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Summary. A positive dynamical system is said to be persistent if every solution
that starts in the interior of the positive orthant does not approach the boundary of
this orthant. For chemical reaction networks and other models in biology, persistence
represents a non-extinction property: if every species is present at the start of the
reaction, then no species will tend to be eliminated in the course of the reaction.
This paper provides checkable necessary as well as sufficient conditions for persistence
of chemical species in reaction networks, and the applicability of these conditions is
illustrated on some examples of relatively high dimension which arise in molecular
biology. More specific results are also provided for reactions endowed with mass-action
kinetics. Overall, the results exploit concepts and tools from Petri net theory as well
as ergodic and recurrence theory.

1 Introduction

Molecular systems biology is a cross-disciplinary and currently very active field
of science which aims at the understanding of cell behavior and function at the
level of chemical interactions. A central goal of this quest is the characterization
of qualitative dynamical features, such as convergence to steady states, periodic
orbits, or possible chaotic behavior, and the relationship of this behavior to
the structure of the corresponding chemical reaction network. The interest in
these questions in the context of systems biology lies on the hope that their
understanding might shed new light on the principles underlying the evolution
and organization of complex cellular functionalities. Understanding the long-
time behavior of solutions is, of course, a classical topic in dynamical systems
theory, and is usually formulated in the language of ω-limit sets, that is, the
study of the set of possible limit points of trajectories of a dynamical system.
That is the approach taken in this paper.

Persistency
Persistency is the property that, if every species is present at the initial time, no
species will tend to be eliminated in the course of the reaction. Mathematically,
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we ask that the ω-limit set of any trajectory which starts in the interior of the
positive orthant (all concentrations positive) does not intersect the boundary of
the positive orthant (more precise definitions are given below). Roughly speak-
ing, persistency can be interpreted as non-extinction: if the concentration of a
species would approach zero in the continuous differential equation model, for
the corresponding stochastic discrete-event model this could be interpreted by
thinking that it would completely disappear in finite time due to its discrete
nature.

Thus, one of the most basic questions that one may ask about a chemical
reaction is if persistency holds for that network. Also from a purely mathematical
perspective persistency is very important, because it may be used in conjunction
with other tools in order to guarantee convergence of solutions to equilibria
and perform other kinds of Input-Output analysis. For example, if a strictly
decreasing Lyapunov function exists on the interior of the positive orthant (see
e.g. [26, 27, 15, 16, 17, 40] for classes of networks where this can be guaranteed),
persistency allows such a conclusion.

An obvious example of a non-persistent chemical reaction is a simple irre-
versible conversion A→ B of a species A into a species B; in this example, the
chemical A empties out, that is, its time-dependent concentration approaches
zero as t → ∞. This is obvious, but for complex networks determining persis-
tency, or lack thereof, is, in general, an extremely difficult mathematical problem.
In fact, the study of persistence is a classical one in the (mathematically) related
field of population biology (see for example [19, 8] and much other foundational
work by Waltman) where species correspond to individuals of different types in-
stead of chemical units; with respect to such studies, chemical networks have one
peculiar feature which strongly impacts the invariance property of the boundary
and the overall persistence analysis. Lotka-Volterra systems, indeed, are charac-
terized by the property that any extinct species will never make its way back
into the ecosystem. As a matter of fact species only interact by influencing the
reciprocal death and birth rates but cannot convert into each other, which is
instead the typical situation in chemistry.

Petri Nets
Petri nets, also called place/transition nets, were introduced by Carl Adam Petri
in 1962 [36], and they constitute a popular mathematical and graphical modeling
tool used for concurrent systems modeling [35, 45]. Our modeling of chemical
reaction networks using Petri net formalism is a well-estabilished idea: there
have been many works, at least since [37],which have dealt with biochemical
applications of Petri nets, in particular in the context of metabolic pathways,
see e.g. [20, 25, 30, 33, 34], and especially the excellent exposition [44]. How-
ever, there does not appear to have been previous work using Petri nets for a
nontrivial study of dynamics. In this paper, we provide a new set of tools for
the robust analysis of persistence in chemical networks modeled by ordinary dif-
ferential equations endowed both with arbitrary as well as mass-action kinetics
(in the latter case we exploit the knowledge of the convergence speed to zero of



A Petri Net Approach to Persistence Analysis 183

mass-action reaction rates in approaching the orthant boundary in order to relax
some of the assumptions needed in the general case).

Our conclusions are robust in the sense that persistence is inferred regardless
of the specific values assumed by kinetic constants and comes as a result of both
structural (for instance topology of the network) as well as dynamical features
of the system (mass-action rates).

Application to a Common Motif in Systems Biology
In molecular systems biology research, certain “motifs” or subsystems appear
repeatedly, and have been the subject of much recent research. One of the most
common ones is that in which a substrate S0 is ultimately converted into a
product P , in an “activation” reaction triggered or facilitated by an enzyme
E, and, conversely, P is transformed back (or “deactivated”) into the original
S0, helped on by the action of a second enzyme F . This type of reaction is
sometimes called a “futile cycle” and it takes place in signaling transduction
cascades, bacterial two-component systems, and a plethora of other processes.
The transformations of S0 into P and vice versa can take many forms, depending
on how many elementary steps (typically phosphorylations, methylations, or
additions of other elementary chemical groups) are involved, and in what order
they take place. Figure 1 shows two examples, (a) one in which a single step
takes place changing S0 into P = S1, and (b) one in which two sequential steps
are needed to transform S0 into P = S2, with an intermediate transformation
into a substance S1. A chemical reaction model for such a set of transformations
incorporates intermediate species, compounds corresponding to the binding of
the enzyme and substrate. (In “quasi-steady state” approximations, a singular
perturbation approach is used in order to eliminate the intermediates. These
approximations are much easier to study, see e.g. [2].) Thus, one model for (a)
would be through the following reaction network:

E + S0 ↔ ES0 → E + S1
F + S1 ↔ FS1 → F + S0

(1)

(double arrows indicate reversible reactions) and a model for (b) would be:

E + S0 ↔ ES0 → E + S1 ↔ ES1 → E + S2
F + S2 ↔ FS2 → F + S1 ↔ FS1 → F + S0

(2)

where “ES0” represents the complex consisting of E bound to S0 and so forth.

F

E

S0 S1

F

E

F

E

S S0 2S1

Fig. 1. (a) One-step. (b) Two-step transformations.

(a) (b)
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As a concrete example, case (b) may represent a reaction in which the en-
zyme E reversibly adds a phosphate group to a certain specific amino acid in
the protein S0, resulting in a single-phosphorylated form S1; in turn, E can
then bind to S1 so as to produce a double-phosphorylated form S2, when a
second amino acid site is phosphorylated. A different enzyme reverses the pro-
cess. (Variants in which the individual phosphorylations can occur in different
orders are also possible; we discuss several models below.) This is, in fact, one
of the mechanisms believed to underlie signaling by MAPK cascades. Mitogen-
activated protein kinase (MAPK) cascades constitute a motif that is ubiquitous
in signal transduction processes [28, 31, 43] in eukaryotes from yeast to humans,
and represents a critical component of pathways involved in cell apoptosis, dif-
ferentiation, proliferation, and other processes. These pathways involve chains of
reactions, activated by extracellular stimuli such as growth factors or hormones,
and resulting in gene expression or other cellular responses. In MAPK cascades,
several steps as in (b) are arranged in a cascade, with the “active” form S2
serving as an enzyme for the next stage.

Single-step reactions as in (a) can be shown to have the property that all
solutions starting in the interior of the positive orthant globally converge to a
unique (subject to stoichiometry constraints) steady state, see [4], and, in fact,
can be modeled by monotone systems after elimination of the variables E and
F , cf. [1]. The study of (b) is much harder, as multiple equilibria can appear,
see e.g. [32, 13]. We will show how our results can be applied to test persistence
of this model, as well as several variants.

Organization of Paper
The remainder of paper is organized as follows. Section 2 sets up the basic
terminology and definitions regarding chemical networks, as well as the notion
of persistence, Section 3 shows how to associate a Petri net to a chemical net-
work, Sections 4 and 5 illustrate, respectively, necessary and sufficient conditions
for persistence analysis of broad classes of biochemical networks, regardless of
the specific kinetics considered; in Section 6, we show how our results apply
to the enzymatic mechanisms described above. Section 7 draws some parallels
between liveness analysis for standard and stochastic Petri nets (the so called
Commoner’s Theorem) and the main result in Section 5. Section 8 further moti-
vates the systematic study of persistence by illustrating a simple toy example for
which stochastic and deterministic analysis yield different predictions in terms of
qualitative behaviour, while Section 9 presents specific results for attacking such
questions in the case of mass-action kinetics. Finally, Section 10 illustrates ap-
plicability of the latter analysis results and draws a comparison with the discrete
liveness analysis for two simple networks. Conclusions are drawn in Section 11.

2 Chemical Networks

A chemical reaction network (“CRN”, for short) is a set of chemical reactionsRi,
where the index i takes values in R := {1, 2, . . . , nr}. We next define precisely
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what one means by reactions, and the differential equation associated to a CRN,
using the formalism from chemical networks theory.

Let us consider a set of chemical species Sj , j ∈ {1, 2, . . . ns} := S which are
the compounds taking part in the reactions. Chemical reactions are denoted as
follows:

Ri :
∑
j∈S

αijSj →
∑
j∈S

βijSj (3)

where the αij and βij are nonnegative integers called the stoichiometry coef-
ficients. The compounds on the left-hand side are usually referred to as the
reactants, and the ones on the right-hand side are called the products, of the
reaction. Informally speaking, the forward arrow means that the transformation
of reactants into products only happens in the direction of the arrow. If also the
converse transformation occurs, then, the reaction is reversible and we need to
also list its inverse in the chemical reaction network as a separate reaction.

