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It is becoming increasingly clear that bistability (or, more generally,
multistability) is an important recurring theme in cell signaling.
Bistability may be of particular relevance to biological systems that
switch between discrete states, generate oscillatory responses, or
‘‘remember’’ transitory stimuli. Standard mathematical methods al-
low the detection of bistability in some very simple feedback systems
(systems with one or two proteins or genes that either activate each
other or inhibit each other), but realistic depictions of signal trans-
duction networks are invariably much more complex. Here, we show
that for a class of feedback systems of arbitrary order the stability
properties of the system can be deduced mathematically from how
the system behaves when feedback is blocked. Provided that this
open-loop, feedback-blocked system is monotone and possesses a
sigmoidal characteristic, the system is guaranteed to be bistable for
some range of feedback strengths. We present a simple graphical
method for deducing the stability behavior and bifurcation diagrams
for such systems and illustrate the method with two examples taken
from recent experimental studies of bistable systems: a two-variable
Cdc2�Wee1 system and a more complicated five-variable mitogen-
activated protein kinase cascade.

One of the most important and formidable challenges facing
biologists and mathematicians in the postgenomic era is to

understand how the behaviors of living cells arise out of the
properties of complex networks of signaling proteins. One inter-
esting systems-level property that even relatively simple signaling
networks have the potential to produce is bistability. A bistable
system is one that toggles between two discrete, alternative stable
steady states, in contrast to a monostable system, which slides along
a continuum of steady states (1–9). Early biological examples of
bistable systems included the lambda phage lysis-lysogeny switch
and the hysteretic lac repressor system (10–12). More recent
examples have included several mitogen-activated protein kinase
(MAPK) cascades in animal cells (13–15), and cell cycle regulatory
circuits in Xenopus and Saccharomyces cerevisiae (16–18). Bistable
systems are thought to be involved in the generation of switch-like
biochemical responses (13, 14, 19), the establishment of cell cycle
oscillations and mutually exclusive cell cycle phases (17, 18), the
production of self-sustaining biochemical ‘‘memories’’ of transient
stimuli (20, 21), and the rapid lateral propagation of receptor
tyrosine kinase activation (22).

Bistability arises in signaling systems that contain a positive-
feedback loop (Fig. 1a) or a mutually inhibitory, double-
negative-feedback loop (which, in some regards, is equivalent to a
positive-feedback loop) (Fig. 1b). Indeed, Thomas (23) conjectured
that the existence of at least one positive-feedback loop is a
necessary condition for the existence of multiple steady states;
alternative proofs of this conjecture are given in refs. 24–27.
However, the existence of positive loops is far from being sufficient;
positive feedback does not guarantee bistability. A standard graph-
ical test, termed phase plane analysis, can be used to visualize under
what conditions a particular positive-feedback system will exhibit
bistability, but this test is valid only if the system contains no more

than two variables. Realistic biological networks generally contain
more proteins and more variables (e.g., Fig. 1c), precluding the use
of phase plane analysis.

Here, we present a method for analyzing positive-feedback
systems of arbitrary order for the presence of bistability or multi-
stability (i.e., more than two alternative stable steady states),
bifurcation, and associated hysteretic behavior, subject to two
conditions that are frequently satisfied even in complicated, realistic
models of cell signaling systems: monotonicity and existence of
steady-state characteristics (28–34). The main ideas of this article
can be illustrated through two examples drawn from recent exper-
imental studies: the Cdc2-cyclin B�Wee1 system, which can be
considered to be a two-variable system, and the Mos�MAPK kinase
p42 MAPK cascade, a five-variable system.

A Two-Variable Example: The Cdc2-Cyclin B�Wee1 System
As a first example, we will use our methods to determine the
stability behavior and bifurcation diagram for a two-variable
double-negative or mutually inhibitory feedback loop (Fig. 1b).
Of course, this example can be treated without recourse to our
theoretical developments, because it is generally straightforward
to derive results for 2D systems through classical phase plane
analysis (see Supporting Text, which is published as supporting
information on the PNAS web site, for further discussion of the
present method vs. phase plane analysis for two-variable sys-
tems). But precisely because it is possible to visualize phase plane
behavior, the example affords us a way to compare our frame-
work with classical approaches.

To put the example into concrete terms, we suppose that one of
the proteins is the Cdc2-cyclin B complex, and the other is the Wee1
protein (Fig. 2a) (17, 18, 35–38), and we make a number of
simplifications to allow the interplay between Cdc2-cyclin B and
Wee1 to be treated as a two-variable problem. First, we assume that
Cdc2-cyclin B and Wee1 each exist in only two forms (rather than
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Fig. 1. Feedback systems that may exhibit bistability. (a) A two-component
positive-feedback loop, which can be analyzed by classical phase plane tech-
niques. (b) A two-component, mutually inhibitory feedback loop, which can also
be analyzed by classical phase plane techniques. (c) A longer mutually inhibitory
feedback loop, which cannot be analyzed by classical phase plane techniques.
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multiple forms, as is actually the case): an active form (with x1

denoting active Cdc2 and y1 denoting active Wee1) and an inactive
form (x2 and y2 denoting inactive Cdc2 and Wee1, respectively).
Second, we assume that the phosphorylations of Cdc2 and Wee1
are reversed by some constitutively active phosphatases (which
ignores the contribution of Cdc25 regulation to the bistability of the
Cdc2 system). Finally, we assume that the inhibition of each kinase
by the other is approximated by a Hill equation. The equations for
this model system are:

ẋ1 � �1x2 �
�1x1���y1�

�1

K1 � ���y1�
�1

, ẋ2 � ��1x2 �
�1x1���y1�

�1

K1 � ���y1�
�1

ẏ1 � �2y2 �
�2y1x1

�2

K2 � x1
�2

, ẏ2 � ��2y2 �
�2y1x1

�2

K2 � x1
�2

.

