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Abstract

One of the fundamental problems of cell biology is the understanding of complex regulatory networks. Such networks are

ubiquitous in cells and knowledge of their properties is essential for the understanding of cellular behavior. In earlier work

(Kholodenko et al. (PNAS 99: 12841), it was shown how the structure of biological networks can be quantified from experimental

measurements of steady-state concentrations of key intermediates as a result of perturbations using a simple algorithm called

‘‘unravelling’’. Here, we study the effect of experimental uncertainty on the accuracy of the inferred structure (i.e. whether

interactions are excitatory or inhibitory) of the networks determined using the unravelling algorithm. We show that the accuracy of

the network structure depends not only on the noise level but on the strength of the interactions within the network. In particular,

both very small and very large values of the connection strengths lead to large uncertainty in the inferred network. We describe a

powerful geometric tool for the intuitive understanding of the effect of experimental error on the qualitative accuracy of the inferred

network. In addition, we show that the use of additional data beyond that needed to minimally constrain the network not only

improves the accuracy of the inferred network, but also may allow the detection of situations in which the initial assumptions of

unravelling with respect to the network and the perturbations have been violated. Our ideas are illustrated using the mitogen-

activated protein kinase (MAPK) signaling network as an example.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the fundamental problems of cell biology is to
infer and quantify interconnections in complex regula-
tory networks. Such networks are ubiquitous in cells
and critical for their function and knowledge of their
properties is essential for the understanding of cellular
behavior. These regulatory networks include signaling
cascades such as mitogen-activated protein kinase
e front matter r 2004 Elsevier Ltd. All rights reserved.
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(MAPK) systems (Chang and Karin, 2001; Hazzalin
and Mahadevan, 2002; Huang and Ferrell, 1996;
Kholodenko, 2000; Widmann et al., 1999) and other
networks which transmit information about the external
environment to the inside of the cell (Brivanlou and
Darnell, 2002). In addition, the networks created by the
mutual activation and repression of the expression of
genes by each other’s products play a critical role in the
development of multicellular organisms and other
important cellular processes (Brazhnik et al., 2002).
Such networks can be studied experimentally and

theoretically using either a ‘‘bottom-up’’ or a ‘‘top-
down’’ strategy. The bottom-up approach relies on the
numerical simulation of a mechanistic model of the

www.elsevier.com/locate/yjtbi


ARTICLE IN PRESS

MKKK MKKK-P MKKK-PP

Ras-GTP

MKK MKK-P MKK-PP

MAPK MAPK-P MAPK-PP

(transcription)

Fig. 1. A prototypical example of a MAPK cascade incorporating

negative feedback (Kholodenko, 2000). Dotted lines indicate activa-

tion and long-dashed lines indicate repression. Note that MAPK-PP

activates the degradation of MKK-PP. For purposes of generating

synthetic data, the detailed kinetic model and parameters given in

Kholodenko et al. (2002) were used and are provided as electronic

supplementary material. All simulated data based on the MAPK

system was generated by setting each rate equation equal to zero and

solving for the concentrations of all of the species. Perturbations were

performed by modifying the kinetic parameters by the fractions

indicated.
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network and quantitatively comparing the results of
such simulations to experimental observations (Hasty et
al., 2001; Kholodenko et al., 1999; Moehren et al., 2002;
Shvartsman et al., 2002; Smolen et al., 1998; Tyson et
al., 2001; von Dassow et al., 2000). While such a strategy
can provide a wealth of detail, it by necessity requires
the modeling of a large number of molecular processes,
some of which may in fact be unknown. Therefore,
the bottom-up approach is less applicable to poorly
characterized networks, since it will by its very nature
miss interactions and regulatory feedbacks that still
await discovery. For such ‘‘network discovery’’ pur-
poses, a top-down approach is more appropriate
(Brand, 1996; de la Fuente et al., 2002; Kholodenko et
al., 1997, 2002; Stark et al., 2003). Here, the architecture
of the network is inferred (or ‘‘reverse engineered’’)
based on observed global responses of the system to a
series of signals or experimental perturbations, such as
hormones, growth factors,neurotransmitters, or experi-
mental interventions (such as chemical inhibitors). The
global responses that could be measured include changes
in the phosphorylation states or activities of proteins,
mRNA levels, or transcription rates. From these global
responses, top-down analysis methods attempt to re-
cover the local interactions between components of
regulatory networks, which in turn form a ‘‘map’’ of the
network. The top-down approach has the great advan-
tage that in principle it can be applied to regulatory
networks of arbitrary complexity.
The top-down approach achieves this scaling ability

by making extensive use of the concept of a network
module. The concept of modules in biology has recently
received much attention as part of the focus on the
fundamentally multi-component aspects of molecular
biological function known as ‘‘systems biology’’ (Hart-
well et al., 1999; Lauffenburger, 2000). In this paper, we
will use the term ‘‘module’’ in the specific technical sense
used in the previous work of Kholodenko et al. (2002),
namely, a group of genes, enzymes, or other cellular
components of arbitrary complexity connected by
physical and/or chemical interactions which together
perform one or more identifiable tasks. These tasks
usually depend on one or a small number of components
of the module (which we call ‘‘communicating inter-
mediates’’) which alone interact with components of
other modules. In a top-down approach, the network
modules are considered to be ‘‘black boxes’’, and only
the concentrations or chemical states of the commu-
nicating intermediates will be used in the analysis
without explicit reference to any internal structure that
the modules may have.
As an example, consider the MAPK signaling net-

work shown in Fig. 1. It is clear that in this model only
the doubly phosphorylated forms of the kinases have
any interactions with components on other ‘‘levels’’ of
the network, while the unphosphorylated and singly
phosphorylated forms only interact with components on
the same ‘‘level’’, e.g. MKKK-P only interacts with
MKKK and MKKK-PP, and not any of the forms of
MKK or MAPK. Therefore, although there are a total
of nine components in this prototypical network, we can
treat it from a modular point of view as consisting of
three modules (corresponding to the ‘‘MKKK’’,
‘‘MKK’’, and ‘‘MAPK’’ levels), which are represented
by the communicating intermediates MKKK-PP,
MKK-PP, and MAPK-PP, respectively, thereby redu-
cing the effective dimensionality of the problem by a
factor of three. For networks having modules of more
complex internal structure the savings in terms of
dimensionality reduction would be correspondingly
greater. Thus, by introducing the concept of the module,
one can gain many of the advantages of more
phenomenological network modeling approaches such
as Bayesian or Boolean networks (de Jong, 2002) while
still retaining a basis in chemical kinetics.
In earlier work (Kholodenko et al., 2002; Kholodenko

and Sontag, 2002), it was shown how interactions
between modules can be quantified from the concentra-
tions of the communicating intermediates following
perturbations of each module using a simple algorithm
which we call ‘‘unravelling’’. In contrast to other
approaches (Gardner et al., 2003; Ronen et al., 2002),
unravelling only requires steady-state concentrations,
thereby obviating the need for the quantitation of rates,
and assumes nothing regarding the functional form of
the rate equations beyond the assumption that the
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perturbations used do not directly effect a given module.
Since unravelling depends on measuring changes in
steady-state concentration of key intermediates in
response to perturbations, it would appear that it would
not be applicable to systems which exhibit ‘‘total
adaptation’’, i.e. systems which eventually return to
their original steady state after a perturbation. However,
even such systems exhibit pseudo-steady-state behavior
which differs from the original steady state, and which
would allow the measurement of concentrations and the
determination of the network topology.
A key consideration in any reverse engineering

method is its sensitivity to experimental error. In
this paper, we investigate in detail how noise effects
our ability to correctly reconstruct the interactions
between modules and how statistical methods could
be used to determine the validity of the model used
for the reconstruction. In particular, we will emphasize
the qualitative accuracy of the inferred network,
i.e. whether the identification of the pattern of interac-
tions between modules as activating or repressing is
correct. We will demonstrate how the accuracy depends
on the degree of redundancy of the data and analyse
how the accuracy improves with increasing amounts
of data.
2. Methods