It is convenient to arrange the stoichiometry coefficients into an ns×nr matrix,
called the stoichiometry matrix Γ , defined as follows:

[Γ ]ji = βij − αij , (4)

for all i ∈ R and all j ∈ S (notice the reversal of indices). This will be later
used in order to write down the differential equation associated to the chemical
reaction network. Notice that we allow Γ to have columns which differ only by
their sign; this happens when there are reversible reactions in the network.

We discuss now how the speed of reactions is affected by the concentrations
of the different species. Each chemical reaction takes place continuously in time
with its own rate which is assumed to be only a function of the concentration of
the species taking part in it. In order to make this more precise, we define the
vector S = [S1, S2, . . . Sns ]′ of species concentrations and, as a function of it, the
vector of reaction rates

R(S) := [R1(S), R2(S), . . . Rnr (S)]′ .

Each reaction rate Ri is a real-analytic function defined on an open set which
contains the non-negative orthant O+ = Rns

≥0 of Rns , and we assume that each
Ri depends only on its respective reactants. (Imposing real-analyticity, that is
to say, that the function Ri can be locally expanded into a convergent power
series around each point in its domain, is a very mild assumption, verified in
basically all applications in chemistry, and it allows stronger statements to be
made.) Furthermore, we assume that each Ri satisfies the following monotonicity
conditions:

∂Ri(S)
∂Sj

=
{
≥ 0 if αij > 0
= 0 if αij = 0. (5)

We also assume that, whenever the concentration of any of the reactants of a
given reaction is 0, then, the corresponding reaction does not take place, meaning
that the reaction rate is 0. In other words, if Si1 , . . . , SiN are the reactants of
reaction j, then we ask that
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Rj(S) = 0 for all S such that [Si1 , . . . , SiN ] ∈ ∂O+ ,

where ∂O+ = ∂RN
≥0 is the boundary of O+ in RN . Conversely, we assume that

reactions take place if reactants are available, that is:

Rj(S) > 0 whenever S is such that [Si1 , . . . , SiN ] ∈ int[RN
≥0] .

A special case of reactions is as follows. One says that a chemical reaction
network is equipped with mass-action kinetics if

Ri(S) = ki

ns∏
j=1

S
αij

j for all i = 1, . . . , nr .

This is a commonly used form for the functions Ri(s) and amounts to asking
that the reaction rate of each reaction is proportional to the concentration of
each of its participating reactants.

With the above notations, the chemical reaction network is described by the
following system of differential equations:

Ṡ = Γ R(S). (6)

with S evolving in O+ and where Γ is the stoichiometry matrix.
There are several additional notions useful when analyzing CRN’s. One of

them is the notion of a complex. We associate to the network (3) a set of com-
plexes, Ci’s, with i ∈ {1, 2, . . . , nc}. Each complex is an integer combination of
species, specifically of the species appearing either as products or reactants of
the reactions in (3). We introduce the following matrix Γ̃ as follows:

Γ̃ =

⎡⎢⎢⎢⎣
α11 α21 . . . αnr1 β11 β21 . . . βnr1
α12 α22 . . . αnr2 β12 β22 . . . βnr2
...

...
...

...
...

...
α1ns α2ns . . . αnrns β1ns β2ns . . . βnrns

⎤⎥⎥⎥⎦
Then, a matrix representing the complexes as columns can be obtained by delet-
ing from Γ̃ repeated columns, leaving just one instance of each; we denote by
Γc ∈ Rns×nc the matrix which is thus constructed. Each of the columns of Γc is
then associated with a complex of the network. We may now associate to each
chemical reaction network, a directed graph (which we call the C-graph), whose
nodes are the complexes and whose edges are associated to the reactions (3). An
edge (Ci, Cj) is in the C-graph if and only if Ci → Cj is a reaction of the net-
work. Note that the C-graph need not be connected (the C-graph is connected
if for any pair of distinct nodes in the graph there is an undirected path linking
the nodes), and lack of connectivity cannot be avoided in the analysis. (This is
in contrast with many other graphs in chemical reaction theory, which can be
assumed to be connected without loss of generality.) In general, the C-graph will
have several connected components (equivalence classes under the equivalence
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relation “is linked by an undirected path to”, defined on the set of nodes of the
graph).

Let I be the incidence matrix of the C-graph, namely the matrix whose
columns are in one-to-one correspondence with the edges (reactions) of the graph
and whose rows are in one-to-one correspondence with the nodes (complexes).
Each column contains a −1 in the i-th entry and a +1 in the j-th entry (and
zeroes in all remaining entries) whenever (Ci, Cj) is an edge of the C-graph
(equivalently, when Ci → Cj is a reaction of the network). With this notations,
we have the following formula, to be used later:

Γ = Γc I . (7)

We denote solutions of (6) as follows: S(t) = ϕ(t, S0), where S0 ∈ O+ is the
initial concentration of chemical species. As usual in the study of the qualitative
behavior of dynamical systems, we will make use of ω-limit sets, which capture
the long-term behavior of a system and are defined as follows:

ω(S0) := {S ∈ O+ : ϕ(tn, S0)→ S for some tn → +∞} (8)

(implicitly, when talking about ω(S0), we assume that ϕ(t, S0) is defined for all
t ≥ 0 for the initial condition S0). We will be interested in asking whether or not a
chemical reaction network admits solutions in which one or more of the chemical
compounds become arbitrarily small. The following definition, borrowed from the
ecology literature, captures this intuitive idea.

Definition 1. A chemical reaction network (6) is persistent if ω(S0)∩∂O+ = ∅
for each S0 ∈ int(O+).

We will derive conditions for persistence of general chemical reaction networks.
Our conditions will be formulated in the language of Petri nets; these are discrete-
event systems equipped with an algebraic structure that reflects the list of chem-
ical reactions present in the network being studied, and are defined as follows. In
the present chapter we make an effort to be self-contained with respect, however,
for a more in depth introduction see for instance one of the many books devoted
to this subject, [36, 45].

3 Petri Nets

We associate to a CRN a bipartite directed graph (i.e., a directed graph with
two types of nodes) with weighted edges, called the species-reaction Petri net,
or SR-net for short. Mathematically, this is a quadruple

(VS , VR, E,W ) ,

where VS is a finite set of nodes each one associated to a species (usually referred
to as “places” in Petri Net literature), VR is a finite set of nodes (disjoint from
VS), each one corresponding to a reaction (usually named the “transitions” of
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the network), and E is a set of edges as described below. (We often write S or
VS interchangeably, or R instead of VR, by identifying species or reactions with
their respective indices; the context should make the meaning clear.) The set of
all nodes is also denoted by V .= VR ∪ VS .

The edge set E ⊂ V × V is defined as follows. Whenever a certain reaction
Ri belongs to the CRN: ∑

j∈S
αijSj →

∑
j∈S

βijSj , (9)

we draw an edge from Sj ∈ VS to Ri ∈ VR for all Sj ’s such that αij > 0. That
is, (Sj , Ri) ∈ E iff αij > 0, and we say in this case that Ri is an output reaction
for Sj . Similarly, we draw an edge from Ri ∈ VR to every Sj ∈ VS such that
βij > 0. That is, (Ri, Sj) ∈ E whenever βij > 0, and we say in this case that Ri

is an input reaction for Sj .
Accordingly, we also talk about input and output reactions for a given set

Σ ⊂ S of species. This is defined in the obvious way, viz. by considering the
union of all input (and respectively output) reactions over all species belonging
to Σ.

Notice that edges only connect species to reactions and vice versa, but never
connect two species or two reactions.

The last element to fully define the Petri net is the function W : E → N,
which associates to each edge a positive integer according to the rule:

W (Sj , Ri) = αij and W (Ri, Sj) = βij .

Several other definitions which are commonly used in the Petri net literature
will be of interest in the following. We say that a row or column vector v is
non-negative, and we denote it by v  0 if it is so entry-wise. We write v ! 0 if
v  0 and v �= 0. A stronger notion is instead v " 0, which indicates vi > 0 for
all i.

Definition 2. A P-semiflow is any row vector c ! 0 such that c Γ = 0. Its sup-
port is the set of indices {i ∈ VS : ci > 0}. A Petri net is said to be conservative
if there exists a P-semiflow c" 0.

Notice that P-semiflows for the system (6) correspond to non-negative linear
first integrals, that is, linear functions S �→ cS such that (d/dt)cS(t) ≡ 0 along
all solutions of (6) (assuming that the span of the image of R(S) is Rnr ). In
particular, a Petri net is conservative if and only if there is a positive linear
conserved quantity for the system. (Petri net theory views Petri nets as “token-
passing” systems, and, in that context, P-semiflows, also called place-invariants,
amount to conservation relations for the “place markings” of the network, that
show how many tokens there are in each “place,” the nodes associated to species
in SR-nets. We do not make use of this interpretation in this paper.)

Definition 3. A T-semiflow is any column vector v ! 0 such that Γ v = 0. A
Petri net is said to be consistent if there exists a T-semiflow v " 0.
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The notion of T-semiflow corresponds to the existence of a collection of positive
reaction rates which do not produce any variation in the concentrations of the
species. In other words, v can be viewed as a set of fluxes that is in equilibrium
([44]). (In Petri net theory, the terminology is “T-invariant,” and the fluxes are
flows of tokens.)

A chemical reaction network is said to be reversible if each chemical reaction
has an inverse reaction which is also part of the network. Biochemical models are
most often non-reversible. For this reason, a far milder notion was introduced
[26, 27, 15, 16, 17]: A chemical reaction network is said to be weakly reversible if
each connected component of the C-graph is strongly connected (meaning that
there is a directed path between any pair of nodes in each connected component).
In algebraic terms, weak reversibility amounts to existence of v " 0 such that
Iv = 0 (see Corollary 4.2 of [18]), so that in particular, using (7), also Γv =
ΓcIv = 0. Hence a chemical reaction network that is weakly reversible has a
consistent associated Petri net.