The �s and �s are rate constants; the Ks are Michaelis (saturation)
constants; the �s are Hill coefficients; and v is a coefficient that
reflects the strength of the influence of Wee1 on Cdc2-cyclin B, in
control-theory terms, the ‘‘gain’’ of the system. (One could also
define the gain of this feedback loop as �x1��y1, or alternatively as
� ln x1�� ln y1; all three measures provide a sense of the strength of
the inhibition of Cdc2 by Wee1.) If we take x2 � 1 � x1 and y2 �
1 � y1 (that is, assume that the total concentrations of Wee1 and
Cdc2-cyclin B are unchanging and measure concentrations in
fractional terms), we can eliminate two variables from these equa-
tions and simplify them, yielding system 1:

ẋ1 � �1�1 � x1� �
�1x1���y1�

�1

K1 � ���y1�
�1

, ẏ1 � �2�1 � y1� �
�2y1x1

�2

K2 � x1
�2

.

Phase Plane Diagrams for the Cdc2-Cyclin B�Wee1 System,
Deduced from Numerical Simulations
We can then choose values for the constants �, �, 	, �, and v, and
numerically compute the time evolution of x1 and y1 for various
choices of their initial values. As shown in Fig. 2b, when v � 1, the
system exhibits bistability, with two attracting steady states, a high
Cdc2-cyclin B-activity state (M phase-like) and a high Wee1 activity
state (interphaselike), that essentially compete for trajectories. For
values of v � �1.8, only the low Cdc2-cyclin B�high Wee1 state
persists (Fig. 2c), and the system changes from bistable to monos-
table. Likewise, for v � �0.83, only the high Cdc2-cyclin B�low
Wee1 state is present (Fig. 2d).

Global Stability Analysis of the Cdc2-Cyclin B�Wee1 System:
The Open-Loop Approach
We will next explain how the bistability of the system at interme-
diate values of v, as well as the bifurcation diagram, can be deduced
from the general theoretical framework presented in this article.
This framework draws on the theory of monotone systems with

inputs and outputs. An outline of this theory is provided in
Supporting Text; proofs and details can be found elsewhere (28, 29).

The key to our approach is to view system 1 as a feedback closure
of the following open-loop system (2) in which the variable 
 is seen
as an input or ‘‘stimulus’’ variable, and � � y1 is the output or
‘‘response’’ variable:

ẋ1 � �1�1 � x1� �
�1x1
�1

K1 � 
�1
, ẏ1 � �2�1 � y1� �

�2y1x1
�2

K2 � x1
�2

.

In other words, we analyze the system by ‘‘breaking’’ the feedback
loop at the step of the inhibition of Cdc2 by Wee1, viewing the effect
of Wee1 on Cdc2 as an input signal 
 to be experimentally
manipulated (Fig. 3 a), and only later, after analyzing the behavior
of output � as a function of input 
, do we reclose the loop by letting

 � � (and hence recovering the original, intact, system).

Fig. 2. Analysis of the Cdc2-cyclin B�Wee1 system by numerical simulation. (a) Schematic depiction of the system. (b–d) Phase plane plots of the Cdc2-cyclin B system.
Constants are: �1 � �2 � 1, �1 � 200, �2 � 10, �1 � �2 � 4, K1 � 30, K2 � 1. Three different feedback gains are shown: v � 1 (b), v � 1.9 (c), and v � 0.75 (d).

Fig. 3. Mathematical analysis of the Cdc2-cyclin B�Wee1 system, by breaking
the feedback loop. (a) Schematic view of a feedback system before (Left) and
after (Right) breaking the feedback loop. 
 is the input of the open-loop system;
� is the output. (b) Incidence graph for system 2. (c) Steady-state I�O static
characteristic curve (k� is a function of 
) for system 2 (red), with constants chosen
as in Fig. 2 b–d. The solid blue line represents 
 as a function of � for unitary
feedback. There are three intersection points (I, II, and III), which represent two
stable steady states (I and III) and one unstable steady state (II). The dashed blue
lines represent 
 as a function of � for the values of the feedback gain v above
which (v � 1.8) and below which (v  0.83) the system becomes monostable. (d)
Bifurcation diagram for the system, showing bistability when the feedback
strength v is between �0.83 and �1.8. The bifurcation diagram is obtained from
the characteristic as the plot of the curve [
�k(
),k(
)], with 
 ranging over the
allowed range of inputs.
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Two critical properties are necessary for our methodology to
apply, and they must be verified before the application of our
theorem. These properties can be summarized as follows: (A) the
open-loop system has a monostable steady-state response to con-
stant inputs [we then say that the system has a well-defined
steady-state input�output (I�O) characteristic]; and (B) there are
no possible negative feedback loops, even when the system is closed
under positive feedback (we then say that the system is strongly I�O
monotone).

Property A means that, for each constant-in-time input signal

(t) � a for t � 0 (i.e., a step-function input stimulus), and for any
initial conditions x1(0), y1(0), the solution of the system of differ-
ential equations (2) converges to a unique steady state (which
depends on the particular step magnitude a, but not on the initial
states). When this property holds, we write kx,y(a) to indicate the
steady-state vector limt3	
[x1(t), y1(t)] corresponding to the signal

(t) � a, and k�(a) to indicate the corresponding asymptotic value
�(	
) for the corresponding output signal.

One of the main steps in verifying the applicability of our analysis
method to a particular system is that of checking that this property
is satisfied. To a biochemist, property A might seem self-evident.
However, it is not trivial to prove it rigorously, even for systems of
differential equations that describe relatively simple signaling net-
works. In the example of the MAPK cascade treated later in this
article, we appeal to a theorem proved in ref. 29 to establish this fact.
But for system 2, it is straightforward to verify the condition. For any
constant input 
, k�(
) � �(	
) � y1(	
) is given by the following
formula:

�2�K2 � ��1�K1 � 
�1�����1K1 � �1
�1 � �1
�1���2

�2K2 � ��2 � �2���1�K1 � 
�1����1K1 � �1
�1 � �1
�1���2
.

This function has a single value for every value of 
; a plot of k� is
shown in Fig. 3c (red curve). Note the sigmoidal character of the
curve, which is caused by our having assumed that �1, �2 �1. This
assumption will be critical for bistability.