2.1. General aspects of the unravelling formalism

In this section, we review the fundamentals of
the unravelling methodology, and discuss some of the
practical aspects of its implementation. Let us
assume that we have a network which obeys determi-
nistic kinetics given by the system of L differential
equations

dzi

dt
¼ giðz1; . . . ; zL; pÞ; (1)

where zi ði ¼ 1; . . . ;LÞ are the concentrations of each
chemical species in the network and p is a vector of
kinetic parameters (rate constants, Michaelis constants,
etc.). If we only consider the steady-state behavior of the
system, then the concentrations are determined by a
system of L algebraic equations

giðz1; . . . ; zL; pÞ ¼ 0: (2)

Let us suppose that the L chemical components are
organized into NoL modules, such that components
within a given module interact only with each other with
the exception of a single communicating intermediate.
In that case, the variables zi may be partitioned into two
disjoint sets: those representing the communicating
intermediates, and those representing species ‘‘internal’’
to their module. The kinetic system given by Eq. (1) can
then be rewritten in the form

dxi

dt
¼ g0;jðyj ; x; pÞ;

dy1;j

dt
¼ g1;jðyj ; x; pÞ;

..

.

dylj ;j

dt
¼ glj ;jðyj ;x; pÞ;

j ¼ 1; . . . ;N; (3)

where xj represents the concentration of the commu-
nicating intermediate of module j; the yi;j variables
represent the concentrations of the lj species which are
‘‘internal’’ to the jth module, and

yj ¼ ðy1;j ; . . . ; ylj ;jÞ;

x ¼ ðx1; . . . ;xNÞ: (4)

If we assume that the Jacobian of the functions gi;j

with respect to yi;j is non-singular when evaluated at the
steady state corresponding to p; then the ‘‘intramodu-
lar’’ variables yj can be viewed as implicit functions
hjðx; pÞ of the communicating intermediates x and
parameters p (Kholodenko and Sontag, 2002). If we
define

f jðx; pÞ ¼ g0;jðhjðx; pÞ;x; pÞ; (5)

then the steady-state behavior of the communicating
intermediates can be described by the reduced set of
NoL algebraic equations

f jðx; pÞ ¼ 0: (6)

This top-down analysis ‘‘black-boxes’’ the modular
organization of the molecular network, explicitly con-
sidering communicating intermediates only. If the
number of modules is small compared to the total
number of species in the system, then Eq. (6) represents
a considerable simplification over the full problem given
in Eq. (2). This formalism is easily generalized to cases
where modules have multiple communicating intermedi-
ates, as is shown in Kholodenko et al. (2002).
The direct effect of module j on module i at the steady

state corresponding to p can be defined as @f i=@xj :
However, this definition is ambiguous, since a multi-
plicative scaling of the rate equations can scale @f i=@xj

while leaving the steady states unchanged. Therefore, we
can infer the derivatives @f i=@xj only up to a constant
factor (Kholodenko et al., 2002; Kholodenko and
Sontag, 2002). In view of this, we will describe the
interaction between modules in terms of the ‘‘connection
coefficients’’ rij ; which are defined as

rij � �
@f i

@xj

� ��
@f i

@xi

� �
(7)

and which are obviously invariant with respect to
multiplicative scaling of the rate equations. The
connection coefficients rij are the elements of the
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Jacobian matrix ‘‘normalized’’ by its diagonal elements.
In biological terms, the connection coefficient rij tells us
how much xi will change in response to a causative
change in xj ; when all other modules are kept constant,
while module i is relaxing to its new steady state.
Conceptually, we can imagine ‘‘disconnecting’’ module i

from the network, and then ‘‘perturbing’’ the concen-
tration xj while observing the resulting change in xi after
a new ‘‘steady state’’ local to module i has been
achieved. The ratio of these changes in the limit of
small ‘‘perturbation’’ is simply the derivative of the
steady-state condition f iðx; pÞ with respect to xj at
constant xk ðkai or j), which equals rij : If the modules
are stable (i.e. @f i=@xio0Þ; then rij40 corresponds to
the case where module j activates module i; rijo0
corresponds to the repression of module i by module j;
and rij ¼ 0 corresponds to module j having no effect on
module i:

2.2. Analysis of ideal data

Suppose that we have N parameters p1; . . . ; pN (a
subset of the components of vector p) such that pi is
known a priori to have a direct effect only on module i:
The change in the steady-state concentration of each
communicating intermediate to an infinitesimal pertur-
bation of pi defines the global response of the system
with respect to that perturbation

Rij �
@xi

@pj

: (8)

Unlike the local connection coefficients rij ; the global
response Rij can be measured experimentally by means
of a finite difference approximation. In practice, the
quantity Rij is usually defined as the logarithm of the
ratio of the steady-state concentration of communicat-
ing intermediate i after perturbation j to its pre-
perturbation concentration (Kholodenko et al., 1997,
2002). However, all of the key results below are true for
the derivative of the logarithm as well, which can be
interpreted as a fractional change of the steady-state
concentration. Since we have chosen pj such that its only
direct effect is on module j; it follows that @f i=@pj ¼ 0
for any iaj: However, we can also use the chain rule
to write

@f i

@pj

¼
X

k

@f i

@xk

@xk

@pj

¼ �
@f i

@xi

X
k

rikRkj (9)

for each pair of modules iaj: Provided that @f i=@xia0;
this leads toX

k

rikRkj ¼ 0: (10)

Suppose for the moment that we are only interested in
the vector ri ¼ ðri1; ri2; . . . ; riN Þ

T; i.e. the direct effect of
each of the modules 1 . . .N on one particular module i,
and we define the ‘‘data vector’’ Rj ¼ ðR1j ;R2j ; . . . ;RNjÞ

as the response of all modules to a perturbation of
parameter pj effecting only module j. Then the N � 1
data vectors Rj ðjaiÞ are all perpendicular to the vector
ri; and define an N � 1-dimensional hyperplane in RN