A few more definitions are needed in order to state our main results.

Definition 4. A nonempty set Σ ⊂ VS is called a siphon if each input reaction
associated to Σ is also an output reaction associated to Σ. A siphon is a dead-
lock if its set of output reactions is all of VR. A deadlock is minimal if it does
not contain (strictly) any other deadlocks. A siphon is minimal if it does not
contain (strictly) any other siphons. Notice that a minimal deadlock need not be
a minimal siphon (and viceversa, which is obvious). A pair of distinct deadlocks
Σ1 and Σ2 is said to be nested if either Σ1 ⊂ Σ2 or Σ2 ⊂ Σ1.

Similarly one defines the notion of trap.

Definition 5. A non-empty set T ⊂ VS is called a trap if each output reaction
associated to T is also an input reaction associated to T .

For later use we associate a particular set to a siphon Σ as follows:

LΣ = {x ∈ O+ |xi = 0⇐⇒ i ∈ Σ}.

It is also useful to introduce a binary relation “reacts to”, which we denote by
�, and we define as follows: Si � Sj whenever there exists a chemical reaction
Rk, so that ∑

l∈S
αklSl →

∑
l∈S

βklSl

with αki > 0, βkj > 0. If the reaction number is important, we also write

Si �k Sj

(where k ∈ R). With this notation, the notion of siphon can be rephrased as
follows: Z ⊂ S is a siphon for a chemical reaction network if for every S ∈ Z
and k ∈ R such that S̃k := {T ∈ S : T �k S} �= ∅, it holds S̃k ∩ Z �= ∅.
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4 Necessary Conditions

Our first result will relate persistence of a chemical reaction network to consis-
tency of the associated Petri net.

Theorem 1. Let (6) be the equation describing the time-evolution of a conser-
vative and persistent chemical reaction network. Then, the associated Petri net
is consistent.

Proof. Let S0 ∈ int(O+) be any initial condition. By conservativity, solutions
satisfy cS(t) ≡ cS0, and hence remain bounded, and therefore ω(S0) is a
nonempty compact set. Moreover, by persistence, ω(S0) ∩ ∂O+ = ∅, so that
R(S̃0) " 0, for all S̃0 ∈ ω(S0). In particular, by compactness of ω(S0) and
continuity of R, there exists a positive vector v " 0, so that

R(S̃0)  v for all S̃0 ∈ ω(S0) .

Take any S̃0 ∈ ω(S0). By invariance of ω(S0), we have R(ϕ(t, S̃0))  v for all
t ∈ R. Consequently, taking asymptotic time averages, we obtain:

0 = lim
T→+∞

ϕ(T, S̃0)− S̃0

T
= lim

T→+∞
1
T

∫ T

0
ΓR(ϕ(t, S̃0)) dt (10)

(the left-hand limit is zero because ϕ(T, S̃0) is bounded). However,

1
T

∫ T

0
R(ϕ(t, S̃0)) dt  v

for all T > 0. Therefore, taking any subsequence Tn → +∞ so that there is a
finite limit:

lim
n→+∞

1
Tn

∫ Tn

0
R(ϕ(t, S̃0)) dt = v̄  v .

We obtain, by virtue of (10), that Γ v̄ = 0. This completes the proof of consis-
tency, since v̄ " 0.

5 Sufficient Conditions

In this present Section, we derive sufficient conditions for insuring persistence of
a chemical reaction network on the basis of Petri net properties.

Theorem 2. Consider a chemical reaction network satisfying the following as-
sumptions:

1. its associated Petri net is conservative;
2. each siphon contains the support of a P-semiflow.

Then, the network is persistent.
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We first prove a number of technical results. The following general fact about
differential equations will be useful.

For a real number p, let sign p := 1, 0,−1 if p > 0, p = 0, or p < 0 re-
spectively, and, similarly for any real vector x = (x1, . . . , xn), let signx :=
(signx1, . . . , signxn)′. When x belongs to the closed positive orthant Rn

+, signx ∈
{0, 1}n.

Lemma 1. Let f be a real-analytic vector field defined on some open neighbor-
hood of Rn

+, and suppose that Rn
+ is forward invariant for the flow of f . Consider

any solution x̄(t) of ẋ = f(x), evolving in Rn
+ and defined on some open interval

J . Then, sign x̄(t) is constant on J .

Proof. Pick such a solution, and define

Z := {i | x̄i(t) = 0 for all t ∈ J} .

Relabeling variables if necessary, we assume without loss of generality that Z =
{r + 1, . . . , n}, with 0 ≤ r ≤ n, and we write equations in the following block
form:

ẏ = g(y, z)
ż = h(y, z)

where x′ = (y′, z′)′ and y(t) ∈ Rr, z(t) ∈ Rn−r. (The extreme cases r = 0 and
r = n correspond to x = z and x = y respectively.) In particular, we write
x̄′ = (ȳ′, z̄′)′ for the trajectory of interest. By construction, z̄ ≡ 0, and the sets

Bi := {t | ȳi(t) = 0}

are proper subsets of J , for each i ∈ {1, . . . , r}. Since the vector field is real-
analytic, each coordinate function ȳi is real-analytic (see e.g. [41], Proposition
C.3.12), so, by the principle of analytic continuation, each Bi is a discrete set.
It follows that

G := J \
r⋃

i=1

Bi

is an (open) dense set, and for each t ∈ G, ȳ(t) ∈ int Rr
+, the interior of the

positive orthant.
We now consider the following system on Rr:

ẏ = g(y, 0) .

This is again a real-analytic system, and Rr
+ is forward invariant. To prove

this last assertion, note that forward invariance of the closed positive orthant is
equivalent to the following property:

for any y ∈ Rr
+ and any i ∈ {1, . . . , r} such that yi = 0, gi(y, 0) ≥ 0.
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Since Rn
+ is forward invariant for the original system, we know, by the same

property applied to that system, that for any (y, z) ∈ Rn
+ and any i ∈ {1, . . . , r}

such that yi = 0, gi(y, z) ≥ 0. Thus, the required property holds (case z = 0).
In particular, int Rr

+ is also forward invariant (see e.g. [2], Lemma III.6). By
construction, ȳ is a solution of ẏ = g(y, 0), ȳ(t) ∈ int Rr

+ for each t ∈ G, Since
G is dense and int Rr

+ is forward invariant, it follows that ȳ(t) ∈ int Rr
+ for all

t ∈ J . Therefore,
sign x̄(t) = (1r, 0n−r)′ for all t ∈ J

where 1r is a vector of r 1’s and 0n−r is a vector of n− r 0’s.

We then have an immediate corollary:

Lemma 2. Suppose that Ω ⊂ O+ is a closed set, invariant for (6). Suppose that
Ω ∩ LZ is non-empty, for some Z ⊂ S. Then, Ω ∩ LZ is also invariant with
respect to (6).

Proof. Pick any S0 ∈ Ω ∩ LZ . By invariance of Ω, the solution ϕ(t, S0) belongs
to Ω for all t in its open domain of definition J , so, in particular (this is the
key fact), ϕ(t, S0) ∈ O+ for all t (negative as well as positive). Therefore, it also
belongs to LZ , since its sign is constant by Lemma 1.

In what follows, we will make use of the Bouligand tangent cone TCξ(K) of a
set K ⊂ O+ at a point ξ ∈ O+, defined as follows:

TCξ(K) =
{
v ∈ Rn : ∃kn ∈ K, kn → ξ andλn ↘ 0 :

1
λn

(kn − ξ)→ v

}
.

Bouligand cones provide a simple criterion to check forward invariance of closed
sets (see e.g. [5]): a closed set K is forward invariant for (6) if and only if
ΓR(ξ) ∈ TCξ(K) for all ξ ∈ K. However, below we consider a condition involving
tangent cones to the sets LZ , which are not closed. Note that, for all index sets
Z and all points ξ in LZ ,

TCξ (LZ) = {v ∈ Rn : vi = 0 ∀ i ∈ Z} .

Lemma 3. Let Z ⊂ S be non-empty and ξ ∈ LZ be such that ΓR(ξ) ∈ TCξ(LZ).
Then Z is a siphon.

Proof. By assumption ΓR(ξ) ∈ TCξ(LZ) for some ξ ∈ LZ . This implies that
[ΓR(ξ)]i = 0 for all i ∈ Z. Since ξi = 0 for all i ∈ Z, all reactions in which
Si is involved as a reactant are shut off at ξ; hence, the only possibility for
[ΓR(ξ)]i = 0 is that all reactions in which Si is involved as a product are also
shut-off. Hence, for all k ∈ R, and all l ∈ S so that Sl �k Si, we necessarily have
that Rk(ξ) = 0.

Hence, for all k ∈ R so that S̃k = {l ∈ S : Sl �k Si} is non-empty, there must
exist an l ∈ S̃k so that ξl = 0. But then necessarily, l ∈ Z, showing that Z is
indeed a siphon.
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The above Lemmas are instrumental to proving the following Proposition:

Proposition 1. Let ξ ∈ O+ be such that ω(ξ) ∩ LZ �= ∅ for some Z ⊂ S. Then
Z is a siphon.

Proof. Let Ω be the closed and invariant set ω(ξ). Thus, by Lemma 2, the non-
empty set LZ ∩Ω is also invariant. Notice that

cl[LZ ] =
⋃

W⊇Z

LW .

Moreover, LW ∩ Ω is invariant for all W ⊂ S such that LW ∩ Ω is non-empty.
Hence,

cl[LZ ] ∩Ω =
⋃

W⊇Z

[LW ∩Ω]

is also invariant. By the characterization of invariance for closed sets in terms of
Bouligand tangent cones, we know that, for any η ∈ cl[LZ ] ∩Ω we have

ΓR(η) ∈ TCη(Ω ∩ cl(LZ)) ⊂ TCη(cl(LZ)) .