The second of the properties to be verified before applying our
theoretical results, property B (monotonicity), refers to the graph-
ical structure of the interconnection among the dynamic variables.
To make it precise, we introduce the incidence graph of a system,
as follows (see Fig. 6, which is published as supporting information
on the PNAS web site). For a system with n variables pi, the
incidence graph has n 	 2 nodes (so, in the example in Eq. 2, where
n � 2, there are four nodes). The nodes are labeled 
, �, and pi, i �
1, . . . , n. A labeled edge (an arrow with a 	 or � sign attached to
it) is drawn whenever a variable pi (or input 
) affects directly the
rate of change of a variable pj (or the value of the output), and a sign
is attached to each label: a 	 sign whenever the effect is positive
and � if the effect is negative. If the effect is ambiguous, because
the sign of its effect depends on the actual values of the input or
state variables, then our method does not apply.

For our example 2, the graph is shown in Fig. 3b. The negative
arrow 
3 represents the fact that the function �1(1 � x1) �
�1x1
�1�(K1	
�1) in the first of the equations (2), which determines
the rate of change of x1, is a decreasing function of 
; i.e., 
 inhibits
x1. The same holds for the influence of x1 on y1 (Eq. 2). On the other
hand, the choice of output � � y1 is represented by a positive arrow.
Autocatalytic or degradation effects (self-loops) are not reflected
in the graph: for example, the decay term ��1x1 in the first equation
makes the rate of change of x1 be smaller if x1 is greater, but it is not
included in the graph.

Given any path in an incidence graph (such as the path 
, x1, y1
in the graph shown in Fig. 3b), we define its sign as the product of
the signs along the path (in the example, the sign of 
, x1, y1 is
positive, being the product of two negatives). We say that a path is
positive or negative depending on its sign.

The property of monotonicity that we need amounts to checking
these requirements: (i) every loop in the graph, directed or not, is

positive; (ii) all of the paths from the input to the output node are
positive; (iii) there is a directed path from the input node to each
node pi; and (iv) there is a directed path from each pi to the output
node. Note that i together with ii amounts to the requirement that
every possible loop is positive, even after closing under any positive
feedback. Properties iii and iv are technical conditions needed for
mathematical reasons.

For our example, i is automatically verified (there are no loops),
and ii–iv are obvious from the graph shown in Fig. 3b. Thus both
the prerequisite conditions A and B are satisfied for the example
system (2), and our method can be applied.

The next step consists of graphing together the characteristic k�,
which represents the steady-state output � as a function of the
constant input 
 (Fig. 3c, red line), with the diagonal � � 
, which
represents 
 as a function of (Fig. 3c, blue line). Algebraically, this
amounts to looking for fixed points of the mapping k�. We find that
there are three intersections between these graphs, which we will
refer to as points I, II, and III, respectively. At each of the three
points of intersection, we consider the slope of the characteristic k
and ask whether the slope is greater than unity or not. We see from
the picture that this slope is �1 at I and III and �1 at II.

Our theorem then concludes as follows. First, in the state-space
of the closed-loop system (1), which is obtained by writing 
 � � �
y1 in the system 2, there are three steady states, let us call them xI,
xII, and xIII, respectively, corresponding to the I�O pairs associated
to the points I, II, and III. Second, the states xI and xIII, which
correspond to the points at which the characteristic has slope �1,
are attracting (that is to say, stable) steady states, whereas xII is
unstable. Finally, we can conclude that every trajectory, except
possibly for an exceptional set of zero measure, converges to either
xI or xIII. Clearly, these conclusions are consistent with the phase
plane shown in Fig. 2b, which shows two stable states, whose
domains of attraction span the whole positive orthant (with the
exception of the separatrix corresponding to the stable manifold of
the unstable state, a saddle). This is not only true for a simple
two-component system like the one illustrated in Eq. 1, but also for
any n-component system satisfying our monotonicity and open-
loop steady-state response assumptions.

Note that if the characteristic k� had not been sigmoidal (if we
had assumed both of the Hill coefficients to be 1 or less) there could
not be three intersections, and the system could not be bistable at
any feedback strength. This finding suggests an experimental ap-
proach to the detection of bistability in positive-feedback systems.
If the feedback can be blocked in such a system, and if the
feedback-blocked system is known (or correctly intuited) to be
monotone, then if the experimentally determined steady-state
stimulus�response curve of the feedback-blocked system is sigmoi-
dal, the full feedback system is guaranteed to be bistable for some
range of feedback strengths. Conversely, if the open-loop system
exhibits a linear response, a Michaelian response, or any response
that lacks an inflection point, the feedback system is guaranteed to
be monostable despite its feedback. Thus, some degree of ‘‘coop-
erativity’’ or ‘‘ultrasensitivity’’ is essential for bistability in mono-
tone systems of any order.

The bifurcation diagram for the Cdc2-cyclin B�Wee1 system, a
plot of the possible steady states as a function of the feedback
strength v, can be determined from the properties of the open-loop
system as well. To do this, we study the effect of a feedback law 
 �
v � � which amounts to intersecting the characteristic k� with
lines � � (1�v)
, as shown in Fig. 3d for v � 0.83 and v � 1.8.
Observe that, for v � �0.83 there is only one intersection (a high
Cdc2-cyclin B, low Wee1 state), and for v � �1.8 there will again
be just one intersection (a low Cdc2-cyclin B, high Wee1 state) (Fig.
3d, dashed lines). In both cases, our theorem predicts a unique
globally asumptotically stable steady state in the full system, con-
sistently with the phase planes corresponding to v � 1.9 and v � 0.75
shown, respectively, in Fig. 2 c and d. In the intermediate range,
there will be three intersections, one associated with an unstable
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state and the others with stable states. Thus, one recovers the
complete bifurcation diagram (Fig. 3d) from the graph of the I�O
steady-state characteristic, not using numerical methods, and even
if no detailed mathematical model is available.

Finally, the hysteretic behavior of the system can be deduced
from Fig. 3d: increasing v from low to high results in picking the
lower branch in the bistable regime, whereas decreasing from high
to low takes us on the upper branch.