(the ‘‘data plane’’) having a normal vector ri (provided
that the data vectors are linearly independent). The
connection coefficients ri can be determined by recog-
nizing that rii ¼ �1 and that Eq. (10) can be rewritten as
the linear systemX

k

rikRkjð1� dikÞ ¼ Rij ðjaiÞ; (11)

which can be solved by matrix inversion. Eq. (11)
represents a case where there is just sufficient data to
determine ri; i.e. the number of ‘‘parameters’’ exactly
equals the number of ‘‘data’’, and therefore we can
always find a vector ri which gives an exact fit, i.e. strict
equality in Eq. (11).
The reverse engineering strategy described above can

be easily extended to the overdetermined case where
more than N � 1 perturbations are performed (Kholo-
denko and Sontag, 2002). Suppose that we perform
M4N � 1 perturbations which do not have any direct
effect on module i and measure the corresponding
responses Rj ðj ¼ 1; . . . ;MÞ (note that the subscript now
does not refer to a module, but to the ‘‘perturbation
number’’). These perturbations may be replicate mea-
surements or could correspond to perturbations which
simultaneously effect several modules other than i.
Based on the above logic, the resulting M vectors Rj

must all be perpendicular to the vector ri:X
k

rikRkj ¼ 0 ðj ¼ 1; . . . ;MÞ: (12)

Therefore, in the ideal case all of the Rj vectors will lie in
an N � 1 dimensional hyperplane and therefore the
matrix R (defined as the matrix with row vectors Rj)
must have rank N � 1; provided that the associated
perturbations do not directly effect module i and that all
modules jai are perturbed either singly or in combina-
tion. If the latter is not the case, then the matrix R will
have a rank less than N � 1:

2.3. Analysis of noise corrupted data

The above results are strictly true only for ideal data.
In practice, the data will not be ideal due to numerical
error arising from the use of a finite-difference
approximation to the derivative defining Rij ; as well as
due to experimental measurement error. For the
purposes of this paper, we will assume that any
‘‘systematic error’’ arising from numerical approxima-
tion is negligible compared to the size of the measure-
ment error. In fact, any systematic error will tend to zero
with decreasing perturbation size, whereas the relative
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amplitude of the noise will only increase. If we neglect
systematic error, then we can view the observed data R
as consisting of the ideal data plus a noise matrix e; the
elements of which are random variables. Let us first
consider the ‘‘exactly determined’’ case corresponding to
Eq. (11). Since the components of the data vectors Ri are
random variables, the N � 1-dimensional hyperplane
which they define is now also random, as is its normal
vector and consequently the vector ri: However, in all
cases the fit will remain ‘‘exact’’, in that equality in
Eq. (11) will always be achieved.
In the overdetermined case, it was shown above that

the ideal data matrix remains rank N � 1 regardless of
the number of perturbations made. In the presence of
noise, however, the data matrix R becomes full rank,
since the noise matrix e is full rank. Therefore, the noisy
data vectors Ri will not lie exactly in an N � 1
dimensional hyperplane, and therefore we will not be
able to find a vector of connection coefficients which
results in strict equality in Eq. (12). However, if the
magnitude of the noise is not large, we expect that Eq.
(12) will be ‘‘almost’’ satisfied, and we would like to find
an approximate solution which minimizes the error in
Eq. (12) according to some measure. Since Eq. (12) can
be rewritten as a linear system of the form Ax � b in the
same way as Eq. (10) can be rewritten in the form of Eq.
(11), one is lead to a ‘‘least-squares’’ solution for the
connection coefficients. However, the standard least-
squares solution xLS ¼ ðATAÞ

�1ATb which minimizes
the norm of Ax � b is not the best solution of our
problem, because it implicitly assumes that the uncer-
tainty is entirely in b while A is known perfectly. This
can be seen more easily if one recognizes that finding xLS

is equivalent to finding a ‘‘perturbed’’ vector b0 which
gives an exact equality Ax ¼ b0 (i.e. b0 is in the column-
space of A) and which also minimizes the norm of ðb �

b0
Þ; and then finding the value xLS which solves Ax ¼ b0

(van Huffel and Vandewalle, 1991). Therefore, the
standard least-squares solution does not treat A and b
equivalently. However, in our case the elements of A and
b are all experimental measurements which are equally
corrupted by noise. Therefore, it would make more
sense for us to solve for x in a way that allows for
‘‘perturbation’’ of both A and b:
A solution to the linear system Ax � b which treats A

and b equivalently is known in the numerical analysis
and engineering literatures as ‘‘total least squares’’
(TLS) (Golub and van Loan, 1980; van Huffel and
Vandewalle, 1991). Specifically, TLS attempts to find a
perturbed matrix A0 and a perturbed vector b0 such that
A0x ¼ b0 gives exact equality (b0 is in the column-space
of A0) subject to the constraint that the norm of ½A0 :
b0
	 � ½A : b	 is minimized (where ½A : b	 represents the

matrix formed by appending the column-vector b to the
right side of matrix A). The solution of A0x ¼ b0 is
known as the TLS solution xTLS:Alternatively, we can
adopt a more statistical view of Eq. (12) to obtain the
same result. In particular, if the elements of the noise
matrix e are independent and identically distributed
normal (Gaussian) random variables, then the values of
the connection coefficients which maximize the like-
lihood of the data are those which minimize the square
deviation to the data. In other words, we must find the
hyperplane which best fits the Rj in a least-squares sense,
or equivalently, the ‘‘perturbed’’ matrix R0 of rank N �

1 such that the norm of the difference R � R0 is
minimized. The resulting solution can be seen to be
identical to xTLS; since the ‘‘augmented’’ matrix ½A : b	 is
identical to R (van Huffel and Vandewalle, 1991).
The TLS solution is readily obtained using singular

value decomposition (SVD) (Golub and van Loan,
1989; Press et al., 1992), which is defined for an M 
 N

matrix A as an ðM 
 NÞ column-orthonormal matrix U ;
an ðN 
 NÞ orthonormal matrix V ; and a non-negative
ðN 
 NÞ diagonal matrix R such that A ¼ URVT: The
diagonal elements si ðs1Xs2X � � �XsNÞ of R are known
as the singular values of A; and the number of non-zero
singular values equals the rank of A: The column-
vectors ui of U and the column-vectors vi of V are
known as the left and right singular vectors of A;
respectively. According to the Eckart–Young Matrix
Approximation Theorem (Eckart and Young, 1936; van
Huffel and Vandewalle, 1991), the matrix R0 of rank
N � 1 which best approximates the rank N matrix R in
the least-squares sense is R0 ¼ UR0VT; where the
matrices U ; R; and V are given by the SVD, and R0 is
the matrix R with the smallest singular value set to zero.
The best-fit hyperplane is defined by its normal vector,
which is simply the right singular vector corresponding
to the smallest singular value sN ; and sN itself is equal
to the norm of R � R0 (van Huffel and Vandewalle,
1991). Therefore, in the context of unravelling in the
presence of experimental error, the connection coeffi-
cients can be found by performing the SVD of the
matrix of global responses, and scaling the Nth right
singular vector such that rii ¼ �1 (note that the N such
normalizations are needed for the determination of the
complete network, one for each linear system given in
Eq. (12)).
The straightforward least-squares solution in terms of