In particular, for η ∈ LZ ∩ Ω (which by assumption exists), ΓR(η) ∈ TCη(LZ)
so that, by virtue of Lemma 3 we may conclude Z is a siphon.

Although at this point Proposition 1 would be enough to prove Theorem 2, it is
useful to clarify the meaning of the concept of a “siphon” here. It hints at the
fact, made precise in the Proposition below, that removing all the species of a
siphon from the network (or equivalently setting their initial concentrations equal
to 0) will prevent those species from being present at all future times. Hence,
those species literally “lock” a part of the network and shut off all the reactions
that are therein involved. In particular, once emptied a siphon will never be full
again. This explains why a siphon is sometimes also called a “locking set” in the
Petri net literature. A precise statement of the foregoing remarks is as follows.

Proposition 2. Let Z ⊂ S be non-empty. Then Z is a siphon if and only if
cl(LZ) is forward invariant for (6).

Proof.
Sufficiency: Pick ξ ∈ LZ �= ∅. Then forward invariance of cl(LZ) implies that
ΓR(ξ) ∈ TCξ(cl(LZ)) = TCξ(LZ), where the last equality holds since ξ ∈ LZ .
It follows from Lemma 3 that Z is a siphon.

Necessity: Pick ξ ∈ cl(LZ). This implies that ξi = 0 for all i ∈ Z ∪ Z ′, where
Z ′ ⊂ S could be empty. By the characterization of forward invariance of closed
sets in terms of tangent Bouligand cones, it suffices to show that [ΓR(ξ)]i = 0
for all i ∈ Z, and that [ΓR(ξ)]i ≥ 0 for all i ∈ Z ′ whenever Z ′ �= ∅. Now by (6),

[ΓR(ξ)]i =
∑

k

βkiRk(ξ)−
∑

l

αliRl(ξ) =
∑

k

βkiRk(ξ)− 0 ≥ 0 , (11)

which already proves the result for i ∈ Z ′. Notice that the second sum is zero
because if αli > 0, then species i is a reactant of reaction l, which implies that
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Rl(ξ) = 0 since ξi = 0. So we assume henceforth that i ∈ Z. We claim that the
sum on the right side of (11) is zero. This is obvious if the sum is void. If it is
non-void, then each term which is such that βki > 0 must be zero. Indeed, for
each such term we have that Rk(ξ) = 0 because Z is a siphon. This concludes
the proof of Proposition 2.

Proof of Theorem 2
Let ξ ∈ int(O+) be arbitrary and let Ω denote the corresponding ω-limit set
Ω = ω(ξ). We claim that the intersection of Ω and the boundary of O+ is
empty.

Indeed, suppose that the intersection is nonemty. Then, Ω would intersect
LZ , for some ∅ �= Z ⊂ S. In particular, by Proposition 1, Z would be a siphon.
Then, by our second assumption, there exists a non-negative first integral cS,
whose support is included in Z, so that necessarily cS(tn, ξ) → 0 at least along
a suitable sequence tn → +∞. However, cS(t, ξ) = cξ > 0 for all t ≥ 0, thus
giving a contradiction. %&

6 Applications

We now apply our results to obtain persistence results for variants of the reaction
(b) shown in Figure 1 as well as for cascades of such reactions.

6.1 Example 1

We first study reaction (2). Note that reversible reactions were denoted by a
“↔” in order to avoid having to rewrite them twice. The Petri net associated
to (2) is shown if Fig. 2. The network comprises nine distinct species, labeled
S0, S1, S2, E, F , ES0, ES1, FS2, FS1. It can be verified that the Petri net in
Fig. 2 is indeed consistent (so it satisfies the necessary condition). To see this,
order the species and reactions by the obvious order obtained when reading (2)
from left to right and from top to bottom (e.g., S1 is the fourth species and the
reaction E + S1 → ES1 is the fourth reaction). The construction of the matrix
Γ is now clear, and it can be verified that Γv = 0 with v = [2 1 1 2 1 1 2 1 1 2 1 1 ]′.
The network itself, however, is not weakly reversible, since neither of the two
connected components of (2) is strongly connected. Computations show that
there are three minimal siphons:

{E,ES0, ES1},
{F, FS1, FS2},

and
{S0, S1, S2, ES0, ES1, FS2, FS1}.

Each one of them contains the support of a P-semiflow; in fact there are three
independent conservation laws:

E + ES0 + ES1 = const1,
F + FS2 + FS1 = const2, and
S0 + S1 + S2 + ES0 + ES1 + FS2 + FS1 = const3,
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S1

ES0

S0

E

ES1

S2

FS2FS1

F

Fig. 2. Petri net associated to reactions (2)

whose supports coincide with the three mentioned siphons. Since the sum of
these three conservation laws is also a conservation law, the network is conserva-
tive. Therefore, application of Theorem 2 guarantees that the network is indeed
persistent.

6.2 Example 2

As remarked earlier, examples as the above one are often parts of cascades in
which the product (in MAPK cascades, a doubly-phosphorilated species) S2 in
turn acts as an enzyme for the following stage. One model with two stages is
as follows (writing S2 as E
 in order to emphasize its role as a kinase for the
subsequent stage):

E + S0 ↔ ES0 → E + S1 ↔ ES1 → E + E


F + E
 ↔ FS2 → F + S1 ↔ FS1 → F + S0
E
 + S


0 ↔ ES

0 → E
 + S


1 ↔ ES

1 → E
 + S


2
F 
 + S


2 ↔ FS

2 → F 
 + S


1 ↔ FS

1 → F 
 + S


0 .

(12)

The overall reaction is shown in Fig. 3. Note – using the labeling of species and
reaction as in the previous example – that Γv = 0 with v = [v′1 v

′
1 v

′
1 v

′
1]

′ and
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S1

ES0

S0

E

ES1

FS2FS1

F

E*

ES0*

ES1*

S0*

S1*

S2*

F*

FS1*

FS2*

Fig. 3. Petri net associated to reactions (12)

v1 = [2 1 1 2 1 1]′, and hence the network is consistent. There are five minimal
siphons for this network, namely:

{E,ES0, ES1},
{F, FS2, FS1},
{F 
, FS


2 , FS


1},

{S

0 , S



1 , S



2 , ES



0 , ES



1 , FS



2 , FS



1},

and
{S0, S1, E


, ES0, ES1, FS2, FS1, ES


0 , ES



1}.

Each one of them is the support of a P-semiflow, and there are five conservation
laws:

E + ES0 + ES1 = const1,
F + FS2 + FS1 = const2,
F 
 + FS


2 + FS

1 = const3,

S

0 + S


1 + S

2 + ES


0 + ES

1 + FS


2 + FS

1 = const4,

and
S0 + S1 + E
 + ES0 + ES1 + FS2 + FS1 + ES


0 + ES

1 = const5.

As in the previous example, the network is conservative since the sum of these
conservation laws is also a conservation law. Therefore the overall network is
persistent, by virtue of Theorem 2.

6.3 Example 3

An alternative mechanism for dual phosphorilation in MAPK cascades, consid-
ered in [32], differs from the previous ones in that it becomes relevant in what
order the two phosphorylations occur. (These take place at two different sites,
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E

F

M2F*

M2FMyF

MtF

ME MyE

MtE

M M2

ME*

My

Mt

Fig. 4. Petri net associated to the network (13)

a threonine and a tyrosine residue). The corresponding network can be modeled
as follows:

M + E ↔ ME → My + E ↔ MyE → M2 + E
M + E ↔ ME
 → Mt + E ↔ MtE → M2 + E
M2 + F ↔ M2F → My + F ↔ MyF → M + F
M2 + F ↔ M2F


 → Mt + F ↔ MtF → M + F.

(13)

See Fig. 4 for the corresponding Petri net. This network is consistent. Indeed,
Γv = 0 for the same v as in the previous example. Moreover it admits three
siphons of minimal support:

{E,ME,ME
,MyE,MtE},
{F,MyF,MtF,M2F,M2F


},
and
{M,ME,ME
,My,Mt,MyE,MtE,M2,M2F,M2F


,MtF,MyF}.
Each of them is also the support of a conservation law, respectively for M ,E and
F molecules. The sum of these conservation laws, is also a conservation law and
therefore the network is conservative. Thus the Theorem 2 again applies and the
network is persistent.

7 Discrete vs. Continuous Persistence Results

As a matter of fact, and this was actually the main motivation for the intro-
duction of Petri Nets in [36], each Petri Net (as defined in Section 3) comes
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with an associated discrete event system, which governs the evolution of a
vector M , usually called the marking of the net. The entries of M are non-
negative integers, in one-one correspondence with the places of the network, i.e.
M = [m1,m2, . . . ,mns ]′ ⊂ Nns , and the mis, i = 1 . . . ns, stand for the number
of “tokens” associated to the places S1 . . . Snp . In our context, each token may
be thought of as a molecule of the corresponding species. Once a certain initial
condition M0 ⊂ Nns has been specified for a given net, we have what is usually
called a marked Petri Net, In order to define dynamical behavior, one considers
the following firing rules for transitions R:

1. a transition R can fire whenever each input place of R is marked with a
number of tokens greater or equal than the weight associated to the edge
joining such a place to R (in our context a reaction can occur, at a given
time instant, only provided that each reagent has a number of molecules
greater or equal than the corresponding stoichiometry coefficient); we call
such transitions enabled.

2. when a transition R fires, the marking M of the network is updated by
subtracting, for each input place, a number of tokens equal to the weight
associated to the corresponding edge, while for each output place a number
of tokes equal to the weight of the corresponding edge is added.