Monotonicity Is Needed
We should emphasize that the monotonicity assumption B is
absolutely essential for the validity of our results. The conclusion
that stable states will be in a one-to-one correspondence with points
at which the steady-state I�O characteristic intersects the diagonal
� � 
 with slope �1 is, in general, false. To illustrate the need for
monotonicity, let us consider the following example. We take the
system described by these equations (4):

ẋ � x��x � y�, ẏ � 3y��x � c �
by4

k � y4�
with output � � y. This system models a situation in which two
proteins x and y, whose concentrations are denoted by x(t) and y(t),
respectively, interact as follows. Protein x can be degraded when it
is dimeric (hence the �x2 term in the first differential equation), and
its formation is promoted by protein y (term xy). Protein y is
degraded by x (term �xy in the second equation) and its synthesis
is driven by cooperative autocatalysis (positive feedback of y upon
itself, last term). The state space on which this system evolves is the
positive orthant (x �0 and y �0). This is an activator�inhibitor
system and corresponds to a predator–prey system from population
biology and ecology. To apply our methodology, we view the system
as the unitary feedback system that results from setting 
 � � � y
in the following open-loop system:

ẋ � x��x � y�, �̇ � ẏ � 3y��x � c �
b
4

K � 
4�.

This system admits a well-defined steady-state I�O static charac-
teristic k� given by: k�(
) � c 	 b
4�(K	
4) and plotted, for a
particular choice of constants, in Fig. 4a. Note that this character-
istic curve is qualitatively very similar to that shown in Fig. 3c.
Following our method, we intersect the graph of k� with the

diagonal, find three intersection points, and classify the three
associated steady states of the system according to the slopes at the
intersection. Because there are two intersections with slope �1 and
one with slope �1, we conclude (erroneously, as it turns out) that
there are two stable steady states, to which all trajectories (except
for those in the stable manifold of the one unstable state) converge.
This conclusion is totally false, as evidenced by the phase plane of
the system, shown in Fig. 4b. Trajectories do not converge to one
of two stable states, as expected for a bistable system. In fact, the
system has no stable steady states, and there is instead a limit cycle
oscillation. The failure of the system to exhibit the ‘‘expected’’
bistability is due to the fact that the system is not monotone. As
shown by its incidence graph (Fig. 4c), the loop x, y, x is negative.

The Modularity of Monotone Systems
One approach to complex cell signaling networks is to divide the
network into subsystems or modules of a more tractable size and
hope that the behavior of the entire system can be deduced from
the behaviors of these modules (39, 40). However, in real biological
networks there are interconnections between modules, and under
such circumstances there is no general guarantee that the behavior
of an isolated module will bear any resemblance to the behavior of
the module in its natural context. Thus, although modularity
remains a potentially important and highly desirable property of cell
signaling networks, it is not certain whether modularity is rare or
commonplace.

However, it is straightforward to show that any cascade com-
posed of subsystems, each of which is monotone and admits a
well-defined characteristic, will itself be monotone and admit a
characteristic (28, 29). Thus, there is an intrinsic modularity to
monotone systems, which is important both conceptually and in
terms of devising approaches to the dissection of complex signaling
systems. We make use of this modularity in the example that
follows.

A Modular, Five-Variable Example: The Mos�MEK�p42
MAPK Cascade
Here, we use our approach to analyze a higher dimensional system
drawn from the experimental literature. The system is a three-tier
MAPK cascade, based on the Mos�MEK1�p42 MAPK cascade
present in Xenopus oocytes (Fig. 5a). This particular MAPK
cascade was chosen for several reasons: the cascade is known to be
embedded in a positive-feedback loop (41–43) and to exhibit
bistability (13, 21); all of the relevant protein abundances and some
of the important kinetic parameters have been measured (44–46);
and experimental studies have been performed on the cascade both
as a closed-loop system (the normal situation) and an open-loop
system (where the feedback from p42 MAPK to Mos has been
blocked) (13, 47).

The key features of the cascade are shown schematically in Fig.
5a. Active Mos (x) accumulates based on a balance between
synthesis and degradation and can activate MEK through phos-
phorylation of two residues (converting unphosphorylated y1 to
monophosphorylated y2 and then bisphosphorylated y3). Active
MEK then phosphorylates p42 MAPK (z1) at two residues, result-
ing in p42 MAPK activation. Active p42 MAPK (z3) can then
promote Mos synthesis, completing the closed positive-feedback
loop. In addition, each of the phosphorylation reactions is opposed
by an unregulated dephosphorylation reaction. Details on the
rationale behind this model and the assumed protein abundances
and kinetic constants are provided in Supporting Text and Table 1,
which is published as supporting information on the PNAS web site.

We mathematically model the dynamics of the cascade by means
of a system of seven differential equations (cf. refs. 47 and 48), using
x(t) to denote the concentration of Mos at time t, y1(t) to denote the
concentration of unphosphorylated MEK at time t, and so on, as
illustrated in Fig. 5a (see Supporting Text for the equations). We will
view this system as the closure under feedback 
 � vz3 of the

Fig. 4. Analysis of a system with similar-looking characteristic curves (compare
Fig. 3c) but qualitatively different stability behavior. (a) Steady-state I�O static
characteristic curve for system 4. Constants are: c � 0.8, b � 500�140, K � 405�14.
(b) Phase plane for system 4. (c) Incidence graph for system 4.
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open-loop system that results when 
 is substituted for vz3 in the first
equation. Furthermore, we have the following two conservation
laws: MEK 	 MEK-P 	 MEK-PP � MEKtot � 1,200 nM � y1 	
y2 	 y3, and MAPK 	 MAPK-P 	 MAPKPP � MAPKtot � 300
nM � z1 	 z2 	 z3, which we can use to reduce the original seven
equations to the following system of five differential equations (6):

ẋ � �
V2x

K2 � x
� V0
x � V1

ẏ1 �
V6�1200 � y1 � y3�

K6 � �1200 � y1 � y3�
�

V3xy1

K3 � y1

ẏ3 �
V4x�1200 � y1 � y3�

K4 � �1200 � y1 � y3�
�

V5y3

K5 � y3

ż1 �
V10�300 � z1 � z3�

K10 � �300 � z1 � z3�
�

V7y3z1

K7 � z1

ż3 �
V8y3�300 � z1 � z3�

K8 � �300 � z1 � z3�
�

V9z3

K9 � z3
.