the SVD of the data matrix given above assumes that all
elements of the noise matrix e are independent and
identically distributed normal random variables. If
instead the elements of e are independent but have
different variances, then one must find a weighted total
least-squares solution. If the variance of noise matrix
element eij can be written in the form aibj ; then it is still
possible to find a solution using the ordinary SVD
algorithm (Golub and van Loan, 1980). Generalizations
of the SVD or other non-linear methods are required
when variances are independent but proportional to the
magnitudes of the measurements (de Moor, 1993) or do
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not follow any pattern (Gerhold, 1969; Premoli and
Rastello, 2002). Problems where the elements of e are
not independent or are non-normal also require alter-
native algorithms. In this paper, we consider the case
where the errors are normal, independent, and identi-
cally distributed.
The computational results described below were all

obtained by Monte Carlo using simulated data. Ideal
data matrices were determined by non-linear root-
finding using rate expressions from a detailed kinetic
model (e.g. Fig. 1) using the FindRoot function of
Mathematica (Wolfram, 1991) or by a geometric
construction (see below). Normally distributed noise
realizations were added to each element of the ideal data
matrix to generate the noisy data matrix R; and the
connection coefficients were determined by solving the
linear system of Eq. (11) or by performing the SVD of R
(Eq. (12)) using the SSVDC subroutine from LINPACK
(Dongarra et al., 1979). In order to reduce visualization
problems, we will limit ourselves to three modules (e.g.
Fig. 1). Many of the results given below generalize to an
arbitrary number of modules. However, the visualiza-
tion of the results can be quite problematic as the
number of modules increases, and this is a topic of
current investigation. To study the effects of noise
independently of errors due to the finite difference
approximation and other numerical errors arising from
kinetic models, it will be useful to generate completely
fictitious data matrices by geometric construction. In
particular, given ‘‘true’’ values for the connection
coefficients ri; one can constructas many vectors as
desired in the plane normal to ri: These vectors can be of
arbitrary ‘‘length’’ (corresponding to the absolute
magnitudes of the measured data relative to the noise)
and arbitrary orientation relative to each other (repre-
senting the degree of redundancy in the data).
Unlike ordinary least squares, the analysis of error

propagation for the TLS problem is not straightfor-
ward. The few studies of related topics in the literature
are focused on the ‘‘small errors’’ regime (Durando and
Mana, 2002; Lefebvre et al., 2000), which may not be
relevant in our case, since the DNA microarray and
quantitative Western blot data from which we obtain
estimates of the global responses are often quite noisy.
In the results below, we will focus on the implications of
substantial experimental uncertainty on the qualitative
correctness of the inferred reverse engineered biological
network. Although one could study the effect of
experimental uncertainty on the connection coefficients
directly, one can gain more insight if one considers the
propagation of error in two stages: ð1Þ the propagation
of error in the data matrix into uncertainty in
the direction of the normal vector of the data plane,
and ð2Þ the propagation of uncertainty in the normal
vector direction into uncertainty in the connection
coefficients rij :
Geometrically, the vector of connection coefficients ri

representing the direct effect of each module 1 . . .N on a
particular module i can be represented as a point on the
surface of a unit sphere in RN : To see this, consider the
MAPK example of Fig. 1. Suppose that the vector of
connection coefficients r1 (for the MKKK level) are
given by ð�1; 0; 1:1Þ: We can normalize this vector to
obtain ð�0:6727; 0; 0:7399Þ; which is a point on the unit
sphere in R3 and can be represented by the spherical
coordinates (y; fÞ ¼ ð42:3�; 180�Þ: Conversely, a point
on the unit sphere (corresponding, for example, to the
direction of the vector normal to the data plane) can be
converted into a vector of connection coefficients by
scaling the vector such that the appropriate element is
equal to �1: For example, the point represented by the
spherical coordinates (y; fÞ ¼ ð30�; 90�Þ isð0; 1

2
;
p
3=2Þ: If

this point was obtained as a result of perturbations that
did not directly effect module 2, then the corresponding
vector of connection coefficients must have �1 as the
second element. Therefore, to convert the vector
ð0; 1

2
;
p
3=2Þ into connection coefficients, we must scale

it such that the second element is �1; giving us r2 ¼
ð0;�1;�

p
3Þ: Given this one-to-one mapping between

points on unit spheres and vectors of connection
coefficients, one can make use of the methods of
probability and statistics of spherical distributions
(Fisher et al., 1987) to describe the joint distribution
of the connection coefficients given a (spherical)
distribution of directions of the normal vector to the
data plane. Alternatively, one can use this mapping as
an intuitive aid in understanding the qualitative aspects
of error propagation in unravelling.
3. Results and discussion

3.1. Exactly determined case

We will begin by considering the case described by Eq.
(11), namely, where the connection coefficients are just
determined by data. Furthermore, we will limit our-
selves for the moment to the case of three modules and
consider only the connection coefficients for the direct
effect of modules 1 and 2 on module 3, which for
notational convenience we will call r1 and r2: Let R1 and
R2 be the vectors of global responses to two different
perturbations which do not effect module 3 directly. For
example, if we perturb the MAPK network shown in
Fig. 1 from the reference steady state given in the
caption by reducing [Ras-GTP] by 10% (perturbation of
the MKKK module only), we obtain a noiseless global
response vector R1 ¼ ð�0:0797;�0:0613;�0:1393Þ;
while reduction of kcat5 and kcat6 by 15% (perturbation
of the MKK module only) results in a noiseless global
response R2 ¼ ð0:1026;�0:0462;�0:1051Þ; where mod-
ules 1, 2 and 3 correspond to the MKKK, MKK, and
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Fig. 2. Scatter plots of data plane orientations for orthogonal data

vectors of length one lying in the x–y plane to which 1000 realizations

of noise of standard deviation 0.1 (a), 0.3 (b), 0.5 (c), and 0.7 (d) were

added. The plots are equal-area Lambert projections (Fisher et al.,

1987) of the zX0 hemisphere oriented such that the z-axis is at the

center of the plot, and the symmetry-related points in the opposite

hemisphere have been inverted into the zX0 hemisphere. The equal-

area projection was used to maintain the true density of the scatter

plot. The dashed lines represent latitude and longitude in 101

increments. The red circles represent the location of the noiseless data

vectors in the x–y plane. The regions bounded by the heavy gray lines

correspond to data plane orientations which give connection

coefficients having the same pattern of signs (e.g. ‘‘�’’ corresponding

to r140 and r2o0).
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MAPK levels, respectively. The vectors R1 and R2 form
a plane defined by the normalvector n ¼ ð�2:811

10�4; 0:9156;�0:4021Þ: To convert this normal vector to
connection coefficients, we recognize that since module
3 was not directly perturbed, n must be scaled such that
the third element is �1; giving us r1 ¼ �0:0007 and r2 ¼