Together with a rule that specifies the timing of the firings, this specifies a dy-
namical system describing the evolution of vectors M ∈ Nns . There are several
ways to specify timings. One may use a deterministic rule in which a specifica-
tion is made at each time instant of which transition fires (among those enabled).
Another possibility is to consider a stochastic model, in which firing events are
generated by random processes with exponentially decaying probability distri-
butions, with a specified rate λ. The timing of the next firing of a particular
reaction R might depend on R as well as the state vector M . In this way, an
execution of the Petri Net is nothing but a realization of a stochastic process
(which is Markovian in an appropriate space), whose study is classical not only
in Petri Net theory but also in the chemical kinetics literature. In the latter,
the equation governing the probability evolution is in fact the so-called Chem-
ical Master Equation, which is often simulated by using a method known as
“Gillespie’s algorithm”.

The main results in Sections 4 and 5 are independent of the type of kinetics
assumed for the chemical reaction network (for instance mass-action kinetics or
Michaelis-Menten kinetics are both valid options at this level of abstraction).
This also explains, to a great extent, the similarity between our theorems and
their discrete counterparts which arise in the context of liveness’s studies for
Petri Nets and Stochastic Petri Nets (liveness is indeed the discrete analog of
persistence for ODEs, even though its definition is usually given in terms of firing
of transitions rather than asymptotic averages of markings, see [45] for a precise
definition).

In particular, we focus our attention on the so called Siphon-Trap Property
which is a sufficient condition for liveness of conservative Petri Nets, and actually
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a complete characterization of liveness if the net is a “Free Choice Petri Net”
(this is known as Commoner’s Theorem, [22] and [12]):

Theorem 3. Consider a conservative Petri Net satisfying the following assump-
tion:

each (minimal) siphon contains a non-empty trap.

Then, the PN is alive.

Notice the similarity between the assumptions and conclusions in Theorem 2
and in Theorem 3. There are some subtle differences, however. Traps for Petri-
Nets enjoy the following invariance property: if a trap is non-empty at time zero
(meaning that at least one of its places has tokens), then the trap is non-empty
at all future times. In contrast, in a continuous set-up (when tokens are not
integer quantities but may take any real value), satisfaction of the siphon-trap
property does not prevent (in general) concentrations of species from decaying
to zero asymptotically. This is why we needed a strengthened assumption 2., and
asked that each siphon contains the support of a P-semiflow (which is always,
trivially, also a trap). In other words, in a continuous set-up the notion of a trap
looses much of its appeal, since one may conceive situations in which molecules
are pumped into the trap at a rate which is lower than the rate at which they
are extracted from it, so that, in the limit, the trap can be emptied out even
though it was initially full. A similar situation never occurs in a discrete set-
up since, whenever a reaction occurs, at least one molecule will be left inside
the trap.

8 Networks with Mass-Action Kinetics: A Toy Example

The results presented so far are independent of the type of kinetics assumed
for the chemical reaction network. A special case, which is of particular interest
in many applications, is that of systems with mass-action kinetics, as already
mentioned in Section 2. For systems with mass-action kinetics, we will next
derive sufficient conditions for persistence that exploit the additional structure
in order to relax some of the structural assumptions on the chemical reaction
network under consideration. As shown in the proof of Theorem 2, whenever the
omega-limit set of an interior solution of a chemical reaction network intersects
the boundary ofO+, the zero components of any intersection point correspond to
some siphon. There are two ways to rule this out situation. One way is to check
whether a siphon contains the support of a P-semiflow, as done in Theorem 2.
In this case, we say that the siphon is structurally non-emptiable; otherwise, we
say that the siphon is critical.

The conditions we are seeking will apply to chemical reaction networks whose
siphons are allowed to be critical (actually they need not even contain traps).

To further motivate our results, we first of all discuss a toy example which
can be easily analyzed both in a deterministic and a stochastic set-up and will
illustrate the usefulness of a systematic approach to the problem.
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Consider the following simple chemical reaction network:

2A+B → A+ 2B B → A (14)

which we assume endowed with mass-action kinetics. The associated Petri Net
is shown in Fig. 5 and it has the following properties:

1. it is conservative, with P-semiflow [1, 1]
2. it is consistent, with T-semiflow [1, 1]′

3. it admits a unique non-trivial siphon: {B}, which is also critical

A

B

2

2

Fig. 5. A persistent chemical network whose associated Petri Net is not alive

The net effect of the first reaction is to transform one molecule of species A into
one molecule of species B, and, clearly, the second reaction produces the reverse
transformation. Hence, given any positive initial number of molecules for A and
B, say n in total, we build the corresponding finite dimensional Markov chain
(see [29] for basic definitions), which in this case has the following graphical
structure:

[1, n− 1]↔ [2, n− 2]↔ . . .↔ [n− 2, 2]↔ [n− 1, 1]→ [n, 0],

where a pair [na, nb] denotes the number of A and B molecules respectively.
Notice that the above graph has a unique absorbing component, corresponding
to the node [n, 0]. Such a state, when reached, basically shuts off the chemical
reaction network, since the reactions do not allow the production of a molecule
of A if there are no B molecules. Note that the node [0, n] is never reached
from another state, since consumption of an A-molecule requires that at least 2
molecules of A be available beforehand. This is why we do not include it in the
diagram.

It turns out that, in the case of Petri Nets, the topology for the associated
reachability graph shown in Fig. 6 is not infrequent: namely, there exist one
or more absorbing components for the Markov Chain and a central strongly-
connected transient component; moreover, as the number of tokens increases,
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Absorbing
Component

Absorbing
Component

Absorbing
Component

Absorbing
Component

Strongly
connected
component

Fig. 6. Reachability graph of a Petri Net with critical siphons

the average-time that it takes to reach the absorbing components (the time
to absorption) from the central region rapidly grows to infinity. The absorbing
components of the graph correspond to the situation in which one or more critical
siphons are emptied, while the central region corresponds to situations in which
markings are oscillating, yet without reaching simultaneously a zero marking for
all places within any given critical siphon.

Asymptotic analysis of Stochastic Petri Nets with an associated reachability
graph which has the topology of Fig. 6 may lead to results which are in sharp
contrast, to say the least, with what is experienced in practice for any sufficiently
large initial number of tokens in the network. In fact, it may be argued that,
although in theory the only stationary steady-states are indeed reached when at
least one of the critical siphons gets emptied, such evolutions are so unlikely to
happen in any finite time (at the scale of what is meaningful to consider for the
application at hand), that, though possible in principle, they are however violat-
ing some “vague” entropic principle which one expects at the core of chemical
kinetics.

Let us analyze our example (14) in further detail. To make our model suitable
for computations, we associate to it a homogeneous continuous time Markov
chain, assigning to each reaction a positive rate, denoted as k1 and k2 for re-
actions 1 and 2 respectively. If we adopt mass-action kinetics, the matrix cor-
responding to the associated chemical master equation for a total number of n
molecules of A and B is given by:

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 k2 0 0 . . . 0
0  2k2 0 . . . 0

0 (n− 1)2k1  3k2
...

0 0 2(n− 2)2k1 
. . .

...

0 . . . 0
. . . . . . nk2

0 . . . 0 0 (n− 1)k1 

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)
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where  is chosen so that the matrix M has each row summing to 0. Hence,
the vector p(t) = [p[n,0](t), . . . , p[1,n−1](t)]′, evolves according to the following
equation:

ṗ(t) = Mp(t)

where p[na,nb](t) denotes the probability of having na molecules of A and nb

molecules of B at time t. One can easily compute the average absorption time
for any initial number of molecules of species B. Performing the computation
using a symbolic computational package, there results (for k1 and k2 equal
to 1) the exponential growth rate plotted in Fig. 7. Even with as few as 30
molecules, the average time it takes to have all the Bs transformed into As
is so large that no real life experiment nor simulation will ever meet such
conditions.

In other words, while a Petri Net graphical analysis leads one to conclude that
extinction is theoretically possible, this is an event with vanishingly small prob-
ability. On the other hand, as it will be shown next, sometimes such chemical
reaction networks can still be proved to be persistent when modeled by means
of differential equations for concentrations. Thus, the ODE model (in which no
species ever vanishes) provides a more accurate description of the true asymp-
totic behavior of the physical system in question. Of course, in general it is not
clear which modeling framework should be used under what circumstances. Our
aim is merely to point out certain discrepancies that may arise between the two
kinds of models, in order to further motivate an in depth study of persistence
on the basis of ODE techniques.
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Fig. 7. Exponential increase of average time to absorption
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So, let us now perform a simple deterministic analysis of the model. The
equations associated to the chemical reaction network are:

ȧ = −k1a
2b+ k2b ḃ = −k2b+ k1a

2b (16)

Exploiting the conservation law a(t)+ b(t) = Mtot we can bring down dimension
by 1 and study the simpler system:

ȧ = (k2 − k1a
2)(Mtot − a)

with a belonging to [0,Mtot]. Equilibria of the above equation are located at:
a = Mtot, a = ±

√
k2/k1. Two different scenarios arise, namely:

1. if
√
k2/k1 ≥ Mtot only one equilibrium exists in [0,Mtot] and all solutions

converge to it; this is a boundary equilibrium and therefore persistence does
not hold in this case.

2. if
√
k2/k1 < Mtot, two equilibria exist in [0,Mtot] and all solution starting in

[0,Mtot) converge to the interior equilibrium
√
k2/k1. In this case persistence

holds.

For example, in the above example, we had k1 = k1 = 1 and Mtot = 30, so the
second case holds.