We will now use our methodology to analyze this system. The first
step is to view system 6 as a cascade of three modular subsystems:
the 1D x (Mos) system, whose input is 
 and output is x; the 2D y1,
y3 (MEK) system, whose input is x and output is y3; and the 2D z1,
z3 (MAPK) system, whose input is y3 and output is z3.

It is straightforward to see that the first (Mos) level of the cascade
admits a well-defined I�O characteristic, and in refs. 28 and 29 it was
proved that the MEK and MAPK subsystems do as well; thus, the
entire cascade admits a well-defined I�O characteristic, and prop-

erty A is satisfied. Next, monotonicity needs to be verified. This is
trivial for the first subsystem, whose incidence graph is shown in Fig.
5b. For each of the two 2D subsystems (the dual phosphorylation
of MEK and the dual phosphorylation of p42 MAPK) the incidence
graph is more complicated, but again the monotonicity of these
subsystems can be inferred by inspection (Fig. 5b and Supporting
Text). Because each subsystem in the cascade is monotone, the
entire cascade is guaranteed to be monotone as well, and property
B is satisfied. Thus, all our theoretical considerations can be applied
to the system described by Eq. 6.

Next, we numerically calculate the steady-state I�O characteris-
tic, k�, for the model system. As shown in Fig. 5c, the curve is steeply
sigmoidal, similar in shape to a Hill equation curve with a Hill
coefficient of 5. In our model the sigmoidal character of the
characteristic arises mostly from the assumed nonprocessive dual
phosphorylation mechanisms for MAPK and MEK activation (49,
50). As described in Supporting Text, the parameters for the model
were chosen to reproduce the experimentally observed sigmoidal
relationship for MAPK activity as a function of Mos concentration
in an open-loop (feedback-blocked) system (47), lending confi-
dence that the I�O characteristic curve for the Mos�MEK�p42
MAPK system is, in fact, sigmoidal, as it is in our model.

Accordingly, we can deduce the global stability behavior of the
entire five-dimensional system from a plot of the characteristic k�,
and the line 
 � vz3. Under unitary feedback (v � 1), the system
has three steady states (Fig. 5c), and our theoretical framework
allows us to conclude that the middle one is unstable and the high
and low states are stable. Moreover, every trajectory (except for a
zero-measure separatrix corresponding to the stable manifold of
the unstable steady state) must necessarily converge to one of the
two stable states.

Fig. 5. Bistability in a MAPK cas-
cade. (a) Schematic depiction of the
Mos-MEK-p42 MAPK cascade, a lin-
ear cascade of protein kinases em-
bedded in a positive-feedback loop
(Left), together with the correspond-
ing open-loop system (Right). (b) In-
cidence graph for a 2D subsystem (a
single level) of a kinase cascade. (c)
Steady-state I�Ocharacteristic (k� asa
function of 
) for the MAPK cascade
(red curve), plotted together with
the diagonal, representing 
 as a
function of � with unity feedback
(blue line). (d) Experimental demon-
stration of a sigmoidal response of
MAPK to Mos. Experimental data are
taken from ref. 47 and are means �
SD. (e) Bifurcation diagram for the
MAPK cascade, showing the stable
on-state (red curve), the stable off-
state (green curve), and the unstable
threshold (black curve) as a function
of feedback strength (v). (f) Simula-
tions show that trajectories funnel
toward one of two stable steady
states, denoted by red and green
ticks, as required by our theorem.
Shown are calculated concentrations
of Mos (x), active MEK (y3), and active
MAPK (z3) for 11 choices of initial
conditions, as a function of time.

1826 � www.pnas.org�cgi�doi�10.1073�pnas.0308265100 Angeli et al.



The mathematically proven bistability of the MAPK cascade
model can be illustrated through numerical simulations. We chose
11 sets of initial conditions for system 6 and solved the differential
equations numerically (under unity feedback). Fig. 5f shows the
time evolution of three of the variables (x, the concentration of Mos;
y3, the concentration of active MEK; and z3, the concentration of
active MAPK). As required by our theorem, all of the variables
funnel into one of two discrete, five-dimensional stable steady
states: an ‘‘on-state’’ (with most of the Mos and MAPK active and
about half of the MEK active) and an ‘‘off-state’’ (with very low
concentrations of active Mos, MEK, and MAPK).

If the feedback gain is not necessarily equal to one, we obtain the
stability behavior of the system by intersecting the I�O character-
istic with the line of slope 1�v. The result is that the system is
monostable when v is ��0.7 (the on-state vanishes) or when v is
very large (the off-state vanishes) and is bistable for any value of v
in between. Therefore, the bistability of this model system is a fairly
robust function of the feedback gain.

Experimental Studies
One key question is whether the Mos�MEK�p42 MAPK cascade
actually does exhibit a sigmoidal stimulus response curve, resem-
bling the characteristic k� of the model system, when feedback is
blocked. If it does, and if the system really is monotone (as is true
for the model), then it is mathematically guaranteed that the
closed-loop system will be bistable for some range of feedback
strengths, irrespective of the exact details and parameters of the
system. Experimental data are not yet available for the complete
open-loop system (the experiment is difficult to perform), but data
are available for the response of p42 MAPK to different concen-
trations of Mos in the absence of feedback (47). The steady-state
activity of p42 MAPK as a function of the concentration of added
recombinant Mos was found to be steeply sigmoidal (Fig. 5d), and
the model agrees well with the experimental data (Fig. 5d, line).
The steeply sigmoidal shape for the open-loop Mos�p42 MAPK
curve supports the notion that the closed-loop feedback system
should exhibit bistability, and indeed there is ample experimental

evidence that when feedback is permitted, this system does exhibit
a bistable response (13).

More Complicated Types of Feedback
Thus far we have analyzed systems where the output feeds back
directly to the input. More complicated feedback loops may also be
studied by using the same basic approach, by a reduction to unity
feedback. This is discussed further in Supporting Text and Fig. 7,
which is published as supporting information on the PNAS web site.

