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Certain mass-action kinetics models of biochemical reaction networks, although described
by nonlinear differential equations, may be partially viewed as state-dependent linear time-
varying systems, which in turn may be modeled by convex compact valued positive linear
differential inclusions. A result is provided on asymptotic stability of such inclusions, and
applied to a ubiquitous biochemical reaction network with inflows and outflows, known as
the futile cycle. We also provide a characterization of exponential stability of general homo-
geneous switched systems which is not only of interest in itself, but also plays a role in the
analysis of the futile cycle. VVC 2009 American Institute of Chemical Engineers Biotechnol.
Prog., 25: 632–642, 2009
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Introduction

The study of positive systems, systems whose state is con-
fined to the closed positive orthant, naturally arises in many
different disciplines, including mathematical biology, chem-
istry, economics, and telecommunications engineering. The
implications of positivity constraints on the dynamics are of-
ten nontrivial. For instance, in the case of positive linear sys-
tems, the dynamical behavior is strongly constrained by the
Perron-Frobenius theory.1 Likewise, the dynamics of nonlin-
ear cooperative systems—where the variational equation
associated to the system turns out to be positive—is also
limited, as shown in the theory of monotone systems.2

Linear systems are positive when they are described by
differential equations of the type _x ¼ Ax, where A is a square
matrix having non-negative off-diagonal entries. In the litera-
ture such matrices are commonly referred to as a Metzler matri-
ces. Only recently, the study of such systems in conjunction
with switching has attracted some attention in engineering and
mathematics.3,4 In particular, Ref. 4 provides an algebraic crite-
rion for the existence of a common linear Lyapunov function
for switched positive linear systems with 2 modes.

We relax the notion of a common linear Lyapunov func-
tion introduced in Ref. 4 and allow for nonstrict decrescence
along solutions of the system. The existence of such a func-
tion, combined with the assumption that all matrices describ-
ing the switched system are Hurwitz, leads to a Lasalle-like

criterion which allows one to conclude asymptotic stability
of the switched system, or equivalently, of the associated dif-
ferential inclusion.

Indeed, although such kinds of criteria have been widely
studied in the past literature for general-purpose switched
systems (see for instance Refs. 5 and 6), the additional struc-
ture provided by the positivity constraint allows for easily
checkable and tight conditions (indeed necessary and suffi-
cient for the considered class of systems).

We also revisit the problem of characterizing exponential
stability of switched homogeneous systems (not necessarily
positive). The main result concerning this problem seems to
have been part of the collective memory in the switched sys-
tems literature; yet, it is hard to cite an article or text where
a proof can be found. Moreover, the proof presented here is
new, as it does not require notions from the theory of differ-
ential inclusions. We will see how it is useful in establishing
our main result regarding stability of positive linear differen-
tial inclusions, and also as a tool in showing that solutions
of biochemical networks with inputs remain bounded. At
first glance, the latter statement appears to be trivial; yet,
perhaps surprisingly, it turns out that solutions to open bio-
chemical reaction networks may grow unbounded. We will
illustrate this by means of a case study of an important
example arising in systems biology, known as the 2-step fu-
tile cycle.7–11 In fact, the study of this particular example
triggered the development of our main theoretical results.
The 2-step futile cycle is one of the basic building blocks
of various biochemical networks, for instance as a
2-step phosphorylation-dephosphorylation reaction. We have

Correspondence concerning this article should be addressed to D.
Angeli at angeli@dsi.unifi.it or d.angeli@imperial.ac.uk.

VVC 2009 American Institute of Chemical Engineers 632



previously studied the futile cycle in isolation,7–9 and despite
the fact that it is governed by a relatively large system of
nonlinear differential equations for which traditional techni-
ques such as the quasi-steady state approximation only yield
partial results (as they are based on simpler approximations),
its global dynamical behavior is now fairly well understood,
mainly because of monotonicity properties, see Refs. 7 and
8. Of course, in reality the futile cycle is not isolated, and
thus it makes sense to study it with time-varying inputs and
outputs. As already mentioned, we will discover that very
basic properties, such as boundedness of solutions, are not as
easy to establish, or even worse, may fail to hold.

The rest of this article is structured as follows. In ‘‘Prob-
lem Formulation and Main Result’’ Section, we state the
main result concerning asymptotic stability of positive linear
differential inclusions, as well as an example that illustrates
the necessity of some of our assumptions. We will also pro-
vide a characterization of exponential stability of homogene-
ous switched systems. ‘‘Application to Some Chemical
Networks’’ Section provides an application of our main
result. For the sake of readability technical proofs are
deferred to the Appendix.

Problem Formulation and Main Result

Let X � Rn�n be a nonempty, closed set of real n � n
matrices, for some integer n[ 0. For x 2 Rn we say that v [
X x, if there exists a matrix A [ X such that v ¼ Ax. With
this notation, we define a linear differential inclusion (LDI)
in the following way:

_xðtÞ 2 XxðtÞ (1)

and we call an absolutely continuous function x: R ! Rn a

solution to (1) if and only if _xðtÞ 2 X xðtÞ for almost all t [
R. For each x0 [ Rn we define the set of solutions with ini-

tial condition at x0 as the following set:

Sðx0Þ ¼: fxð�Þ is a solution of ð1Þ : xð0Þ ¼ x0g:
Basic results about general differential inclusions are cov-

ered in several texts, such as the introductory work.12

Hereby, it is worth recalling that, due to the set-valued na-
ture of the right-hand side of (1), the set Sðx0Þ has usually
infinite cardinality (and in particular is not a singleton). To a
certain extent (which can be made rigorous by selection the-
orems), a linear differential inclusion can be seen as a way
of simultaneously considering all possible measurable signals
A(�): R ! X, and the associated time-varying linear systems
_xðtÞ ¼ AðtÞxðtÞ. In the particular case of piecewise constant
signals A(�), moreover, one ends up dealing with a so-called
switched system.

Although general LDIs typically give rise to solutions
evolving in Euclidean space, when one is considering sys-
tems whose variables are naturally confined to the positive
orthant (as in the case of concentrations of chemical com-
pounds) it makes sense to restrict the class of systems under
investigation, by taking into account this additional require-
ment. We make this mathematically precise by means of the
following definitions.

We say that a differential inclusion is positive if for all x0
[ Rn

þ and all xð�Þ 2 Sðx0Þ it holds that x(t) [ Rn
þ for all t �

0 (viz. the positive orthant is a positively invariant set for
the inclusion).

It is well known that a closed set K is positively invariant
for all solutions of a Lipschitz differential inclusion _x 2 FðxÞ
iff F(x) [ TCx(K) for all x [ K, where TCx(K) denotes the
Bouligand’s tangent cone to the set K at the point x (this
property is usually referred to as strong invariance of K, see
Refs. 13 or 14). Hence, in our case, (1) is positive iff Ax [
TCx(R

n
þ) for all A [ X and all x [ Rn

þ. In turn, for a single
linear time invariant system, it is well known that Ax [
TCx(R

n
þ) for all x [ Rn

þ iff A is a Metzler matrix. (See for
instance Ref. 15 for an exposition of positive linear systems
theory.) In view of these two facts, (1) is positive if and
only if:

Aij � 0; 8i 6¼ j 2 f1; 2;…; ng; 8A 2 X: (2)

In words, X consists of Metzler matrices. We say that a
(positive) linear differential inclusion is asymptotically stable
if (for all x0 [ Rn

þ) for all x0 [ Rn, x(t) ! 0 as t ! þ1 for
all x(�) in SðxoÞ. When X is a singleton, then (1) amounts to
a differential equation, and asymptotic stability is equivalent
to the matrix A [ X being Hurwitz (viz. all of its eigenvalues
have negative real part). In general, checking asymptotic sta-
bility of a linear differential inclusion is a difficult task; its
characterization in algebraic terms has long been sought for.
Although it is known that a necessary condition for asymp-
totic stability is that all matrices A in X should be Hurwitz,
it is also well known that in general this condition is not suf-
ficient. The purpose of this article is to provide a sufficient
condition for asymptotic stability of positive linear differen-
tial inclusions. Before stating our main result, we introduce
some additional notation. We say that a (row or column)
vector v satisfies v � 0 if v [ Rn

þ and v = 0. Accordingly,
we write v1 � v2 when v1 � v2 � 0. If v [ int (Rn

þ), we
denote this fact by v � 0.

Definition 2.1. We say that V(x) ¼ c0x is a linear coposi-
tive weak Lyapunov function for (1) if c � 0 and

c0A � 0 8A 2 X:

Notice that, in the case in which c0A ¼ 0 for all A [ X,
c0x has a clear physical interpretation as a conserved quantity
of the system, along its solutions; indeed, c0 _xðtÞ ¼ c0AðtÞxðtÞ
for some A(t) [ X, and therefore c0 _xðtÞ ¼ 0. Similarly, if x(t)
� 0 and c0A � 0 for all A [ X, c0 _xðtÞ� 0, thus showing that
the quantity c0x(t) is actually dissipated by the system. This
may occur, for instance, when adding outflows to a closed
reaction network; as it is intuitive, in such case some of the
conserved moieties become quantities which actually
decrease along solutions.

Observe that, in the special case in which X consists of
nonsingular matrices (and in particular, if each matrix in X
is Hurwitz), then a linear copositive weak Lyapunov function
satisfies the stronger property:

c0A 	 0 8A 2 X:

Definition 2.2. We say that V(x) ¼ c0x is a uniform linear
copositive weak Lyapunov function for (1) if c � 0 and

9e > 0 : 8A 2 X; 9iA 2 f1; 2;…; ng : c0A 	 �ee0iA

with ei denoting the i-th vector of the canonical basis of Rn.
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We have the following simple remark (see Appendix for
the proof).

Lemma 2.3. Consider a positive, linear differential inclu-
sion (1), and let X ( Rn�n be compact. Suppose that every
element of X is nonsingular. Then, any linear copositive
weak Lyapunov function for (1) is also a uniform linear
copositive weak Lyapunov function. h

We will need the following result, also proved in the
Appendix.

Lemma 2.4. Consider a positive linear differential inclu-
sion (1) and assume that X ( Rn�n is compact. Let x(t), t �
0 be a forward solution of (1). If xi(0) [ 0, then xi(t) [ 0
for all t[ 0. h

Our main result is stated next, and proved in the
Appendix.

Theorem 1. Consider a positive linear differential inclu-
sion (1), and assume that X is compact and convex. Suppose
that:

(1) There exists a linear copositive weak Lyapunov func-
tion V(x) ¼ c0x for (1).
(2) Each A [ X is nonsingular.

Then, (1) is asymptotically stable. h

Remark 2.5. As remarked in the proof, in view of condi-
tion 1 and Condition 2 of Theorem 1 could be replaced by
the statement that ‘‘Each A [ X is Hurwitz’’, which is a nec-
essary condition for asymptotic stability of (1). Hence, Theo-
rem 1 could be stated equivalently by saying that for
positive linear differential inclusions, admitting a linear
copositive weak Lyapunov function, asymptotic stability of
the inclusion is equivalent to Hurwitzianity of the individual
matrices A [ X. Such an equivalence is far from being true
in more general set-ups, for instance, if existence of a linear
weak Lyapunov function is not assumed. Indeed article3 is
devoted to showing that Hurwitzianity of all matrices in X
is equivalent to asymptotic stability for positive differential
inclusions in the plane, and to building a counter-example
to the above in higher dimension. Conditions relating exis-
tence of common Lyapunov functions to Hurwitzianity of
the frozen systems, viz. of matrices A in X, are not new in
the literature. See for instance article Ref. 21, where results
are established for existence of quadratic common Lyapu-
nov functions in terms of Hurwitzianity of matrix pencils
(an analog of convex hulls). More in general, the idea of
proving stability of differential inclusions on the basis of
stability of frozen linear systems is indeed at the core of
the well-known Aizerman conjecture, which, though false
in its original formulation, has triggered a rich line of
research starting with the circle and Popov’s criteria (see
for instance Ref. 22). h

A counter-example

We remark that the assumptions of Theorem 1 cannot be
weakened by only requiring that X be a closed set. As we
show in the subsequent example, this is not possible even if
Assumption 2 is strengthened to the existence of a uniform
linear copositive weak Lyapunov function, which, in the
noncompact case, is in general a stronger assumption than
existence of a mere linear copositive weak Lyapunov
function.

Consider the following linear time-varying differential
equation:

_xðtÞ ¼ �1� nðtÞ 1

nðtÞ �1

� �
xðtÞ (3)

where n(t) is a measurable, locally essentially bounded func-
tion of t, taking values in [0,þ1). Notice that:

½1; 1
 �1� nðtÞ 1

nðtÞ �1

� �
¼ ½�1; 0
 	 0 (4)

Thus x1 þ x2 is a uniform linear copositive weak Lyapu-
nov function for (3). Moreover, each of the matrices in

X :

¼ fA 2 R2�2 : 9n � 0 : A11 ¼ �1� n;A12 ¼ 1;A21

¼ n;A22 ¼ �1g
is Hurwitz. Hence, by the Theorem 1, asymptotic stability
follows provided that n(t) is bounded from above. On the
other hand, let x2(0) [ 1 and let n(t) ¼ 1/x1(t) for all t � 0.
Substituting in (3) the following equations are obtained:

_x1ðtÞ ¼ �x1ðtÞ þ x2ðtÞ � 1

_x2ðtÞ ¼ �x2ðtÞ þ 1
(5)

Hence, x2ðtÞ & 1 as t ! þ1. Consequently x2(t) � 1 !
0 and x1(t) ! 0 by the first equation in (5). In particular
then n(t) � 0 for all t and n(t) ! þ1 as t ! þ 1. Thus
we have found a solution of (3) for which convergence to 0
does not hold.

Switched homogeneous systems

The proof of Theorem 1 given in the Appendix relies
upon Theorem 2, which is stated in this section. As dis-
cussed in Remark A.1, one could alternatively have appealed
to a more special result in the theory of switched linear sys-
tems. However, the statement and proof that we provide
applies to a larger class of systems, namely all switched ho-
mogeneous systems.

The study of switched systems is a rapidly growing area
of research in control theory. Informally, a switched system
is a dynamical system which is able to commute between
different behaviors according to some external input vari-
able, which we will call the switching signal. The practical
relevance of this wide class of systems has been often
emphasized, see for instance Refs. 23 and 24 for recent sur-
veys on the subject. On the other hand, many challenging
theoretical questions which arise in this area are still waiting
for an answer.

From a mathematical point of view, a switched system is
a nonlinear system of the following form

_x ¼ f ðx; rÞ (6)

with state x evolving in Rn and with exogenous inputs r (the
switching signal), taking values in a compact set R. In this
context, we think of r(�) :R�0 ! R as a time-varying uncer-
tain parameter of the system. In order to guarantee existence
of solutions, one assumes that r(�) is a measurable function,
and that f is continuous and satisfies a local Lipschitz prop-
erty on x, uniformly on inputs (see e.g. Ref. 25). The homo-
geneity assumption refers to the dependence of f on x,
meaning that f satisfies

8k > 0; 8x 2 Rn; 8r 2 R : f ðkx; rÞ ¼ kf ðx; rÞ: (7)
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We will also assume that f satisfies a uniform Lipschitz
condition:

jf ðx1; rÞ � f ðx2; rÞj � Mjx1 � x2j 8x1; x2 2 Rn; 8r 2 R

(8)

We remark that, because of compactness of R and homo-
geneity of f this is not stronger than the usual local Lipschit-
zianity condition used in order to guarantee existence and
uniqueness of classical solutions for (6).

A major example from the previous class of systems is a
linear switched system

_x ¼ Urx; r 2 R: (9)

with x [ Rn and Ur a square matrix, typically r dependent,
of compatible dimension. In the area of robust control, the
stability of a family of linear systems is usually studied
employing common quadratic Lyapunov functions whose
expression can be determined solving an LMI. It is well
known that the existence of a common Lyapunov function is
a necessary and sufficient condition for stability of (6) under
arbitrary switchings26 however, quadratic Lyapunov func-
tions are not universal, not even for linear systems, meaning
that there might be stable families of linear systems for
which no common quadratic Lyapunov function exists.27

Nevertheless, it was shown in Ref. 20 that a Lyapunov func-
tion of the following kind always exists

VðxÞ ¼ max
i
ðv0ixÞ2 (10)

where vi [ Rn are constant vectors, but the question of how
to build such Lyapunov functions in general is still open.

Here we will investigate the stability properties of homo-
geneous, switched systems; in particular, a new proof is pre-
sented that does not rely on differential inclusion techniques,
showing equivalence of exponential stability and attractivity.
In the following x(t,n,r) will denote the response at time t,
to the input signal r and initial condition n at time t ¼ 0. It
is straightforward to see from (8) that (6) is forward com-
plete and hence solutions are unique and maximally defined
over [0,þ1).

Definition 2.6. We say that system (6) is exponentially sta-
ble if there exist positive constants M and k such that

jxðt; n; rÞj � Me�ktjnj 8t � 0; 8n 2 Rn; 8r 2 MR: (11)

Definition 2.7. We say that system (6) is uniformly glob-
ally asymptotically stable if there exists a KL function b
such that the following estimate holds

jxðt; n; rÞj � bðjnj; tÞ 8t � 0; 8n 2 Rn; 8r 2 MR: (12)

Both stability notions are uniform with respect to r, in the
sense that the switching signal does not affect the speed of
convergence of the system to 0. The following notions of
attractivity are also of interest.

Definition 2.8. We say that system (6) is attractive if

8n 2 Rn; 8r 2 MR; lim
t!þ1 jxðt; n; rÞj ¼ 0 (13)

Definition 2.9. We say that system (6) is weakly attractive
if

8n 2 Rn; 8r 2 MR; lim inf
t!þ1 jxðt; n; rÞj ¼ 0 (14)

With these definitions, we are ready to state the main
result concerning switched homogeneous systems. It was
conjectured [for the part relative to items (1),(2) and (3)]
in Ref. 27; as a matter of fact, an even stronger result
holds.

Theorem 2. Consider the family of switched systems in
Eq. 6, and assume that (7) is satisfied, Then, the following
facts are equivalent:

(1) System (6) is exponentially stable,
(2) System (6) is uniformly globally asymptotically stable,
(3) System (6) is attractive,
(4) System (6) is weakly attractive. h

Remark 2.10. We remark that by virtue of (7), local stabil-
ity properties are equivalent to global ones. In particular
then, by the previous theorem weak local attractivity in a
neighborhood of the origin is equivalent to global exponen-
tial stability.

By shifting the initial time from 0 to an arbitrary initial
time s, we obtain the following simple Corollary to Theorem
2 which is used in the following section.

Corollary 2.11. Let U(t,s) denote a fundamental matrix
solution of system (9). Then system (9) is attractive if and
only if there are positive constants M and k such that

jUðt; sÞj � Me�kðt�sÞ 8t � s:

h

An example of transition from stability to instability

To see how the result in the previous section is not
obvious even for very simple switched systems, consider the
following parameterized family of linear switched systems:

_x ¼ UrðhÞx; r 2 f1; 2g (15)

with

U1ðhÞ ¼ �1 h
0 �1

� �
U2ðhÞ ¼ �1 0

h �1

� �
: (16)

where y is a parameter varying in [0,2]. Both systems are
asymptotically stable. Moreover, for all y in [0,2) we have:

U0
1ðhÞ þ U1ðhÞ ¼ U0

2ðhÞ þ U2ðhÞ\ 0: (17)

Hence, U1(y) and U2(y) admit the identity as a common
Lyapunov function and the resulting switched system is
quadratically stable. For y ¼ 2, however, it is not difficult to
see that the system (15) fails to be exponentially stable; a
necessary condition for exponential stability is in fact that
all convex combinations of the U0

is be such.28 In this case
instead

1

2
U1 þ 1

2
U2 ¼ �1 1

1 �1

� �
; (18)

which has a zero eigenvalue, corresponding to the eigenvec-
tor v0 ¼ [1,1]0. Therefore, there exist nonconvergent relaxed
solutions of (15) for y ¼ 2. It is not obvious instead, without
making use of Theorem 2, how to show that the system is
not attractive. As a matter of fact, taking as a Lyapunov
function V(x) ¼ x0x one easily obtains

_VðxÞ ¼ 2x0Uix ¼ �2ð½1;�1
xÞ2 � 0 i ¼ 1; 2: (19)
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Thus x(t)0x(t) � x(0)0x(0) and [1, �1]x [ L2. As x is
bounded, so is ([1 � 1]x)2 is uniformly continuous and thus
it follows from Barbalat’s Lemma 16 that [1, �1]x ! 0.

One might even be brought to think, by the above consid-
erations, that (15) be attractive; the only source of instability
comes from the fact that solutions of the linear system
_x ¼ ðU1 þ U2Þx=2 can be approximated, arbitrarily close on
finite time intervals, by switching rapidly between U1 and
U2, for equally long time intervals. Theorem 2 clearly indi-
cates that this is not the case and that nonconvergent trajec-
tories of (15) exist also taking into account only classical
solutions.

Application to Some Chemical Networks

It turns out that a very important class of systems, which
can be often described by linear positive differential inclu-
sions of the type that we are considering in this note, arises
in the modeling of chemical reaction networks (CRNs). As a
matter of fact, the study of their dynamics was the main
motivation that triggered this research.

From a mathematical point of view, a chemical network is
just a list of chemical reactions, viz. objects of the following
type: X

j2S
aijSj !

X
j2S

bijSj

for i ranging over a set R of chemical reactions. S is the set
of chemical species fS1;S2;…;SNg, whereas the aij’s and
bij’s are non-negative integers, called the stoichiometry coef-
ficients of the reaction network. Assuming that reactions
happen continuously in time, with a rate proportional to the
concentration of the reactants (this is the so-called mass-
action kinetics hypothesis), we can associate to a chemical
reaction network a differential equation, which keeps track
of the time evolution of the concentrations of the different
chemical species. As reactions may involve more than one
reactant at a time, the corresponding reaction rates will be
polynomial functions in the chemical species, and this deter-
mines overall a nonlinear system of differential equations
whose analysis is often nontrivial. Moreover, external inputs
and outputs can also be included in this model, in particular,
if one is considering open systems, rather than closed ones.
To apply our results to the analysis of such systems, it is
first necessary to rewrite the nonlinear system as a linear dif-
ferential inclusion.

The basic idea is as follows. One may always rewrite (in
many alternative ways) a dynamics _x ¼ f ðxÞ in the ‘‘state-de-
pendent’’ form _x ¼ AðxÞx, provided that the origin is an equi-
librium and the vector field f is differentiable. This approach
is often useful in optimization and other feedback control
problems, see for instance.29 Since many chemical reactions
are defined by quadratic nonlinearities, it is often the case
that A(x) will be an affine (and therefore convex) function of
its arguments, and, because chemical species are non-nega-
tive, often A(x) can be picked to be a Metzler matrix (for
each possible state x). Linear copositive weak Lyapunov
functions are then suggested by mass conservation laws. An
even more general case is that in which some of the equa-
tions can be rewritten in this fashion, but the remaining
equations are comparatively easy to analyze. Rather than
providing an abstract theorem for the general systems, we

illustrate this procedure through a very important example
arising in biochemistry.7–11

We will study the following chemical reaction network:

Eþ S0 $ ES0 ! Eþ S1 $ ES1 ! Eþ S2
Fþ S2 $ FS2 ! Fþ S1 $ FS1 ! Fþ S0

u ! S0 S2 ! ;
(20)

where $ denotes reversible reactions, viz. reactions that can
happen in both directions (this notation is used to avoid hav-
ing to write two reactions, respectively the forward and
backward reaction); moreover A ! B ! C is short-hand
notation for A ! B, B ! C. Notice that the last two reac-
tions represent, respectively, the fact that an inflow of sub-
strate S0 occurs through the input u (basically u will
denote in the model the inflow rate of the compound S0)
and that a degradation of S2 occurs spontaneously (it is
customary, in degradation reactions, to use the symbol ;,
to denote the fact that we are not interested in keeping
track of the products of such reactions). We denoted u in
lower-case because it is not a state variable, but plays the
role of an exogenous signal (which is assumed to be non-
negative at all times). The chemical reaction network (20)
can also be graphically represented as a Petri Net, with
chemical species represented as places and reactions as
transitions, see Figure 1. The resulting system of polyno-
mial differential equations (assuming mass-action kinetics)
is given below:

_S0 ¼ �k1E � S0 þ k�1ES0 þ k8FS1 þ u

_S1 ¼ �k3E � S1 þ k�3ES1 � k7F � S1
þk�7FS1 þ k2ES0 þ k6FS2

_S2 ¼ �k5F � S2 þ k�5FS2 þ k4ES1 � k9S2

_ES0 ¼ k1E � S0 � k�1ES0 � k2ES0

_ES1 ¼ k3E � S1 � k�3ES1 � k4ES1

_FS2 ¼ k5F � S2 � k�5FS2 � k6FS2

_FS1 ¼ k7F � S1 � k�7FS1 � k8FS1

_E ¼ �k1E � S0 þ k�1ES0 þ k2ES0

�k3E � S1 þ k�3ES1 þ k4ES1

_F ¼ �k5F � S2 þ k�5FS2 þ k6FS2

�k7F � S1 þ k�7FS1 þ k8FS1;

(21)

where the various constants ki’s and k�i’s are the reaction
rate constants of the forward, respectively, backward ith
reaction.

We can study the nonlinear system (21) by considering
the following pseudolinear system:

_S0
_S1
_S2
_ES0
_ES1
_FS2
_FS1

2
666666664

3
777777775
¼ AðE;FÞ

S0
S1
S2
ES0
ES1
FS2
FS1

2
666666664

3
777777775
þ

1

0

0

0

0

0

0

2
666666664

3
777777775
uðtÞ: (22)

where A(E,F) denotes the following matrix:
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�k1E 0 0 k�1 0 0 k8
0 �k3E� k7F 0 k2 k�3 k6 k�7

0 0 �k5F� k9 0 k4 k�5 0

k1E 0 0 �k�1 � k2 0 0 0

0 k3E 0 0 �k�3 � k4 0 0

0 0 k5F 0 0 �k�5 � k6 0

0 k7F 0 0 0 0 �k�7 � k8

2
666666664

3
777777775
: (23)

Equation 22 is then coupled together with the following
nonlinear equations:

_E ¼ �k1E � S0 þ k�1ES0 þ k2ES0 � k3E � S1
þ k�3ES1 þ k4ES1

_F ¼ �k5F � S2 þ k�5FS2 þ k6FS2 � k7F � S1
þ k�7FS1 þ k8FS1: ð24Þ

Of course, the only meaningful initial conditions are in
the positive orthant. We prove below that the system enjoys
Bounded Input Bounded State (BIBS) Stability for suffi-
ciently small input signals. This is a nontrivial conclusion,
because nothing a priori guarantees that the only outflow
present in the system (viz. the reaction S2 ! ;) will yield
boundedness of all chemical species; indeed there needs to
be an adequate balance between the inflow of S0 [through
the input signal u(t)] and degradation of S2. The proof
exploits in a crucial way Theorem 1 of the previous Section.

Proof of BIBS Stability with small inputs for (21)

To apply our main result, and infer BIBS stability for suf-
ficiently small input signals of the considered chemical reac-
tion network (21), we will, first of all, establish that after
some finite time, all solutions are confined to a region where
the assumptions of the theorem are fulfilled. In particular,
we will establish positive upper and lower bounds for E(t)
and F(t). To this end, notice that the closed positive orthant
is positively invariant for (21). Moreover, (21) admits the
two linear first integrals E(t) þ ES0(t) þ ES1(t) ¼ const. and
F(t) þ FS1(t) þ FS2(t) ¼ const.. The combination of these
two considerations is already enough to guarantee bounded-
ness of E, ES0, ES1, F, FS1, FS2. We want to show now that
also S0(t), S1(t) and S2(t) are bounded functions of time pro-
vided u(t) takes values in [0, u] for some sufficiently small

u[ 0 (possibly depending on the initial condition). Let Emax

and Fmax be upper bounds for E(t) and F(t). Specifically, we
pick Emax ¼ E(0) þ ES0(0) þ ES1(0) and Fmax ¼ F(0) þ
FS1(0) þ FS2(0). Pick s[ 0 sufficiently small so that:

KE :

¼
Z s

0

e�½ðk1þk3Þðc0xð0Þþsþ1Þþminfk�1þk2;k�3þk4g
s minfk�1

þ k2; k�3 þ k4gds\1

and

KF :

¼
Z 0

s
e�½ðk5þk7Þðc0xð0Þþsþ1Þþminfk�5þk6;k�7þk8g
sminfk�5

þ k6; k�7 þ k8gds\1:

We let Emin :¼ KEEmax and Fmin :¼ KFFmax so that we
have that 0 \ Emin \ Emax, 0 \ Fmin \ Fmax. Next, define
X as the following compact and convex set:

X ¼ fAðE;FÞ : E 2 ½Emin;Emax
 and F 2 ½Fmin;Fmax
g:

For such X, we may consider the associated forced linear
differential inclusion:

_xðtÞ 2 XxðtÞ þ e1uðtÞ (25)

where e1 is the first vector of the canonical basis of R7 and
the above sum of a set and a vector denotes as usual the cor-
responding set shift. Notice that c0x :¼ [1,1,1,1,1,1,1]0x is a
linear copositive weak Lyapunov function for _xðtÞ 2 XxðtÞ,
which, together with irreducibility of each A in X, implies
that X consists of Hurwitz matrices. (To see this, let d � 0
be such that d0A 	 0. As A is irreducible, it has a real domi-
nant Perron-Frobenius1 eigenvalue k with corresponding
eigenvector z � 0. Then Az ¼ kz and d0A 	 0 with z,d � 0
implies that k\ 0, and thus A is Hurwitz.)

The Fillipov Selection Lemma and the variation of param-
eters formula says that solutions of (25) with initial condition
x(0) ¼ x0 have the form:

xðtÞ ¼ Uðt; 0Þx0 þ
Z 0

t

Uðt; sÞe1uðsÞ ds

for a fundamental solution matrix associated to the selected
solution of the inclusion. Now, applying Theorem 1 together
with Corollary 2.11 which states that |U(t,s)| decreases expo-
nentially, we conclude that there exists a positive scalar K
such that for positive t, all solutions x(�) of (25) satisfy:

c0xðtÞ � c0xð0Þ þ K�u; (26)

provided that inputs u(�) take values in [0, u].Figure 1. Petri Net representation of CRN (20).
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We show next that every solution of (21) is also a solution
of (24) and (25) for all t � s. To this end, notice first of all
the following dissipation inequality which holds along solu-
tions of (22) as well as (25):

c0 _xðtÞ � uðtÞ: (27)

This implies that c0x(t) � c0x(0) þ tu, as long as u(t) [ [0,
u]. Let us now consider Eq. (24) and exploit the fact that the
signals S0(t), S1(t) and S2(t) satisfy

SiðtÞ � c0xðtÞ � c0xð0Þ þ t�u i ¼ 0; 1; 2: (28)

Let in the following km denote min{k�1 þ k2, k�3 þ k4}.
For all t � 0, there holds that

_EðtÞ � �ðk1 þ k3Þðc0xð0Þ þ t�uÞEðtÞ þ ðk�1 þ k2ÞES0ðtÞ
þ ðk�3 þ k4ÞES1ðtÞ

� �ðk1 þ k3Þðc0xð0Þ þ t�uÞEðtÞ þ kmðES0ðtÞ þ ES1ðtÞÞ
¼ �ðk1 þ k3Þðc0xð0Þ þ t�uÞEðtÞ þ kmðEmax � EðtÞÞ
¼ �ððk1 þ k3Þðc0xð0Þ þ t�uÞ þ kmÞEðtÞ þ kmEmax:

(29)

By a standard comparison principle and exploiting that
E(0) � 0, we have indeed:

EðtÞ �
Z t

0

e
�
R t

s
ððk1þk3Þðc0xð0Þþh�uÞþkmÞdhkmEmax ds (30)

which for t ¼ s and assuming that u � 1, yields

EðsÞ � kmEmax

Zs

0

e�ððk1þk3Þðc0xð0ÞþsÞþkmÞ~sd~s > Emin (31)

after exploiting the fact that the integration variable y which
belongs to [s,t] always fulfills y � s and changing variables
in the integral by letting ~s ¼ t� s.

A similar argument can be carried out for F(t) to show
that F(s) [ Fmin. Hence, by continuity of solutions, every
solution of (21) is a solution of (25) and (24) at least for
some interval [s,s þ e). Let sE :¼ inf{t � s : E(t) \ Emin}
and, respectively, sF :¼ inf{t � s : F(t) \ Fmin}. We claim
that sE, sF ¼ þ1. To see this, we remark that by (26), with
initial time translated to t ¼ s, we have for all subsequent t
[ [s, sE):

c0xðtÞ � c0xðsÞ þ K�u (32)

In fact, for all t [ [s, sE) we derive, provided that u \
min{1, 1/K}:

_EðtÞ � �ðk1 þ k3Þðc0xðsÞ þ K�uÞEðtÞ þ ðk�1 þ k2ÞES0ðtÞ
þ ðk�3 þ k4ÞES1ðtÞ

> �ðk1 þ k3Þðc0xð0Þ þ sþ 1ÞEðtÞ þ kmðES0ðtÞ
þES1ðtÞÞ

¼ �ðk1 þ k3Þðc0xð0Þ þ sþ 1ÞEðtÞ þ kmðEmax � EðtÞÞ
¼ �ððk1 þ k3Þðc0xð0Þ þ sþ 1Þ þ kmÞEðtÞ þ kmEmax:

(33)

Notice that:

KE � km

Zþ1

0

e�½ðk1þk3Þðc0xð0Þþsþ1Þþkm
sds

¼ km
½ðk1 þ k3Þðc0xð0Þ þ sþ 1Þ þ km


so that, for E(t) ¼ KEEmax ¼ Emin we have by virtue of (33),

that _EðtÞ�0. This indeed shows that E(t) � Emin is positively

invariant.

It follows by BIBS stability of (25) [i.e., using the esti-
mate in Eq. (26)] that S0(t), S1(t), and S2(t) are bounded.
This completes the proof.

Global BIBS stability

One may wonder whether the result can be strengthened
to BIBS stability for all bounded inputs u(�), rather than just
for sufficiently small ones. Simulations, reported in Figure 2,
however, show that unbounded solutions corresponding to
constant input signals are possible. In particular we picked
all kinetic constants equal to 1 and u(t) : 1. Initial condi-
tions were selected as follows:

½S0ð0Þ; S1ð0Þ; S2ð0Þ;ES0ð0Þ;ES1ð0Þ;FS2ð0Þ;FS1ð0Þ;
Eð0Þ;Fð0Þ
 ¼ ½1; 1; 1; 1; 1; 1; 1; 1; 1
:

Notice, in particular, that S0(t) ! þ1 as t ! þ1 and
that, E(t) ! 0 as t ! þ1, which explains why Theorem 1
cannot be applied: Indeed, for Emin ¼ 0 the matrices con-
tained in X do not fulfill the second assumption as they are
singular in that case. From a physical point of view, fast
inflow of S0 leads to a sharp decrease in the number of mol-
ecules of E, since they are almost all bound to S0 molecules
in the complex ES0. Asymptotically, there would not be any
free molecules of E left. In turn, this shuts off the transfor-
mation of S0 into S1 and, similarly, of S1 into S2, preventing
degradation of S2 to happen at a sufficient rate to keep the
overall state bounded. This shows the criticality of the
assumption that X should be a compact set, even in practical
applications.

Conclusions

We have discussed a set of mathematical tools to address
questions of stability with respect to exogenous inflows in
open chemical reaction networks. The key idea is to embed
an ODE describing the dynamics of a chemical network into
a positive linear differential inclusion, preserving the conser-
vation laws of the original system. Although stability of such
class of dynamical models can be tested in a rather straight-
forward way (thanks to one of the main results of this arti-
cle), a crucial assumption turns out to be compact-
valuedness of the associated differential inclusion. This
assumption is in turn tightly linked to the particular embed-
ding chosen and, for general reactions, can only be estab-
lished provided the systems state is a priori known to be
bounded (which is instead what we actually wish to prove).
This circularity in the arguments makes it difficult to isolate
classes of chemical reaction networks for which I-O stability
can be concluded by applying the theory, and, to be sorted
out, typically requires some additional and non trivial extra
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work to be performed in an ad hoc manner, see the example
in the previous Section. Nevertheless, we still believe that
the tools hereby developed are appropriate in many examples
of interest, due to the broad applicability of the linear
embedding techniques. It is worth mentioning that such I-O
stability properties are not as common as one may expect in
chemical reaction networks; even when some intuitive neces-
sary conditions for the property to hold are fulfilled: namely
that for each chemical compound which is an inflow of the
reaction, there should be at least one or more outflows where
chemical compounds are dissipated and which contain the
corresponding inflow up to possible recombination and
decompositions. Indeed, simulations show that, especially at
high inflow rates, certain paths along the reaction may shut
off, and lead to accumulation of compounds which cannot
be drained to their corresponding sinks. This is a further rea-
son to estimate the usefulness of such tools: to have a theo-
retically sound derivation of an important qualitative
property of chemical reaction networks.
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Appendix A: Main Technical Proofs

Proof of Lemma 2.3: Let V(x) ¼ c0x be the linear copositive
weak Lyapunov function in question. By nonsingularity,
c0A 	 0 for every A [ X. Consider the mapping F : X ! Rn

þ
given by A ! �c0A. As this mapping is continuous and X is
compact, the image is compact, and therefore closed. As the
point 0 is not in the closed set F(X), there is some e [ 0
such that the rectangle [0,e]n doesn’t intersect F(X). This
means that, for each A in X, there is some i such that

c0A 	 �eei

and therefore the same c gives a strong function. h

Proof of Lemma 2.4: By the Filippov Selection Lemma14

there is some X(t), measurable, which is in X for all t, such
that _xðtÞ ¼ XðtÞxðtÞ for almost all t. Thus, for almost all t � 0:

_xiðtÞ ¼ XiiðtÞxiðtÞ þ bðtÞ � XiiðtÞxiðtÞ;
where the latter inequality holds since bðtÞ :¼P

i 6¼j XijðtÞxjðtÞ� 0 and Xij(t) � 0 for i = j and xj(t) � 0 for

all j and t � 0. Therefore, since xi(0) [ 0 and by compact-

ness of X, it follows from a comparison argument that

xiðtÞ � xið0Þe
Rt
0

XiiðsÞds
> 0; 8t > 0:

h

Proof of Theorem 1: Without loss of generality, using
Lemma 2.3, we assume given a V which is a uniform linear
copositive weak Lyapunov function. Note that each matrix A
in X is Hurwitz because existence of a weak Lyapunov func-
tion yields kPF (A) � 0 and in turn, by nonsingularity, kPF
(A)\ 0 (kPF denotes here the dominant eigenvalue of A).
We prove the result by induction. Notice first of all that

the result is trivial in dimension 1. Indeed, for n ¼ 1, it fol-
lows from assumption 2. that X is of the form X ¼ [a,b] for
some negative reals a and b. In this case, for any positive c,

cx is a strictly decreasing common copositive Lyapunov
function and the result follows trivially.
We consider next the n-dimensional case. Let x0 be an ar-

bitrary initial condition in Rn
þ, and xð�Þ 2 Sðx0Þ. The func-

tion V(x(t)) is absolutely continuous and, for almost all t [ R
it satisfies:

_VðxðtÞÞ ¼ c0 _xðtÞ � �emin
i

xiðtÞ

for some e [ 0 as in Definition 2.2. Hence, integrating the
previous inequality between 0 and þ1, we obtain thatRþ1
0

mini xiðtÞ dt\þ1. