

To prove Proposition 1 the following technical
lemma is needed. Although not explicitly stated in this
form, this is what was being proved in } 3 of Lin et al.
(1996).
Lemma 15: L et F …r; t† : … R 0†2 ! R 0 be a map such
that

(a) for all " > 0 there exists ¯ > 0 such that if r ¯

then F …r; t† < " for all t 0,

(b) for all " > 0 and for all R > 0 there exists T such
that F …r; t† < " for all 0 r R and for all
t T .

Then there exists a KL-function ­ … ; † such that

F …r; t† ­ …r; t† 8 r; t

Proof of Proposition 1: We need to establish only the
su� ciency part, the necessity part being obvious. We
assume given a model S of type (1) satisfying proper-
ties (1) and (2).

Fix …t0; x0† 2 R … R n
n A † . Let "0 > 0 be such that

x0j j A ˆ ®2…"0† (such an "0 exists, ®2 being a K 1 -map).
Then, by property (1), we may choose a control ut0 ;x0

such that ut0 ;x0 ®1… x0j j A † and x…t; t0; x0; ut0;x0
† A

"0 for all t t0. Let

C t0
…r; t† ˆ sup

x0j j A r
t¡ t0 0

x…t; t0; x0; ut0 ;x0
† A ; 8 r 0; 8 t t0

and

F …r; t† ˆ sup
t0

C t0 …r; t ‡ t0† ; 8 r 0; 8 t 0

1638 F. Albertini and E. D. Sontag
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Assume that F …r; t† satis® es both requirements (a) and
(b) of Lemma 15, and let ­ … ; † be the KL-function given
by the same lemma. Then we have that for all
…t0; x0† 2 R … R

n
n A † there exists a control ut0 ;x0 , with

ut0;x0 ®1… x0j j A † such that

x…t; t0; x0; ut0 ;x0
† A C t0

… x0j j A ; t† F … x0j j A ; t ¡ t0†

­ … x0j j A ; t ¡ t0†

Thus S is gac to A . So, to conclude, we just need to
show that both requirements (a) and (b) are satis® ed.

(a) Fix any " > 0. Let ¯ ˆ ®2…"† . Then for all
x0j j A ¯ and for all t0 2 R , by property (1), we
know that

x…t; t0; x0; ut0 ;x0
† A " 8 t t0

which clearly implies

F …r; t† "; 8 r ¯; 8 t 0

(b) Fix any " > 0 and any R > 0. By property (2),
we know that there exists T > 0 such that, for all
x0j j A R, for all t0 2 R

x…t; t0; x0; ut0 ;x0
† A " 8 t T ‡ t0

thus also

F …r; t† "; 8r R; 8 t T

as desired. &

Remark 4: Observe that, in order to conclude the
equivalence between De® nition 2 of gac and proper-
ties (1) and (2) of Proposition 1, it is essential that the
control realizing the stability part (property (1)) and
the one realizing the attraction part (property (2)) can
be chosen to be the same. In fact, it is possible to give
examples of systems (even time-invariant and with
A ˆ f0g) where both properties (1) and (2) of Proposi-
tion 1 hold but with di� erent control maps, and the
system is not gac. We do not provide all the details
here, but merely sketch the construction of such an
example, as follows. It is possible to build an
autonomous two-dimensional model in which the
origin is an attractor but not a stable point. In particu-
lar, there exist two C1 -functions f1; f2 : R 2 ! R such
that if we look at the system (without control)

_x1 ˆ f1…x1; x2†

_x2 ˆ f2…x1; x2†

it has the following properties.

(a) The origin is an attractor point, i.e. for all
x0 2 R

2 the corresponding trajectory x…t† is
de® ned for all t 0 and it is such that
limt! ‡ 1 x…t† ˆ 0.