Summary
We have shown that for a large class of biological positive-feedback
systems of arbitrary order it is possible to determine whether the
system exhibits bistability, bifurcations, and hysteretic stimulus�
response relationships mathematically, without recourse to exten-
sive numerical simulations. This analysis can be implemented as a
simple graphical method: a characteristic curve (for the open-loop
system) and a straight line (which essentially equates the input of the
open-loop system with the output) are plotted on one set of axes;
the intersection points determine the steady states of the system;
and the relative slopes of the two lines at the intersection points
determine the stability of the steady states. Moreover, this same
type of analysis can be implemented as an experimental program:
if it is possible to measure the steady-state I�O relationship for a
feedback loop under conditions where the feedback is blocked (e.g.,
by inhibitors, small interfering RNAs, or other experimental ma-
nipulations), and it can be demonstrated or safely assumed that the
system is monotone, then the system’s stability behavior can be
rigorously inferred from the shape of the I�O curve, irrespective of
the details of the biochemical mechanism that led to produced the
curve. Our hope is that this method will help us to analyze and
understand the mechanistic basis of important systems-level bio-
logical behaviors.
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Supporting Text

Theoretical Foundations. Here, we describe the general theoretical framework that
underlies our methodology; proofs and details can be found in refs. 1 and 2.

Our results apply to systems of ordinary differential equations of the following general
form:

ẋ1 = f1(x1, . . . , xn, ω)

ẋ2 = f2(x1, . . . , xn, ω)
...

ẋn = fn(x1, . . . , xn, ω) ,

which describe the evolution of a set of variables x1(t), . . . , xn(t); ω represents an external
“input” signal that may be applied to the system. (In this article, ω is always a scalar
quantity, but extensions of our results to vector quantities are possible; see refs. 1 and
2.) In addition, we suppose that an “output” variable η, which is a function η = h(x) of
the vector of state variables x = (x1, . . . , xn), is also specified. Typically, η will simply
be one of the variables, for instance η = xn.

The role of η is to indicate which state variable, or combination of state variables,
will be used to communicate to other systems in an interconnection or to be fed back.
(It is possible to extend the results to vector outputs as well.)

It is assumed that the state x evolves in a subset X of a Euclidean space Rn, called the
“state-space” of the system. (Technically, one requires that the subset X be contained
in the closure of its interior, see refs. 1 and 2; this is a condition that is always satisfied
in biochemical applications, and allows one to impose constraints such as positivity or
non-negativity.) The functions fi and h are supposed to be differentiable in all of their
arguments.

The incidence graph of a system is obtained as follows. It has n + 2 nodes, labeled
ω, η, and xi, i = 1, . . . , n. A labeled edge (an arrow with a + or − sign attached to it) is
drawn whenever a variable xi (or input ω) affects directly the rate of change of a variable
xj, j 6= i (or the value of the output η), and a sign is attached to each label: a + sign
whenever the effect is positive and − if the effect is negative. (By definition, we do not
draw edges from any xi to itself.) That is to say, if fi(x, ω) is strictly increasing with
respect to xj for all (x, ω), then we draw a positive edge directed from vertex xj to xi;
if instead fi(x, ω) is strictly decreasing as a function of xj for all (x, ω), then we draw a
negative edge directed from vertex xj to xi; and if fi is independent of xj, no edge from xj
to xi is drawn. Similarly for edges from the vertex ω to any vertex xj, and from any xj to
η. [If an effect is ambiguous, because it depends on the actual values of the input or state
variables, such as in the example ẋ1 = (1−x1)x2 +ω, where f1(x1, x2, ω) = (1−x1)x2 +ω
is an increasing function of x2 if x1 < 1, but is a decreasing function of x2 if x1 > 1,
then a graph cannot be drawn and our method as described here does not apply.] We
define the sign of a path (the individual edges transversed in any direction, forward or
backwards) as the product of the signs along it, and say simply that the corresponding
path is positive or negative.



For example, the following system:

ẋ1 = −x1 +
1

1 + ω
ẋ2 = −x1 − x2 + x3 − ω
ẋ3 = −x1 + x2 − x3

with output η = x3 − x1 has the incidence graph shown in Fig. 6a (ignore, for now, the

Fig. 6. (a) Example of an incidence graph. (b) A cascade of subsystems.

positive sign in parenthesis). Note, for instance, that the sign of the path x1, x3, x2 is
negative (one negative and one positive edge), and the sign of the path (a loop, since the
beginning and endpoint coincide) ω, x1, x2, ω is also negative (product of three negative
signs).

We define a system to be “strongly I/O monotone” provided that conditions i-iv, as
described earlier, hold for the incidence graph of the system. (It is not necessary for the
strict decrease or increase conditions to hold at boundary points, where some concen-
trations may be zero, as long as every solution of the closed loop system is guaranteed
to enter the interior. Also, a far weaker condition, expressed mathematically in terms of
convex cones, is sufficient, see ref. 1.) For example, a system whose graph is as shown in
Fig. 6a is not monotone, because the the loop ω, x1, x2, ω is negative (or because there
is a path from ω to η, namely ω, x2, x3, η, that is negative). On the other hand, if the
second equation had been ẋ2 = −x1 − x2 + x3 + ω instead of ẋ2 = −x1 − x2 + x3 − ω,
then the graph would have a positive sign on the ω to x2 edge (+ in parentheses), and
the system would have been monotone.

Finally, we say that a system has a monostable steady-state response to constant
inputs, or that it has a well-defined steady-state I/O characteristic, provided that, for
each possible constant input ω, there exists a (unique) globally asymptotically stable
equilibrium, denoted kx(ω), and the nondegeneracy condition detDf(kx(ω), ω)) 6= 0 [Df
indicates the Jacobian with respect to x] holds at the corresponding equilibrium. The



I/O characteristic is, by definition, the output corresponding to this steady state, that
is kη(ω) = h(kx(ω)). The main theorem in ref. 1 is as follows. (The theorem in that
reference is more general, but this special case is sufficient for our purposes.) Suppose
that the system:

ẋ = f(x, ω) , η = h(x)

has a well-defined I/O characteristic and is strongly I/O monotone. Consider the unitary
positive-feedback interconnection ω = η:

ẋ = f(x, h(x)) .