2:2770; in good agreement with the theoretically
determined values of r1 ¼ 0 and r2 ¼ 2 (Kholodenko
et al., 2002) (the small discrepancy arising from
numerical approximation). Intuitively, we expect that
the precision with which we can estimate r1 and r2 will
depend on the angle formed by the two vectors R1 and
R2: In particular, we expect the most favorable case to
be when R1 and R2 are perpendicular to each other, and
worst when they are collinear, in which case they no
longer uniquely define a plane. In the above example,
the angle between R1 and R2 is 69�: While this is
certainly smaller than 90�; it is still fairly large. By
contrast, consider an alternative perturbation scheme in
which we first perturb the MAPK network by simulta-
neously reducing [Ras-GTP] by 10% and kcat5 and kcat6

by 10%, giving a noiseless global response of R1 ¼

ð�0:0157;�0:0928;�0:2099Þ; and then reduce only kcat5

and kcat6 by 15%, resulting in a noiseless global response
R2 ¼ ð0:1026;�0:0462;�0:1051Þ (as before). Although
the resulting values of the connection coefficients are
still correct ðr1 ¼ �0:0055 and r2 ¼ 2:2634Þ; the angle
between R1 and R2 is now only 46�; which we expect will
be reflected in larger uncertainties in the connection
coefficients. If we repeatedly add noise to each
component of R1 and R2 and find a unit vector
perpendicular to the noise-perturbed data plane, we will
obtain a distribution of points on the unit sphere P(y;
f), where y and f are spherical coordinates. Since the
vectors ðx; y; zÞ and ð�x;�y;�zÞ are both normal to the
same plane, the distribution Pðy;fÞ will always possess
inversion symmetry with respect to the origin. Given the
one-to-one mapping between points on the sphere and
the connection coefficients described above, the dis-
tribution Pðy;fÞ completely describes the uncertainty in
r1 and r2:
In order to further strengthen our intuition about the

relationship between the connection coefficients r1 and
r2 and the data vectors R1 and R2; suppose that the
‘‘true values’’ of the connection coefficients are r1 = r2
= 0 (i.e. both module 1 and 2 have no direct effect on
module 3). In that case, any perturbation that directly
effects only module 1 or module 2 (singly or in
combination) cannot have any effect on module 3
(either directly or indirectly). Therefore, the elements of
the resulting noiseless vectors R1 and R2 vectors
corresponding to module 3 must be zero, and
consequently must lie in the x–y plane (where x, y,
and z represent the modules 1, 2, and 3, respectively)
with the vector r � ðr1; r2;�1Þ ¼ ð0; 0;�1Þ parallel
to the z-axis. Note that if only one of r1 and r2 is zero,
then this will not be reflected in any obvious way in R1

and R2:

3.1.1. Orthogonal data vectors

Let us assume for the moment that the noiseless R1

and R2 are both unit vectors and are perpendicular to
each other, e.g. R1 ¼ ð1; 0; 0Þ and R2 ¼ ð0; 1; 0Þ:
Although this will not be the case for general experi-
mental results (as has been seen above), this does
represent a ‘‘best-case scenario’’, and we will consider
the more general case in Section 3.1.2 below. Adding
Gaussian noise to each component of R1 and R2 in a
Monte Carlo fashion gives us a representation of
distribution of data plane orientations P(y; f), as shown
in Fig. 2. Clearly, as the variance of the noise increases,
the variability in the data plane orientation increases,
approaching a uniform distribution over the sphere for
very large noise levels. In all cases, however, the
distribution remains axially symmetric about the z-axis.
One obvious consequence of this axial symmetry is that
the absolute orientations of the data vectors have no
effect on the error propagation when the data vectors
are orthogonal.
As was described above, every point in the scatter

plots of Fig. 2 corresponds to one noise-corrupted
realization of r1 and r2; since if the unit normal vector to
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Fig. 3. Scatter plots of data plane orientations for orthogonal data

vectors of length one corresponding to true values r1 ¼ r2 ¼ �0:5 (a),
r1 ¼ r2 ¼ �1 (b), and r1 ¼ r2 ¼ �4 (c) to which 1000 realizations of

noise of standard deviation 0.2 were added. The plots are pseudo-

cylindrical equal-area Putnins P4’ projections (Canters and Decleir,

1989), and latitude and longitude lines are shown in 101 and 451

increments, respectively, with the positive x-axis at the center of the

plot. The regions bounded by the heavy gray lines correspond to data

plane orientations which give connection coefficients having the same

pattern of signs (as in Fig. 2).
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the data plane is given by

ðx; y; zÞ ¼ ðcosf sin y; sinf sin y; cos yÞ;

then the connection coefficients are r1 ¼ �x=z ¼

� cosf tan y and r2 ¼ �y=z ¼ � sinf tan y: Although
Pðy;fÞ completely determines Pðr1; r2Þ; the latter prob-
ability density may unfortunately be quite complicated
and pathological, since it is the distribution of the ratios
of random variables. Even for two normal random
variables a and b, the probability density of their ratio
c ¼ a=b is not simple (Fieller, 1932; Marsaglia, 1965),
and can be bimodal and/or thick tailed, especially if the
random variable b has significant probability density at
zero. In our case, the density will become more non-
normal as the probability density Pðy;fÞ at y ¼ p=2
increases, becoming thick-tailed and causing the mo-
ments of r1 and r2 to become infinite. Regardless of the
complexity of the distribution Pðr1; r2Þ; the probability
distribution for the algebraic signs of r1 and r2 (i.e. the
structure of the network) can be very simple, and is
determined by fraction of probability mass P(y; f) lying
in each the octant, as indicated in Fig. 2. Since the
distribution of the data plane orientations is axially
symmetric about z when the true values of r1 and r2 are 0
and the data vectors are orthogonal, it is easy to see that
each pattern of algebraic signs of the estimated r1 and r2
is equally likely.
Next, consider the case where the true values of the

connection coefficients are r1o0 and r2o0 (i.e. modules
1 and 2 both repress module 3). The normal vector to
the data plane must be proportional to ðr1; r2;�1Þ in the
absence of noise, and therefore will lie in either the
ðx40; y40; z40Þ or the ðxo0; yo0; zo0Þ octant (due
to inversion symmetry). The distributions P(y; f) for
three examples (corresponding to r1 ¼ r2 ¼ �0:5; r1 ¼

r2 ¼ �1; and r1 ¼ r2 ¼ �4Þ for orthogonal data vectors
R1 and R2 of length one at a noise standard deviation of
s ¼ 0:2 are shown in Fig. 3. Since this problem is
equivalent to the r1 =r2 = 0 case up to a rotation, it
follows that the resulting distributions will also be
axially symmetric. Although P(r1; r2) is quite compli-
cated, in practice the experimentalist may be interested
in a much simpler question, namely, how qualitatively
accurate is the inferred network? In particular, is the
structure of the network correct, i.e. are the activating
interactions inferred to have positive connection coeffi-
cients and the repressive ones to be negative? The
probability that the estimated value of r1 or r2 does not
have the same sign as the true value is shown as a
function of r1; r2; and s in Fig. 4. Although the
probability increases with noise level as expected, the
magnitude varies quite strongly with the true values of r1
and r2; particularly at lower noise levels.
This variability the probability of qualitative error can