9 A Notion of Dynamic Non-emptiability

A low-dimensional system such as the example in Section 8 may be easily an-
alyzed by direct computation or phase-plane analysis techniques. However, for
higher dimensional examples, it is desirable to have systematic tools that can
predict persistence in Petri Nets with critical siphons. We will show next that one
can still rule out solutions approaching the set LZ , for certain kinds of critical
siphons Z, by exploiting the additional information that comes from having im-
posed mass-action kinetics. To this end, we associate to each siphon a hierarchy
between its output reactions, as follows.

Let Σ ⊂ S be a siphon. We say that Ri �Σ Rj if αik ≥ αjk for all k ∈ Σ
and at least one of the inequalities is strict for some k ∈ Σ. The meaning of this
order relationship becomes clearer thanks to the following Lemma, whose proof
is a direct consequence of the definition of mass-action kinetics.

Lemma 4. Let Σ ⊂ VS be a siphon and Ri �Σ Rj. Let us consider a network
(6) endowed with mass action kinetics. Then, for each ε > 0, and each compact
subset K ⊂ LΣ, there exists an open neighborhood UK of K such that, for all
S ∈ UK , it holds Ri(S) ≤ εRj(S).

Accordingly, for each siphon Σ and each ε > 0, we may define the cone of feasible
reaction rates when approaching the boundary region LΣ , as follows:

Fε(Σ) := {v  0 : vi ≤ εvj , ∀ i, j ∈ R : Ri �Σ Rj}. (17)

The following Lemma is a well-known fact in Petri Net theory and we recall it
here for the sake of completeness.
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Lemma 5. Consider a conservative and consistent chemical reaction network
and let Σ be an arbitrary subset of VS . Then either 1. or 2. holds:

1. there exists c ! 0 such that c Γ = 0 and ck = 0 for all k /∈ Σ.
2. there exists v " 0 such that [Γv]k < 0 for all k ∈ Σ.

Proof. Without loss of generality assume that Σ comprises the first h species of
VS . Accordingly, we may partition Γ as follows:

Γ =
[
ΓΣ

ΓΣ̄

]
.

Consider the Petri Net associated to ΓΣ . One of the following conditions holds:

1. the net admits a place which is structurally bounded,
2. the net does not admit structurally bounded places.

By Theorem 15, page 333 of [38], the two conditions are respectively equivalent
to:

1. there exists some c ! 0 so that c ΓΣ � 0; in particular then, there exists
c̃ := [c, 0] ! 0 such that c̃ Γ � 0; moreover, by consistency of the original
net, this is equivalent to c̃ Γ = 0.

2. for each p ∈ Σ, there is a vp  0 such that ΓΣvp  ep (p-th canonical
basis vector); this, in turn, implies that [Γ

∑
p vp]k > 0 for all k ∈ Σ. By

consistency, we can find some w "
∑

p vp be such that Γw = 0. We pick
v := w −

∑
p vp " 0. Clearly, Γv = −Γ

∑
p vp, which then gives, as desired,

that [Γv]k < 0 for all k ∈ Σ.

This completes the proof of the Lemma.

In particular, applying the previous Lemma to a siphon Σ, condition 1. is equiv-
alent in our terminology to saying that the siphon is structurally non-emptiable,
while condition 2. is therefore a characterization of criticality for a siphon. Notice
that condition 2. is equivalent to asking that the following cone has non-empty
interior:

C(Σ) = {v  0 : [Γv]k ≤ 0, ∀ k ∈ Σ}
Hence, for a critical siphon Σ, we may find suitable positive reaction rates, which
overall produce a decrease in the concentration of all of its species. On the other
hand, when solutions approach the boundary we know that a certain hierarchy
may hold between the output reaction rates of the siphon, due to the mass-action
kinetics.

This motivates the following definition which is a key notion needed in the
formulation of our main result:

Definition 6. We say that a critical siphon Σ is dynamically non-emptiable if
there is some ε > 0 such that the following condition holds:

C(Σ) ∩ Fε(Σ) = {0}.
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Intuitively speaking, this definition excludes the possibility of having trajec-
tories which monotonically decrease to the set LΣ for a given dynamically
non-emptiable siphon. Its technical meaning will be clearer in the following
developments.

We are now ready to state our main result:

Theorem 4. Consider a conservative CRN as in (6), endowed with mass-action
kinetics. Associate to it a Petri Net and assume that

1. All of its critical siphons are dynamically non-emptiable.
2. There are no nested distinct critical deadlocks.

Then, the chemical reaction network is persistent.

We start with a result which clarifies the role of dynamic non-emptiability.

Lemma 6. Consider a chemical reaction network having a dynamically non-
emptiable siphon Σ ⊂ VS. Let S0 be arbitrary in O+ \LΣ. Then, provided ω(S0)
is compact, we have that ω(S0) � LΣ.

Proof. Assume by contradiction that ω(S0) ⊂ LΣ, and pick an increasing se-
quence tn → +∞ such that Si(tn) ≥ Si(tn+1) for all i ∈ Σ and all n ∈ N.
Let ε > 0 be sufficiently small, as required by the definition of dynamic non-
emptiability for Σ. By Lemma 4 (applied with K = ω(S0)) there exists T > 0,
so that for all t ≥ T , it holds:

R(S(t)) ∈ Fε(Σ) (18)

Taking averages of Ṡ(t) on intersample intervals of such a sequence yields:

1
tn+1 − tn

∫ tn+1

tn

ΓR(S(τ)) dτ =
S(tn+1)− S(tn)

tn+1 − tn
.

Hence, factoring out Γ from the integral above yields

1
tn+1 − tn

∫ tn+1

tn

R(S(τ)) dτ ∈ C(Σ). (19)

Now, since Fε(Σ) is a closed, convex cone, and exploiting (18), we also have
that for all sufficiently large n’s, 1

tn+1−tn

∫ tn+1

tn
R(S(τ)) dτ ∈ Fε(Σ). By dynamic

non-emptiability of Σ then 1
tn+1−tn

∫ tn+1

tn
R(S(τ)) dτ = 0 for all sufficiently large

n’s; this implies S(t) is an equilibrium for all sufficiently large t’s, and therefore,
by uniqueness of solutions, S0 is also an equilibrium. Hence {S0} = ω(S0) ⊂ LΣ

which is clearly a contradiction.

The following Lemma is crucial to the proof of Theorem 4.

Lemma 7. Let C � ω(S0) be a non-empty closed, invariant set such that there
are no other closed invariant sets nearby (i.e., in [ω(S0) ∩ UC ] \ C for some
open neighborhood UC ⊃ C). Then, there exists S̃0 ∈ [ω(S0) ∩ UC ] \C such that
ω(S̃0) ⊂ C.
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Proof. Consider the set N := [ω(S0)∩VC ]\C, where VC is an open neighborhood
of C such that cl[VC ] ⊂ UC . We claim that N is non-empty. If N were empty,
then ω(S0) = [ω(S0) ∩ VC ] ∪ [ω(S0) \ C] would be the union of two non-empty
open sets [ω(S0)∩VC ] and [ω(S0) \C]. Note that their intersection would be N ,
hence empty, by assumption. This would imply that ω(S0) is not connected, a
contradiction to connectedness of omega limit sets.

We wish to show that there is some S̃0 ∈ N such that ω(S̃0) ⊂ C. Assume by
contradiction that this is not the case, i.e. that ω(S̃0) �⊂ C for all S̃0 ∈ N .

Fact 1: All solutions starting in N leave cl[VC ] in forward time.
If not, then there would be some p ∈ N whose forward orbit is contained in cl[VC ].
But then the definition of omega limit sets implies that ω(p) ⊂ cl[VC ] (⊂ UC)
as well. In addition, p ∈ ω(S0) implies that ω(p) ⊂ ω(S0) (by invariance and
closedness of omega limit sets), and thus we have that ω(p) ⊂ ω(S0) ∩ UC . On
the other hand, our assumption implies that ω(p) �⊂ C, and therefore the set
Δ = ω(p) \C is not empty. Moreover, we claim that Δ is invariant. To see that
Δ is forward invariant, we argue by contradiction. If not, then there must be
some forward solution starting in Δ which must enter C in some finite forward
time (since every forward solution starting in Δ certainly remains in ω(p) by
invariance of omega limit sets). But this contradicts backward invariance of C.
A similar argument shows that Δ is backward invariant. In conclusion, the set
Δ is non-empty, invariant, and contained in [ω(S0) ∩ UC ] \ C. This contradicts
the hypothesis that there are no invariant sets in [ω(S0) ∩ UC ] \ C.

Now we partition N into two subsets: a subset N1 consistinf of those states
whose solutions also leave cl[VC ] in backward time and a subset N2 consisting
of those states whose backwards solution do not leave cl[VC ]:

N1 := {S̃0 ∈ N : ∃ t < 0 : S(t, S̃0) /∈ cl[VC ]}

N2 := {S̃0 ∈ N : ∀ t ≤ 0, S(t, S̃0) ∈ cl[VC ]}.

Fact 2: N1 ∩ ŨC = ∅, for some sufficiently small neighborhood ŨC ⊃ C.
If this were not the case, then there would be a sequence of points Sn ∈ N1
so that Sn → Sc for some Sc ∈ C. Then we could define S̃n := ϕ(−τn, Sn)
where τn > 0 is the first time τ for which ϕ(−τ, Sn) belongs to ∂VC . Let S̃ :=
limn→+∞ S̃n (which without loss of generality always exists after possibly passing
to a subsequence). Clearly, S̃ ∈ ∂VC . We claim that ω(S̃) ⊂ C, thus giving rise
to a contradiction. The claim can be shown in 3 steps.

1. First we prove that τn → +∞. If not, then there exists a bounded subse-
quence admitting a finite limit; without loss of generality, let us relabel this
subsequence as τn. Let 0 ≤ τ̄ = limn→+∞ τn. By continuity:

ϕ(τ̄ , S̃) = lim
n→+∞ϕ(τ̄ , S̃n) = lim

n→+∞ϕ(τ̄ − τn, Sn) = ϕ(0, Sc) = Sc ∈ C.