(b) The origin is an unstable point, i. e. there exists
> 0 such that, for all n 1, there exist

xn 2 R
2 with jxn j < 1=n and tn > 0 such that,

if we denote by xn…t† the trajectory with initial
state xn, it holds

jxn…tn† j > …27†

For the precise expression of the two functions f1, f2

and for the proof of properties (a) and (b) we refer to
Hahn (1967, Ch. 5, p. 191), where such an example is
studied in detail. Now we look at the system:

S ˆ
_x1 ˆ f1…x1; x2†u
_x2 ˆ f2…x1; x2†u

with state space R
2 and control space U ˆ f0; 1g . Since

this is an autonomous model, we may set t0 ˆ 0 in the
de® nitions. Since for this model A ˆ f0g , we will use j j

instead of j j A .
By choosing u 0 all the states are equilibria, thus

property (1) of Proposition 1 clearly holds with ®2 equal
to the identity function. Now for any ® xed r, ", if we
choose u 1, by property (a) of the uncontrolled
dynamics, for all x 2 R 2 with jxj r there exists
Tx > 0 such that j x…Tx† j < ". By continuity of trajec-
tories with respect to the initial state, there exists a
neighbourhood Ux of x such that, for all y 2 Ux, the
corresponding trajectory, again with u 1, is such that
y…Tx† j < ". As

S

jxj r Ux is an open covering of the
closed ball of radius r, by compactness there exists a
® nite subcovering by sets Ux1 ; . . . ; Uxp . Now letting
T r;" ˆ max fTx1 ; . . . ; Txp

g , for this constant T r;" property
(2) of Proposition 1 holds. In fact if jx0 j r then
jx0 j 2 Uxi for some i ˆ 1; . . . ; p. Choose

u…t† ˆ
1 for t 2 ‰0; Txi

†
0 for t Txi

then, clearly, the corresponding trajectory is such that
x0… t† < " for all t Tr;" . However S is not gac. To see
this we argue as follows. If the model would be gac,
then for each initial state x 2 R

2 there would exist a
control map u…t† such that the corresponding trajectory
would satisfy

j x…t† j ­ … jx0 j ; t† …28†

for a given KL-function.
Fix r > 0 small enough such that ­ …r; 0† < . Then,

by property (b) there exists xn, with j xnj r, such that
the corresponding trajectory with u 1 satis® es
jxn…tn† j > . Let L ˆ min f jxn…t† j ; t 2 ‰0; tn Šg , then
there exists T > 0 such that ­ …r; T † < L . Since the tra-
jectories of S either follow the trajectories of the uncon-
trolled dynamics or stay in equilibrium, it is clear that
for xn it is impossible to ® nd a control map such that the

Continuous control-L yapunov functions 1639
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corresponding trajectory satis® es equation (28) for
t T .

We now conclude the proof of Theorem 1 by show-
ing that if V is a control-Lyapunov function, then V is
also an integral control-Lyapunov function (i. e. we
prove that 2 ) 3).

Assume given a control-Lyapunov function V ,
together with maps ¬1; ¬2; ¬3, and ¿ satisfying proper-
ties (1) and (2) of De® nition 3. Let ¿̂ be any continuous
positive and increasing function such that ¿̂…0† · and

¿̂…r†
¿…r†

¬
¡ 1
1 ¬2…r†… †

Fix any …t0; x0† 2 R … R n
n A † . De® ne

M…t0; x0†

ˆ t > t0

9 w : ‰ t0; t† ! P…U† such that

wk k ¿̂… x0j j A † and 8 s 2 ‰ t0; t†

…?† V …s; x…s† † ¡ V …t0; x0† ¡
… s

t0

¬3… x…½ †j j A †

8
d½

9
>>>>=

>>>>;

8
>>>><

>>>>:

…29†

where x…s† ˆ x…s; t0; x0; w† . Notice that M…t0; x0†
R 0 [ f ‡ 1 g . We will prove:

(a) M… t0; x0† 6̂ 1 ,

(b) sup M…t0; x0† 2 M…t0; x0† ,
(c) sup M…t0; x0† ˆ ‡ 1 .

Properties (b) and (c) clearly imply that V is also an
integral control-Lyapunov function (using the maps ¬1,
¬2, 1=8¬3, and ¿̂).

(a) By property (2) of De® nition 3 there exists a
relaxed control w : ‰t0; ~t† ! P…U† with wk k
¿… x0j j A † ¿̂… x0j j A † such that equation (3) holds. In
particular, this fact implies the existence of a sequence
tk ! t‡

0 such that

V …tk; x…tk†† ¡ V …t0; x0† ¡
¬3… x0j j A †

2
…tk ¡ t0† …30†

By continuity there exists t > t0 (we may assume t ~t)
such that for all r; s 2 ‰t0; t† we have:

¬3… x…s†j j A †

2
< ¬3… x0j j A † …31†

j V …r; x…r†† ¡ V …s; x…s†† j <
¬3… x0j j A †

4
…32†

Choose t0 < t̂ t such that for some index k it holds
tk < t and t̂ ¡ t0 < tk ¡ t0 < 1. Then for all t 2 ‰t0; t̂† we
have

V …t; x… t†† ¡ V …t0; x0† jV …t; x…t†† ¡ V …tk; x…tk†† j

‡ V …tk; x… tk†† ¡ V …t0; x0†

<
¬3… x0j j A †

4
…tk ¡ t0†

¡
¬3… x0j j A †

2
…tk ¡ t0†

< ¡
¬3… x0j j A †

4
…t ¡ t0†

Thus, by equation (31) we have

V …t; x…t†† ¡ V …t0; x0† ¡
… t

t0

¬3… x0j j A †

4
ds

¡
… t

t0

¬3… x…s†j j A †

8
ds

Therefore t̂ 2 M…t0; x0† .

(b) Let T ˆ sup M…t0; x0† , then either T 2 R or
T ˆ ‡ 1 . In any case there exists a sequence
tn 2 M…t0; x0† such that tn ! T . Thus for all n > 0
there exists wn : ‰ t0; tn† ! P…U† with wnk k ¿̂… x0j j A †
and such that xn…t† ˆ x…t; t0; x0; wn† satis® es equation
…?† for all t 2 ‰t0; tn† . By sequential compactness of
W ¿̂… x0j j A † we may assume that wn ! w0, where w0 is
de® ned for all t 2 ‰t0; T † and w0k k ¿̂… x0j j A † . Let
x0… t† ˆ x…t; t0; x0; w0† , which by local existence is de® ned
on an interval of the type ‰t0; t † . We want to prove

t ˆ T and xn ! x0 …33†

From equation (33) we may conclude T 2 M…t0; x0†
since equation …?† , which holds for all n > 0, will still
hold after having taken the limit as n ! ‡ 1 .

The proof of (33) is only sketched since the argu-
ments are quite similar to the one used to prove
Lemma 9. Let

A…t† ˆ fxn…½ † j t < tn; ½ 2 ‰ t0; tŠg

it is not hard to prove that A…t† is bounded. Then one
proves that

if x0…t† exists 8 t 2 ‰t0; t 0 Š

then xn…t† ! x0…t† 8 t 2 ‰ t0; t 0 Š …34†

Let K ˆ clos A…t 0 † [ fx0…t† j t 2 ‰t0; t 0 Šg ; then K is com-
pact. Let L be a Lipschitz constant for f with x 2 K and
j juj j ¿̂… x0j j A † . Then one has

jxn…t† ¡ x0…t† j L
… t

t0

‰ j jwn…s† ¡ w0…s† j j

‡ j xn…s† ¡ x0…s† j Š ds

from which, using the Bellman± Gronwall inequality
equation (34) follows. Now to prove t ˆ T one argues
as follows. Assume t < T . Then for all t 2 ‰t0; t† , by

1640 F. Albertini and E. D. Sontag
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(34), xn…t† ! x0…t† thus x0…t† 2 clos A…t† which is com-
pact, so the trajectory may be extended also to t ˆ t.

(c) Now we want to prove that T ˆ
sup M…t0; x0† ˆ ‡ 1 . Assume that T < ‡ 1 . Since
T 2 M…t0; x0† by (b), there exists a relaxed control
w : ‰t0; T † ! P…U† which satis® es all the requirements
of equation (29) (call x…t† its corresponding trajectory).
Let M be a bound for f when xj j A ¬

¡ 1
1 …V …t0; x0†† and

j j uj j ¿̂… x0j j A † . Then it holds that jx…t† j j x0j ‡
M…T ¡ t0† . So the trajectory can be extended to the
endpoint T . Now if x…T † 2 A , then we are done, since
we may extend the control map w with the one given by
the gac assumption and all the requirements of (29)
continue to be satis® ed. On the other hand, if
x…T † 62 A , then by what we have seen in part (a), there
exists T1 > T with T1 2 M…T ; x…T †† and a correspond-
ing control w1 : ‰T ; T1† ! P…U† with w1k k ¿… x…T †j j A †
such that the corresponding trajectory satis® es equation
…?† . Since x…T †j j A ¬

¡ 1
1 …¬2… x0j j A †† , we have w1k k

¿… x…T †j j A † ¿̂… x0j j A † , thus by concatenating the two
control maps w and w1 we get that T1 2 M…t0; x0†
contradicting the fact that T ˆ sup M…t0; x0† .
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