be understood in terms of the distribution P(y; f). If the
true values of r1 and r2 are both negative, then the
probability of qualitative error is simply the pro-
bability that a point in the scatter plots of Fig. 3 ends
up in an octant other than ðx40; y40; z40Þ or
ðxo0; yo0; zo0Þ: One can immediately see, for exam-
ple, that if the true values of r1 and r2 are small and of the
same sign, then one is more likely to mis-estimate the sign
of either r1 or r2 (but not both), while if r1 and r2 are large,
then one is more likely to simultaneously mis-estimate
both signs. In general, the probability of qualitative error
must increase as the connection coefficients become very
small or very large, since in either case the center of the
P(y;f) distribution approaches the boundary which
defines the sign of r1 or r2: One can ask what values of
r1 and r2 minimize this probability. The empirical answer
to this question is shown in Fig. 5, which indicates that the
optimum occurs near r1 ¼ r2 ¼ 1:
Theoretically, the minimum occurs when the center of

the P(y; f) distribution is simultaneously maximally far
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Fig. 4. Dependence of the probability of qualitative error (i.e. the

probability of misestimating at least one of the signs of r1 or r2) as a

function of the noise standard deviation for various values of r1 and r2:
Probabilities were estimated in a Monte Carlo fashion using 105 noise

realizations. The true values of (r1; r2) are ð�1;�1Þ (solid), ð�2;�2Þ
(long-dashed), ð�0:3;�0:3Þ (short-dashed), ð�0:2;�2:5Þ (dotted), and
ð�0:1;�0:1Þ (dot-dashed).
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Fig. 5. Contour plot of the probability of qualitative error (i.e. the

probability of misestimating at least one of the signs of r1 or r2) as a

function of the spherical coordinates f and y of the normal vector to

the data plane for the case of orthogonal data vectors of length one.

Probabilities were estimated in a Monte Carlo fashion using 105 noise

realizations of standard deviation 0.4. The error contours correspond

to probabilities of 0.27 (solid), 0.3 (long-dashed), 0.4 (short-dashed),

0.5 (dotted), and 0.6 (dot-dashed), while the heavy dashed gray lines

correspond to the values of f and y which give r1 ¼ r2 ¼ �1:
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away from the edges of the octant ðx40; y40; z40Þ (for
simplicity we will neglect the inversion-symmetric
possibility). Imagine for a moment that Pðy;fÞ is
uniform on the spherical segment defined by a small
circle of radius r centered at Cartesian coordinates pc ¼

ðxc; yc; zcÞ ðxc40; yc40; zc40Þ; and that r sufficiently
large that the circle cannot be fit within the spherical
triangle defined by the coordinate axes. Then the
position pc which minimizes the probability of qualita-
tive error is that which minimizes the area of the circle
lying outside the triangle. This is minimized when the
great-circle distances from pc to the each of the three
sides are minimized. Since the latter are given by

cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þ y2c
p

; cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

c þ z2c
p

; and cos�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2c þ z2c

p
;

the sum of these three distances is minimized when xc ¼

yc ¼ zc ¼ 3�1=2; corresponding to connection coeffi-
cients r1 ¼ r2 ¼ 1: Furthermore, this argument remains
valid for any distribution Pðy;fÞ provided that it is
axially symmetric, and therefore has contours of equal
probability which are small circles. An alternative
derivation of the same result for a two-dimensional
case is given in the appendix. We expect that the
probability density of the connection coefficient itself
will become strongly non-normal as the true value of r1
becomes large even if the noise level is quite small, since
the probability density Pðy;fÞ at y ¼ p=2 increases as
the center of the distribution approaches thex–y plane
irrespective of the noise level.

3.1.2. Non-orthogonal data vectors

Let us next consider the more general and experi-
mentally more relevant case where the noiseless data
vectors are not orthogonal. First, consider the case
where the true values of the connection coefficients are
zero. Examples of scatter plots of samples from the
Pðy;fÞ distribution of data plane orientations are shown
in Fig. 6. Unlike the orthogonal case, the resulting
distributions are no longer axially symmetric, and the
degree of deviation from axial symmetry depends on the
angle between the data vectors, becoming a ‘‘girdle-
shaped’’ distribution when the data vectors are coin-
cident (corresponding to a singular matrix in Eq. (11)).
Since P(y;f) is no longer symmetric when Zap=2; the
absolute orientations of the data vectors will have an
effect on the error propagation. For example, in Fig.
6(c) one can see that if the true data vectors lie in the
ðþ;þÞ or ð�;�Þ quadrants of the x–y plane and Zop=2;
then it is considerably more likely that the inferred
values of r1 and r2will be of opposite sign rather than the
same sign. For the general case where the true values of
r1 and r2 are not zero, the magnitude of the dependence
of the qualitative error rate (probability of mis-estimat-
ing at least one of the signs of r1 or r2) depends strongly
on the true values of r1 and r2; as can be seen in Fig. 7
for the case where the angle between the data vectors is
45�: The error rate follows approximately the same
pattern as for the orthogonal case: one generally
observes smaller error rates when the true values of r1
and r2 are close to 1 then when those values are larger or
smaller. Unlike in the orthogonal data vector case,
however, r1 ¼ r2 ¼ 1 does not strictly minimize the error
rate, since we see that r1 ¼ r2 ¼ 2 gives a lower error
rate than r1 ¼ r2 ¼ 1 for a small number of data vector
orientations (Fig. 7). Furthermore, by comparing each
solid curve to the corresponding horizontal line repre-
senting the error rate corresponding to orthogonal
vectors, we can see that, for the most part, the error
rate is larger when the angle between the data vectors is
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Fig. 6. Scatter plots of data plane orientations for non-orthogonal

data vectors of length one lying in the x–y plane in the presence of

noise level s ¼ 0:2: The scatter plot for orthogonal data is shown in

panel (a) for references, and panels (b)–(d) correspond to angle

between the noiseless data vectors of 65�; 45�; and 25�; respectively.
The red circles represent the location of the noiseless data vectors in

the x–y plane. Each plot shows 1000 noise realizations. The plots are

equal-area Lambert projections (Fisher et al., 1987) of the zX0

hemisphere oriented such that the z-axis is at the center of the plot, and

the symmetry-related points in the opposite hemisphere have been

inverted into the zX0 hemisphere. The dashed lines represent latitude

and longitude in 10� increments. The regions bounded by the heavy

gray lines correspond to data plane orientations which give connection

coefficients having the same pattern of signs (as in Fig. 2).
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Fig. 7. Dependence of the qualitative error rate (the probability of

misestimating at least one of the signs of r1 or r2) as a function of

absolute vector orientation and the true values of r1 and r2: The results
shown are for the case where the angle between the noiseless data

vectors is 45�: The Euler angle w is defined as follows: the noiseless data
vectors R1 and R2 were initially taken to be equal to ð1; 0; 0Þ and (2�1=2;
2�1=2; 0), respectively, and then rotated first through an angle�w about
the z-axis, then by an angle�y about the y-axis, and finally by an angle

�f about the z-axis, where y and f are the spherical coordinates of the

unit vector in the direction of ðr1; r2;�1Þ: The probabilities were

estimated from 105 noise realizations of standard deviation 0.2. Results

are shown for (a) for r1 ¼ r2 ¼ �2; and r1 ¼ r2 ¼ �1 (solid and dotted

lines, respectively), r1 ¼ r2 ¼ �0:5 (b), r1 ¼ r2 ¼ �0:3 (c), and r1 ¼

r2 ¼ �0:1 (d). The horizontal gray lines correspond to the qualitative

error rate for two orthogonal data vectors at the same noise standard

deviation (e.g. Fig. 4).
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45� than when they are orthogonal. Again, there is an
exception when the true values of r1 and r2 are quite
small, in which case some orientations lead to a lower
error rate than the orthogonal case.