This, however, violates invariance of C.
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2. Next, we show that ϕ(t, S̃) ∈ WC for all t ≥ 0, for some open WC with
cl[VC ] ⊂WC and cl[WC ] ⊂ UC . If not, then there would exist a finite t̄ > 0 so
that ϕ(t̄, S̃) /∈ cl[VC ]. But since ϕ(t̄, S̃) = limn→∞ ϕ(t̄, S̃n), it follows that for
all sufficiently large n’s, ϕ(t̄, S̃n) /∈ cl[VC ]. This violates unboundedness of the
sequence {τn}, because by definition of τn, there holds that ϕ(t, S̃n) ∈ cl[VC ]
for all t ∈ [0, τn].

3. Since ω(S̃) ⊂ cl[WC ] ⊂ [ω(S0)∩UC ], we are left to conclude that ω(S̃) ⊂ C.
Indeed, if this were not the case, then it can be proved (using the same
arguments used to prove invariance of Δ in the proof of Fact 1) that ω(S̃)\C
is a non-empty invariant set contained in [ω(S0)∩UC ]\C. But this contradicts
that there are no invariant sets in [ω(S0) ∩ UC ] \ C.

Hence we are only left to deal with the smaller set ŨC ∩ ω(S0) where only
solutions of type N2 exist. Notice that, for all p ∈ N2 we have α(p) ⊆ C (once
more, this can be proved by contradiction, by showing that α(p)\C is non-empty
and invariant using similar arguments from the proof of invariance of Δ in the
proof of Fact 1; this in turns yields a contradiction to the fact that there are no
invariant sets in [ω(S0) ∩ UC ] \ C). On the other hand, by Fact 1, the solutions
starting in N2 must leave cl[VC ] in forward time.

We show next that this situation contradicts chain transitivity of ω(S0) (for
a proof that this set must be chain transitive, see for instance Lemma 2.1’ in
[21]), and this will complete the proof of Lemma 7. Let ε > 0 be sufficiently
small, and ṼC an open neighborhood of C so that x + z ∈ ŨC for all x ∈ ṼC

and all z with |z| ≤ ε. First notice that by Fact 1, for all Si ∈ N2, there is
some tSi > 0 such that S(tSi , Si) /∈ cl[VC ], hence also S(tSi , Si) /∈ N2. Then by
backward invariance of N2 we obtain the stronger conclusion that S(t, Si) /∈ N2
for all t ≥ tSi .

Denote for each Si ∈ N2 the infimum of such tSi ’s by ti (the so-called first
crossing time). We claim that sup{ti|Si ∈ [cl[Vc] \ ṼC ] ∩N2} < +∞. The proof
is based on a standard compactness argument. To see this, fix Si ∈ N2, pick
some tSi as above, and consider an open neighborhood Vi of S(tSi , Si) which
is contained in the complement of cl[VC ]. Then by continuity of the flow, the
sets USi := ϕ−1(tSi , Vi) are open neighborhoods of Si, and are such that for all
x ∈ Ui ∩ N2, tSi is certainly an upper bound of the first crossing-time of the
solution starting in x, and in particular -by backward invariance of N2- there
holds that S(t, x) /∈ N2 for all x ∈ Ui ∩ N2 and all t ≥ tSi . Now since N2 is
compact, and the collection of open sets {USi |Si ∈ N2} is an open cover of N2,
we can extract a finite subcover {US1, . . . , USN}. Let τ = maxi=1,...N{tSi}. Then
it follows that S(t, Si) /∈ N2 for all t ≥ τ and all Si ∈ [cl[VC ] \ ṼC ] ∩N2, which
proves our claim.

Let S1, . . . , SN be an arbitrary (ε, τ)-chain relative to the flow ϕ(t, S0) re-
stricted to ω(S0) and with S1 ∈ ω(S0) \VC ; hence, there exist t1, t2 . . . tN−1 ≥ τ
so that |ϕ(tj , Sj)−Sj+1| ≤ ε for all j ∈ {1, 2, . . .N − 1}. We claim that Sj /∈ ṼC

for all j ∈ {1 . . .N}. We prove the result by induction. Assume Sj /∈ ṼC (which is
obviously true for j = 1); following the flow tj seconds ahead gives ϕ(tj , Sj) /∈ N2.
Indeed, if Sj ∈ [cl[VC ] \ ṼC ] ∩ N2, this follows from the fact that tj ≥ τ , while
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if Sj /∈ [cl[VC ] \ ṼC ] ∩ N2 (and thus in particular Sj /∈ N2), this follows from
backward invariance of N2. Hence, ϕ(tj , Sj) /∈ ŨC (since ω(S0) ∩ ŨC ⊂ N2);
therefore, Sj+1 /∈ ṼC by our choice of ε. This shows that indeed ω(S0) is not
chain transitive, since it is not possible to reach C starting outside ṼC by means
of (ε, τ)-chains (provided that ε and τ are chosen as specified).

Lemma 8. Assume that all the critical siphons of (6) are dynamically non-
emptiable, and let Z be a critical siphon. Suppose that S0 ∈ O+ is such that
ω(S0) ∩ cl[LZ ] .= Ω is non-empty. Assume further that ω(S0) ∩ cl[LZ ] is sepa-
rated from ω(S0) ∩ cl[LΣ ] for all deadlocks Σ for which it is not the case that
Z ⊆ Σ. Then, there exists an open neighborhood U of Ω such that [ω(S0)∩U ]\Ω
does not contain closed invariant sets.

Remark. Notice that in the above separation condition, we may assume without
loss of generality that the deadlockΣ is critical. Indeed, if it were not critical, and
hence structurally non-emptiable, then the arguments in the proof of Theorem 2
show that ω(S0) ∩ cl[LΣ] = ∅.

Proof. The lemma is trivial if ω(S0) ⊂ cl[LZ ]. Hence, we are only left to deal with
the case in which this inclusion does not hold. We recall that cl[LZ ] =

⋃
Σ⊇Z LΣ ,

so that

ω(S0) ∩ cl[LZ ] =

⎧⎨⎩ ⋃
Σ is a siphon: Σ⊇Z

LΣ ∩ ω(S0)

⎫⎬⎭ .= Ω,

where the restriction to siphons Σ in the union above, follows from Proposition
1. Assume, by contradiction, that every neighborhood U of Ω contains a closed
minimal invariant set C ⊂ ω(S0) \ cl[LZ ] (every closed invariant set contains a
minimal invariant subset, henceforth minimality of C can be assumed without
loss of generality). Hence, using the superscript c to denote the complement with
respect to O+:

C ⊂ U ∩ ω(S0) ∩

⎡⎣ ⋃
Σ is a siphon: Σ⊇Z

LΣ

⎤⎦c

Now, since
O+ =

⋃
all Σ, including ∅

LΣ,

it follows that

C ⊂ U ∩ ω(S0) ∩
⋃

all Σ, including ∅: Σ�Z

LΣ

= U ∩
⋃

all siphons Σ, including ∅: Σ�Z

LΣ ∩ ω(S0), (20)

where we used Proposition 1 in the last equality. Pick U sufficiently small, so
that ω(S0)∩cl[LΣ]∩U = ∅ for all deadlocks Σ so that Σ � Z. As a consequence,
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we may without loss of generality restrict the union in equation (20) to critical
siphons which are not deadlocks. We claim that R(S) ! 0 for all S ∈ C. Suppose
the claim is false, Then there is some S∗ ∈ C ⊂ LΣ with R(S∗) = 0 for some
critical siphon Σ not being a deadlock. Then for all i ∈ R, there is some j ∈ Σ
(and thus in particular Sj = 0), such that αij > 0. This implies that the set of
output reactions associated to the siphon Σ consists of all the reactions of the
network, and hence Σ is a deadlock. We have a contradiction.

Consider next any Ŝ ∈ C. By boundedness of solutions, time-averages of
reaction rates are also bounded and in particular

lim
n→+∞

1
Tn

∫ Tn

0
R(S(t, Ŝ)) dt = v  0 (21)

along some subsequence Tn → +∞ and for some vector v, possibly depending
upon Ŝ. Moreover,

0 = lim
Tn→+∞

S(Tn, Ŝ)− Ŝ

Tn
= lim

n→+∞
1
Tn

∫ Tn

0
ΓR(S(t, Ŝ)) dt = Γv,

implying that v ∈ Ker[Γ ] ⊂ C(W ) (actually for all W ).
Next, it is a well known fact in Ergodic Theory, that minimal flows (in our case

the flow restricted to C) admit a unique invariant ergodic probability measure.
Let m(·) be such a measure; by the Ergodic Theorem (see [7]) for m-almost all
Ŝ ∈ C it holds:

lim
T→+∞

1
T

∫ T

0
R(S(t, Ŝ)) dt =

∫
C

R(S) dm (22)

Hence, (21) and (22) imply that v =
∫

C R(S) dm, and then the above considera-
tions imply that v ! 0. Moreover, compactness of C, the definition (21) of v, and
Fε(Σ) being a closed convex cone, imply by virtue of Lemma 4, that v ∈ Fε(Σ).
So we have found a non-trivial v in Fε(Σ) ∩ C(Σ), a contradiction to dynamic
non-emptiability of the siphon Σ.

Lemma 9. Consider a chemical reaction network without nested, distinct criti-
cal deadlocks. Let Δ1 and Δ2 be a critical siphon and deadlock respectively, such
that it is not the case that Δ1 ⊆ Δ2. Then, for any S0 ∈ int[O+], we have
ω(S0) ∩ cl[LΔ1 ] ∩ cl[LΔ2 ] = ∅.