Then, the steady states of this closed loop system are in a 1-1 correspondence with the
fixed points of the I/O characteristic. Moreover, if the derivative k ′(ω) 6= 1 at any fixed
point ω, and if all trajectories of the sytem are bounded, then for all initial conditions,
except at most those belonging to a set of measure zero, solutions converge to the set of
equilibria of 5 corresponding to inputs for which k ′(ω) < 1. (Boundedness of trajectories
is often automatic in biochemical models, because of conservation of mass and other
constraints.)

A very useful fact that helps in verifying our conditions A and B is that monotonicity
and existence of characteristics are always true for cascades of systems (under some
mild technical mathematical conditions, see ref. 2, provided only that every individual
subsystems in the cascade satisfies the requirements. Cascades are systems composed of
subsystems, the output of each of which is an input to the next subsystem (Fig. 6b).

Monotonicity in the MAPK Cascade Model. We can generalize the results shown
in Fig. 5b to any system with the generic form:

ẋ1 = −ωθ1(x1) + θ2(M − x1 − x2)
ẋ2 = ωθ3(M − x1 − x2)− θ4(x2)

}
:= f(x1, x2, ω) ,

where the θs denote arbitrary differentiable functions satisfying θ ′(r) > 0 and θi(0) = 0
[which is true for our example where θi(r) = Vir

Ki+r
, and where we take “x1” to be y1 or

z1, and “x2” to be y3 or z3] and evolving on a state space given by the following triangle:

X = ∆ := {[x1, x2] : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤M} .

The graph associated with the system is given by that shown in Fig. 5b. Inspection of
this graph proves monotonicity. See ref. 1 for generalizations to an even wider class of
systems.

Parameterizing the MAPK Cascade Model. Here, we present the experimental
rationale for the MAPK cascade model shown in Fig. 5, and for the particular parameters
we have chosen for the model.

The basic premise of the model is that all of the enzymatic reactions reach a kinetic
steady state rapidly, and therefore can be approximated by Michaelis-Menten expressions
for reaction rate as a function of protein substrate concentration. A similar model (except
with negative feedback rather than positive feedback) has been presented by Kholodenko
(3).



The activation of p42 MAPK by MEK is assumed to occur via a nonprocessive, dual
phosphorylation mechanism, based on in vitro studies (4-5). There is not an obliga-
tory order for the phosphorylations, but in vitro the tyrosine phosphorylation generally
precedes the threonine phosphorylation (4), so we suppose there are three main MAPK
species—unphosphorylated MAPK (z1), MAPK-YP (z2), and MAPK-YP/TP (z3), with
the fourth potential species (MAPK-TP) ignored. The activities of monophosphorylated
and unphosphorylated MAPK [∼2% and ∼0.002% that of the z3 form, respectively (6)]
are ignored as well. The dephosphorylations are assumed to occur in separate steps, as
indicated from experiments in Xenopus oocytes and extracts (7).

The mechanism of MEK activation is somewhat less well understood. The phospho-
rylation of MEK by Mos appears to be nonprocessive in vitro (8), and mutational studies
suggest that MEK must be dual-phosphorylated to become fully active. However, other
studies indicate that monophosphorylated MEK may possess substantial activity (9).
Here we have assumed that only MEK-PP (y3) is active.

The activation of Mos is poorly understood. It is likely to involve changes in mRNA
translation (10-11), in protein stability (12), and possibly other types of regulation as
well. In the absence of more detailed information on the mechanism of Mos activation,
we have assumed a simplified mechanism, where Mos synthesis is directly stimulated by
active MAPK (z3).

This results in the following equations:

ẋ = − V2 x

K2 + x
+ vV0z3x+ V1

ẏ1 =
V6 y2

K6 + y2

− V3 x y1

K3 + y1

ẏ2 =
V3 x y1

K3 + y1

+
V5 y3

K5 + y3

− V4 x y2

K4 + y2

− V6 y2

K6 + y2

ẏ3 =
V4 x y2

K4 + y2

− V5 y3

K5 + y3

ż1 =
V10 z2

K10 + z2

− V7 y3 z1

K7 + z1

ż2 =
V7 y3 z1

K7 + z1

+
V9 z3

K9 + z3

− V8 y3 z2

K8 + z2

− V10 z2

K10 + z2

ż3 =
V8 y3 z2

K8 + z2

− V9 z3

K9 + z3

.

The assumed values for the protein concentrations, rate constants, and Michaelis
constants are shown in Table 1. These parameters were chosen to be consistent with ex-
perimentally determined abundance and kinetic data, where such data are available (13);
to reproduce the activation and inactivation kinetics seen in Xenopus oocyte extracts
treated with recombinant myelin basic protein-Mos (MBP-Mos) (to turn the cascade
kinases on) or EDTA (to turn the cascade kinases off) (unpublished data); and, most im-
portantly, to reproduce the experimentally determined data on the steady-state activity
of p42 MAPK (z3) as a function of the concentration of MBP-Mos in extracts (14). The



importance of this last criterion comes from the fact that our theorem shows that the
shape of the characteristic for the open-loop system (Fig. 5c), which is similar to that
of the measured p42 MAPK stimulus/response curve (Fig. 5d), determines the stability
behavior of the closed loop system. Indeed, the model reproduces the experimental data
well (Fig. 5d).

It is important to note that if nonphosphorylated MAPK (z1) can act as a competi-
tive inhibitor of the phosphorylation of monophosphorylated MAPK (z2) by active MEK
(y3), and MEK is operating close to saturation, then the system will not necessarily
be monotone. The same is true if bisphosphorylated MAPK (z3) can act as a com-
petitive inhibitor of monophosphorylated MAPK (z2) for access to the relevant MAPK
phosphatase, assuming the phosphatase is operating close to saturation.

Other Feedback Loops and Relation to Phase-Plane Analysis. For simplicity
of exposition, we have described our results for feedback systems in which the output is
fed back, with no further modifications, as an input (except perhaps for a multiplicative
factor v). More complicated feedback loops may be studied with the same techniques,
however, by a reduction to unity feedback.

Suppose that we are given a feedback loop as shown in Fig. 7a, Left, composed of
two systems whose I/O characteristics are denoted f and g. System g responds to input
ω, producing output z, which is fed into the system f , which in turn produces an output
η, and this is used as an input ω = η to the first system. We may alternatively view
this system as the system obtained by closing the loop (ω = η) on the composite open-
loop system formed by the cascade of the two original subsystems, see Fig. 7a, Right.
Observe that the I/O characteristic k(ω) of the cascade is the composition k = f ◦ g of
the two individual characteristics, that is, k(ω) = f(g(ω)). Steady states of the closed
loop correspond to pairs ω, z such that f(z) = ω and g(ω) = z, or equivalently to values
ω of the input such that f−1(ω) = g(ω). We may find these steady states, therefore,
by intersecting the graphs of f−1 and g (Fig. 7b). Stable points of the closed loop
system correspond to points where the slope of g is less than the slope of f−1, because
the condition k′(ω) < 1 when k is the composition k(ω) = f(g(ω)), is equivalent to
f ′(g(ω))g′(ω) < 1, which is, in turn, equivalent to g ′(ω) < (f−1)′(ω). [Observe that this
rule is consistent with the special case when f is the identity mapping, in which case
f−1(ω) ≡ 1 and we recover our previous condition g ′(ω) < 1.]

It is instructive to compare our conclusions with a routine phase plane analysis of the
(very special, and only 2D) system:

ż = −z + g(η)

η̇ = −η + f(z) ,

which can be seen as the feedback interconnection of a monotone system with I/O char-
acteristic g and a monotone system with I/O characteristic f . At any steady state (z0, η0)
we have that f(z0) = η0 and g(η0) = z0. The Jacobian at such a point is:

(
−1 g′(η0)
f ′(z0) −1

)



Fig. 7. (a) Feedback interconnection as unity feedback. (b) Characteristics of g and f−1

are nullclines for a 2D system

which has negative trace and determinant 1 − g ′(η0)f ′(z0) = 1 − g′(η0)f ′(g(η0)). This
determinant is positive, insuring (local) stability, if and only if g ′(η0)f ′(g(η0)) < 1, which
amounts to our condition g′(ω) < (f−1)′(ω) at ω = η0.

In fact, global stability can be analyzed in this case as well. We may draw nullclines
and sketch vector field directions very easily (Fig. 7b). It is then clear from this sketch
that there is global stability to the states at which the condition g ′(ω) < (f−1)′(ω). Our
results hold for systems in arbitary dimensions, and not just in this special form, provided
that monotonicity and existence of I/O characteristics have been verified.

Further Remarks: Robustness and Other Feedback Structures. Our method is
fairly robust to biochemically plausible variations in the models being considered. It can
be mathematically shown that the form of the characteristic is preserved under small
perturbations in the parameters of a model. Moreover, in the MAPK example, we used
a standard model based on quasi-steady state assumptions; if these fast intermediate
reactions are kept in the model, one may still apply our methodology.



Complex signaling and regulatory networks involve multiple and interlocked positive
and feedback loops. Much further research will be needed to obtain a complete set of
tools to analyze such complex systems in their full generality. Our approach is based
on the idea of breaking up loops and reconstituting the system by analyzing the various
interconnections. In particular, negative feedback interconnections, which may give rise
to oscillations, are studied in detail in ref. 2.



Table 1. Kinetic parameters used in the MAPK cascade model

Parameter Value Source
ytot total MEK concentration 1,200 nM Experimentally determined (13)
ztot total p42 MAPK concentra-

tion
300 nM Experimentally determined (13)

V0 ... MAPK-PP→ Mos 0.0015 sec−1·nM−1 Arbitrary
V1 ... → Mos 0.000002 sec−1 Arbitrary
V2 Mos → ... 1.2 nm·sec−1 Arbitrary
K2 Mos → ... 200 nM Arbitrary

V3 MEK Mos-P→ MEK-P 0.064 sec−1 Consistent with kinetics of MEK acti-
vation in Mos-treated extracts (unpub-
lished data)

K3 MEK Mos-P→ MEK-P 1,200 nM Arbitrary; equal to the measured total
abundance of MEK (13)

V4 MEK-P Mos-P→ MEK-PP 0.064 sec−1 Consistent with kinetics of MEK acti-
vation in Mos-treated extracts (unpub-
lished data)

K4 MEK-P Mos-P→ MEK-PP 1,200 nM As for K3.
V5 MEK-PP → MEK-P 5 nm·sec−1 Consistent with kinetics of MEK inac-

tivation in EDTA-treated extracts (un-
published data)

K5 MEK-PP → MEK-P 1,200 nM As for K3.
V6 MEK-P → MEK 5 nm·sec−1 As for V 5.
K6 MEK-P → MEK 1,200 nM As for K3.

V7 MAPK MEK-PP→ MAPK-P 0.06 sec−1 Experimental estimates with activated
recombinant MEK are ∼0.024 sec−1

(ref. 15)

K7 MAPK MEK-PP→ MAPK-P 300 nM Experimental estimates with activated
recombinant MEK are ∼330 nM (15)

V8 MAPK-P MEK-PP→ MAPK-PP 0.06 sec−1 As for V 7.

K8 MAPK-P MEK-PP→ MAPK-PP 300 nM Experimental estimates with activated
recombinant MEK are ∼330 nM (15)

V9 MAPK-PP → MAPK-P 5 nm·sec−1 Together with the assumed value of K9

(300 nM), this implies a half-time of
∼50 sec for this dephosphorylation re-
action. Experiments indicate an appar-
ent half-time on the order of 5 min (7).

K9 MAPK-PP → MAPK-P 300 nM Based on unpublished evidence.
V10 MAPK-P → MAPK 5 nm·sec−1 As for V 9.
K10 MAPK-P → MAPK 300 nM As for K9.
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