3.2. Overdetermined case

Finally, let us consider the case where we have more
than two measured data vectors for our hypothetical
three-module network. As discussed in the Methods
section above, as long as the perturbations do not
perturb module 3, the resulting data vectors R1; . . . ;RM

will all lie in a plane in the zero-noise limit, and the
normal vector to that plane will be proportional to
ðr1; r2;�1Þ: First, we would like to know how much
accuracy in the inferred network is gained by adding
additional data. Let us first consider the ‘‘best case
scenario’’ where the data vectors are maximally spread
out, i.e. with the M data vectors pointing toward each of
the vertices of a regular M-gon. This corresponds to the
orthogonal data vector case in the exactly determined
case, and results in axially symmetric distributions
Pðy;fÞ (data not shown). Increasing the number of data
vectors should increase the accuracy of the inferred
connection coefficients, as is confirmed in Fig. 8.
Furthermore, it shows that when the true values of r1
and r2 are 1 and the noise level is relatively low,
increasing the number of data vectors even modestly
leads to a significant improvement in the qualitative
error rate. Unfortunately, this improvement in error rate
is not nearly as strong at higher noise levels, and also
decreases when r1 and r2 are not near 1.
As in the two-vector case, there is a degradation in

performance as the data vector orientations deviate
from optimality. To describe the degree of non-
optimality of a set of data vectors of unit length, we
make use of the orientation matrix, a commonly used
technique in the study of circular and spherical
distributions (Fisher et al., 1987). For points on a circle,
the orientation matrix is given by

M�1
XM
i¼1

x2
i xiyi

xiyi y2i

 !
; (13)

where xi and yi are the Cartesian coordinates of the ith
data vector. The eigenvalues of the orientation matrix
are m and 1� m; where

m ¼
1

2
1þ M�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
i¼1

cos 2yi

 !2

þ
XM
i¼1

sin 2yi

 !2
vuut

2
64

3
75
(14)
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Fig. 8. The reduction in the probability of qualitative error (i.e. the

probability of misestimating at least one of the signs of r1 or r2) due to

additional data vectors relative to the two-vector case. Results are

shown for noise levels of 0.3 (solid lines), 0.6 (dashed lines), and 0.8

(dot-dashed lines). The true values of the connection coefficients were

r1 ¼ r2 ¼ �1 (a), r1 ¼ r2 ¼ �2 (b), and r1 ¼ r2 ¼ �0:3 (c), and the

relative orientations were chosen to be optimal (i.e. orthogonal for the

two-vector case, and pointing to the vertices of a regular M-gon for

M42 vectors). Probabilities were estimated in a Monte Carlo fashion

using 105 noise realizations.
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ranges from 1
2
when the M vectors are maximally spread

out to 1 when they are linearly degenerate. The
correlation of m with the probability of qualitative error
is shown in Fig. 9 for the case of three randomly
oriented data vectors. The relationship is essentially
deterministic when r1 ¼ r2 ¼ 1 (Fig. 9(a)), and
degrades somewhat when r1 ¼ r2a1: The latter obser-
vation is not at all unexpected, since m contains no
information at all about the absolute orientation of the
data vectors. Nonetheless, these plots do provide some
idea of the degree of degradation in the probability of
qualitative error when the data vectors are oriented
suboptimally.
To get a better idea of the practical impact of

additional data vectors, let us consider an example
based on the MAPK system of Fig. 1. Suppose for the
moment that we wish to determine the values of r21 and
r23; i.e. the direct effect of the MKKK and MAPK
modules on the MKK module, the theoretically
determined values of which are 1.9 and �0:6; respec-
tively (Kholodenko et al., 2002). In order to do that, we
must perform perturbations which directly effect only
modules 1 and 3. A minimal data set, for example, might
perturb the system by decreasing the concentration of
Ras-GTP by 6%, and Vmax 11 and Vmax 12 by 10%,
leading to data vectors R1 ¼ ð�0:462;�0:357;�0:813Þ
and R2 ¼ ð�0:350;�0:902; 0:348Þ; respectively (data
vectors have been scaled to be approximately length
one). Using this minimal data set, one obtains qualita-
tive error rates as a function of noise level as shown in
the solid curve of Fig. 10(a). In addition, one can
achieve similar perturbations by decreasing the total
concentration of MKKK by 8%, and kcat9 and kcat10 by
10%,giving two additional data vectors R3 ¼ ð�0:446;
�0:344;�0:784Þ and R4 ¼ ð0:347; 0:901;�0:350Þ: While
these data vectors are essentially ‘‘redundant’’, in that
the pairs ðR1;R3Þ and ðR2;R4Þ are nearly co-linear
(Fig. 10(b)), one does obtain a significant reduction
in the qualitative error rate, as can be seen by com-
paring the long-dashed and solid curves of Fig. 10(a).
Rather than reducing [MKKK]tot; kcat9 and kcat10

in two separate experiments, one could instead
perturb them simultaneously, resulting in the data
vector R5 ¼ ð�0:152; 0:319;�0:926Þ: The qualitative
error rates for the data set ðR1;R2;R5Þ is shown as
the short-dashed curve in Fig. 10(a), and shows that
this data set results in somewhat higher error rates
than the ðR1;R2;R3;R4Þ data set, but still represents
an improvement over the minimalðR1;R2Þ set. Finally,
the use of all five data vectors gives the error rates
shown in the dotted curve of Fig. 10(a). This data set
gives the smallest error rates of the four data sets
considered here, and at s ¼ 0:4 represents nearly a
factor of 2 reduction in the error rate over the minimal
two-vector data set.
Obtaining enough data for the problem to be over-

determined is useful not only because it improves the
accuracy of the inferred network, but also because it
allows us to assess the goodness-of-fit of the model. Up
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Fig. 9. Dependence of the qualitative error rate (the probability of

misestimating at least one of the signs of r1 or r2) as a function of the

largest eigenvalue of the orientation matrix of the data vectors given by

Eqs. (11) and (12). For all plots the data vectors were of unit length

and the noise level was 0.3. The true values of the connection

coefficients were r1 ¼ r2 ¼ �1 (a), r1 ¼ r2 ¼ �2 (b), and r1 ¼ r2 ¼

�0:3 (c). Each of the 100 points in each panel corresponds to a

different set of data vectors generated randomly with a uniform

distribution on the unit circle. Qualitative error probabilities were

estimated in a Monte Carlo fashion using 105 noise realizations.
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Fig. 10. (a) Dependence of the probability of qualitative error (i.e. the

probability of misestimating at least one of the signs of r1 or r2) as a

function of the noise standard deviation for various combinations

of data vectors obtained by numerical solution of the MAPK model

given in Fig. 1. Results are shown for data sets ðR1;R2) (solid),

ðR1;R2;R3;R4) (long-dashed), ðR1;R2;R5) (short-dashed), and

ðR1;R2;R3;R4;R5) (dotted) (see text for details). Probabilities were

estimated in a Monte Carlo fashion using 104 noise realizations. (b)

Relative lengths and orientations of the five data vectors R1;R2;R3;R4;
and R5 in the data plane.
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to this point, we have assumed that, apart from the
additive noise, the data fit the model perfectly, i.e. there
is no systematic error. In real-world problems, however,
this may not be the case. In particular, the unravelling
strategy contains several key assumptions, the validity
of which may not be known with certainty. For
example, one must make assumptions about the number
of communicating intermediates, which chemical species
can be treated as communicating intermediates, and
which modules are (not) directly effected by a given
perturbation. We would like to be able to detect when
our observed data is not consistent with our assumed
model. Measures of the consistency of the data with the
model are known as the ‘‘goodness-of-fit’’, and most
commonly take the form of the sum of the squared
deviations of the data from the values predicted by the
best-fit model (the ‘‘residuals’’). However, if we only
have just enough data to fit the model, we cannot hope
to find such inconsistencies based on goodness-of-fit,
since in all cases we will obtain zero residuals. If we have



ARTICLE IN PRESS
M. Andrec et al. / Journal of Theoretical Biology 232 (2005) 427–441 439
more data than parameters, then the sum of the squared
residuals will not be zero in general, but will have
contributions from the additive noise and from any
deviations of the data from the model. A standard way
of assessing the magnitude of the residuals is via
goodness-of-fit testing, where given an estimate of the
magnitude of the additive noise we can estimate the
probability of seeing residuals of the observed magni-
tude if the model were correct.
As an example of how such goodness-of-fit testing

might be used in a real-world situation, consider the
MAPK cascade of Fig. 1. Let us suppose that the details
of this system were unknown, and that in fact we did not
know that the doubly phosphorylated forms of the
kinases were the communicating intermediates, but
assumed (wrongly) that the unphosphorylated forms
were the relevant communicating intermediates. If we
perturb module 2 by decreasing kcat5 and kcat6 by 10%,
and perturb module 3 by decreasing kcat9 and kcat10 by
10%, then the resulting data vectors are R1 ¼

ð�1:07; 0:19; 3:13Þ and R2 ¼ ð�0:54;�0:62; 1:64Þ: These
lead to connection coefficients r21 and r31 of �0:02 and
�0:34; which are in substantial disagreement with the
theoretical values of 0 and �1:1 (Kholodenko et al.,
2002). Suppose that we extended the data set by
including four more perturbations: (1) decreasing
Vmax 7 and Vmax 8 by 10%, (2) decreasing Vmax 11

andVmax 12 by 10%, (3) decreasing the total concentra-
tion of MKK by 5%, and ð4Þ decreasing the total
concentration of MAPK by 5%. The resulting matrix of
fractional responses is

R ¼

�1:07 0:19 3:13

�0:54 �0:62 1:64

1:01 �0:19 �3:37

0:53 0:57 �1:71

�0:39 �5:40 1:18

�0:16 �0:18 �7:15

0
BBBBBBBB@

1
CCCCCCCCA

and gives the (still incorrect) connection coefficients
r21 ¼ 0:06 and r31 ¼ �0:10 and a smallest singular value
(equal to the square root of the sum of the squared
residuals) B ¼ 1:42: One can now ask what is the
probability that we would have obtained such a value
B by chance under independent and identically distrib-
uted normal noise if the unravelling model were correct?
Since B2=s2 is a w2 random variable of MN degrees of
freedom (where s2 is the noise variance), the probability
in question can be readily determined. Specifically, we
find that the probability that we will obtain B ¼ 1:42 is
less than 5% if the noise standard deviation is 0.25 or
smaller. Thus, if the noise is sufficiently small, then we
could detect that the assumptions underlying unravel-
ling were not satisfied by means of a significance test
strategy.
4. Conclusions

In earlier work (Kholodenko et al., 2002; Kholodenko
and Sontag, 2002), we developed a reverse engineering
strategy for the determination of the structure of
biological networks based on the effect of perturbations
on the steady-state concentrations of key intermediates.
The results above describe the effect that experimental
uncertainty has on the accuracy of the networks
obtained by that procedure. One important measure of
the accuracy is the probability that the inferred network
is qualitatively incorrect, i.e. that one or more of the
inferred connection coefficients are of the wrong sign
and an inhibitory interaction has been mistaken for an
activating one (or vice versa). We have found that in the
case of independent and identically distributed normal
errors, the probability of qualitative error is minimized
when the true values of the connection coefficients are
near 1 and when the data vector directions are oriented
maximally far apart from each other (orthogonal or
pointing toward the vertices of a regular polygon).
These results can be understood in an intuitive manner
by considering the distribution of the normal vector to
the plane determined by the data vectors. Increasing the
number of data vectors does, of course, increase the
accuracy, though the degree of reduction is reduced if
the noise level is high, the true values of the connection
coefficients are not near 1, or the data vector directions
have a high degree of collinearity. Furthermore, we
show how the residual from an overdetermined unravel-
ling problem could be used as part of a significance test
to detect if the assumptions of the unravelling strategy
have been violated.
It should be remembered that in some sense these

results represent a ‘‘best case scenario’’, since realistic
data will have noise that is not normally distributed. We
are currently investigating more realistic noise models
and their effect on the network accuracies, as well as
alternative inference methods that could reduce the
overall probability of qualitative error. Furthermore, we
are investigating the possibility of using the ideas of this
work (namely the co-planarity of data vectors associated
with a given module) as a basis for a techniques to mine
biological data when the underlying modules, commu-
nicating intermediates, and perturbations are not known
with certainty.
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Appendix A

Here, we present an alternative derivation for the two-
module case of the fact that the error in the connection
coefficient is minimized when the absolute value of the
connection coefficient is 1. Suppose that the connection
coefficient describing the effect of one module on the
other is a. Therefore, the unit-length data vector R in the
absence of noise will be orthonormal to r ¼ ða;�1Þ:

R ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
p ;

affiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p

� �
: (A.1)

Adding the noise vector e ¼ ðe1; e2Þ to R; and solving for
r̂ ¼ ðx;�1Þ such that ðR þ eÞ � r̂ ¼ 0; we find that

x ¼
a þ e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p

1þ e1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p : (A.2)

We wish to find the value of a which gives the smallest
relative error

E ¼
x � a

a

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
ðe2 � ae1Þ

ð1þ e1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
Þa

: ðA:3Þ

Let us assume that the random variables e1 and e2 are
independent and have zero mean and small but equal
variances. The last assumption allows us to replace the
factor in parentheses in the denominator of Eq. (A.3)
with 1, giving

E �
e2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p

a
� e1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

p
: (A.4)

Since e1 and e2 have mean zero, the mean relative error is
zero (to within the approximation of Eq. (A.4)), and is
independent of the value of a. Therefore, we instead find
the value of a which minimizes the mean-squared relative
error, which in turn is simply the variance of E. Since e1
and e2 are uncorrelated and have equal variance, the
variance of E is proportional to a2 + a�2 + 2, which is
minimized when a ¼ �1:
Appendix B. Supplementary material

The online version of this article contains additional
supplementary material. Please visit doi: 10.1016/
j.jtbi.2004.08.022.
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