Proof. Arguing by contradiction, we would have

∅ �= ω(S0) ∩ cl[LΔ1 ] ∩ cl[LΔ2 ] = ω(S0) ∩ cl[LΔ1∪Δ2 ].

As usual, cl[LΔ1∪Δ2 ] =
⋃

W⊇Δ1∪Δ2
LW so that there exists W ⊃ Δ1 ∪Δ2 with

LW ∩ ω(S0) �= ∅. By Proposition 1, W is a critical siphon and therefore, since it
contains the deadlock Δ2, it is also a critical deadlock. Moreover, W � Δ2, but
this violates the assumption that critical deadlocks are not nested.

We are now ready to prove an improved version of Lemma 6.



210 D. Angeli, P. De Leenheer, and E. Sontag

Lemma 10. Consider a chemical reaction network having a dynamically non-
emptiable siphon Σ ⊂ VS and assume that the network is free of nested critical
deadlocks. Let S0 be arbitrary in O+ \LΣ. Then, provided ω(S0) is compact, we
have that ω(S0) � cl[LΣ].

Proof. The proof is carried out by considering two separate cases:

1. ω(S0)∩LW = ∅ for all W � Σ; Since cl[LΣ] =
⋃

W⊇Σ LW , the result follows
by Lemma 6, considering that ω(S0) ∩ cl[LΣ] = ω(S0) ∩ LΣ .

2. Assume that ∃W � Σ such that ω(S0)∩LW �= ∅ and let W be maximal with
this property, so that indeed ω(S0) ∩ LW = ω(S0) ∩ cl[LW ]. Clearly, W is a
critical siphon (by Proposition 1). Pick any critical deadlock Z (if one exists)
so that ω(S0) ∩ cl[LZ ] �= ∅ and it is not the case that W ⊆ Z. By Lemma
9, ω(S0) ∩ cl[LZ ] and ω(S0) ∩ cl[LW ] are separated, as requested by Lemma
8. Hence, there exists an open neighborhood UW of ω(S0) ∩ cl[LW ] so that
ω(S0)∩UW \cl[LW ] does not contain closed invariant sets. Finally, by Lemma
7, there exists S̃0 ∈ ω(S0) ∩ UW \ cl[LW ] so that ω(S̃0) ⊂ cl[LW ] ∩ ω(S0) =
LW ∩ ω(S0) ⊂ LW . This however contradicts Lemma 6.

Proof of Theorem 4. The proof will be carried out by contradiction. Assume
that the reaction network (6) be not persistent. Then, there exists S0 in int(O+),
so that ω(S0) ∩ ∂O+ �= ∅. Let E = {Σ ⊂ VS : ω(S0) ∩ LΣ �= ∅}; clearly E is
non-empty, and by Proposition 1, its elements are necessarily critical siphons.
Pick any pair Δ1, Δ2 ∈ E (Δ1 �= Δ2) of which Δ1 is maximal in E with respect to
set inclusion and Δ2 is a deadlock (if there is not such a pair the next conclusion
trivially holds). Of courseΔ1 � Δ2 (by maximality ofΔ1) and, as a consequence,
by Lemma 9 separation of ω(S0)∩ cl[LΔ1 ] and ω(S0)∩ cl[LΔ2 ] holds. Let Δ be a
maximal element of E , with respect to set inclusion. Two possible cases can be
ruled out:

1. ω(S0) ⊂ cl[LΔ]; this can be ruled out by virtue of Lemma 10 and exploiting
dynamical non-emptiability of Δ.

2. ω(S0) � cl[LΔ]; by Lemma 2, ω(S0) ∩ LΔ is invariant. Similarly, for all W
such that ω(S0)∩LW is non-empty, there holds that ω(S0)∩LW is invariant,
and hence ω(S0) ∩ cl[LΔ] is invariant as well since cl[LΔ] =

⋃
W⊇Δ LW .

In this case we may apply Lemma 8 to the siphon Δ (which, as we
just proved, satisfies the isolation condition) so that we conclude existence a
neighborhood U of ω(S0)∩ cl[LΔ] .= Ω so that [U ∩ ω(S0)] \ cl[LΔ] does not
contain closed invariant sets. Application of Lemma 7, then, shows existence
of S̃0 in ω(S0) \ Ω such that ω(S̃0) ⊆ Ω. By virtue of Lemma 10, however,
this violates dynamical non-emptiability of Δ.

This completes the proof of the Theorem.

10 Examples and Discussion

We illustrate applicability of Theorem 4 through some examples which, de-
spite their apparent simplicity, cannot be treated by the results in Section 5.
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Consider the Petri Net displayed in Fig. 8, whose associated CRN is given
below:

2A+ B → C → A+ 2B → D → 2A+B.

C

A

B

D

2

2

2

2

Fig. 8. A live and persistent network with critical siphons

We have that:

Γ =

⎡⎢⎢⎣
−2 1 −1 2
−1 2 −2 1
1 −1 0 0
0 0 1 −1

⎤⎥⎥⎦ .
It is easy to verify that the CRN is weakly reversible (and hence its associated
Petri Net is consistent, with T -semiflow [1, 1, 1, 1]′). Moreover, there is a unique
conservation law, A + B + 3C + 3D (associated to the P -semiflow [1, 1, 3, 3]),
and two non-trivial siphons (in fact, both are deadlocks): Σa = {A,C,D} and
Σb = {B,C,D}, none of them containing the support of a first integral (both
of them are therefore critical). It clearly holds that R1 �Σa R3 and R3 �Σb

R1.
Notice that both siphons are dynamically non-emptiable. To see this for the
critical siphon Σa (similar arguments can be used to show it for Σb), notice that

C(Σa) = {v  0 : −2v1 + v2 − v3 + 2v4 ≤ 0, v1 − v2 ≤ 0, v3 − v4 ≤ 0}.

This implies in particular that

v ∈ C(Σa) ⇒ v3 ≤ v1.

Dynamic non-emptiability of Σa requires that there is some ε > 0 such that the
cone C and the cone

{v  0 | v1 ≤ εv3},
only intersect in 0. This happens when we choose an ε in (0, 1).

Obviously the network does not exhibit nested critical deadlocks since Σa �
Σb and Σb � Σa, and therefore Theorem 4 is applicable. We conclude that the
network is persistent.

It is worth pointing out that the associated Petri Net does satisfy the assump-
tion of Commoner’s theorem; indeed the traps of network are the sets {A,C,D}
and {B,C,D} and coincide with the siphons, so that the network is live. In this
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A B

C

2

2

2

Fig. 9. Non live Petri Net giving rise to persistent CRN

case we expect the stochastic analysis and the deterministic one to give results
which are in good agreement with each other.

Consider now the following simple reaction network:

A→ B, B + C → 2A, 2B → 2C

The stoichiometry matrix Γ is given by:

Γ =

⎡⎣−1 2 0
1 −1 −2
0 −1 2

⎤⎦ .
As before, we associate to it a Petri Net, whose graph is represented in Fig. 9,
and compute its invariants. The network is conservative with a unique P -semiflow
[1, 1, 1] and consistent with T -semiflow [4, 2, 1]′. It exhibits one non-trivial siphon
: Σ = {A,B}, which is critical since there cannot contain a support of a
P -semiflow. It is worth pointing out that the network does not satisfy the siphon-
trap property, in fact there are no non-trivial traps. Indeed, starting with initial
marking [2, 2, 2] it is possible to first empty out the A place, by triggering re-
action 1 twice, then place B by triggering reaction 2 twice. Once the siphon is
emptied, it will be such for all future times and indeed no reaction can take
place henceforth. This situation is called a deadlock in Petri Net terminology
and indeed shows that the net is not live.

However, further analysis of siphon Σ shows that indeed it is a dynamically
non-emptiable siphon. In fact,

C(Σ) = {v ≥ 0 : −v1 + 2v2 ≤ 0 and v1 − v2 − v3 ≤ 0}.

In combination with the constraint v3 ≤ εv2 which follows taking into account
R3 �Σ R2 we get

2v2 ≤ v1 ≤ v2 + v3 ≤ (1 + ε)v2

so that indeed for ε ∈ (0, 1) we obtain v2 = 0 and consequently v1 and v3 = 0
as well. We can thus apply Theorem 4 and conclude persistence of the chemical
reaction network for all values of the kinetic constants.
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11 Conclusions

Persistence is the property that species (for instance in chemical reactions or in
ecology) will remain asymptotically non-zero provided that they were present at
the initial time. This paper provided necessary as well as sufficient conditions
for the analysis of persistence in chemical reaction networks.

The results in the first part of the paper were based only upon structural
and topological features of the network. Such results are “robust” with respect
to uncertainty in model parameters such as kinetic constants and cooperativity
indices, and they are in the same spirit as the work of Clarke [11], Horn and
Jackson [26, 27], Feinberg [15, 16, 17], and many others in the context of complex
balancing and deficiency theory, as well as the work of Hirsch and Smith [39, 23]
and many others (including the present authors [2, 14, 3, 10]) in the context of
monotone systems.

On the other hand, the knowledge of the functional dependency of reaction
rates upon coefficients of the stoichiometry matrix, as in mass action kinetics, al-
lows one to obtain tighter sufficient conditions for robust persistence of chemical
reaction networks, again on the basis of topological information and regardless
of the kinetics parameters involved of which only positivity is assumed. The sec-
ond part of the paper takes advantage of such information. In particular, the
conditions given here allow one to isolate certain classes of networks for which
stochastic and deterministic analysis provide results which are qualitatively very
different; in particular, Theorem 4 may sometimes be useful when one needs to
decide that a certain chemical reaction network which is not “live” when consid-
ered as a stochastic discrete system, turns out to be persistent in a deterministic
context, even regardless of parameter values. Our result may also serve as pre-
liminary steps towards the construction of a systematic Input/Output theory
for chemical reaction networks, by allowing systems with inflows and outflows.
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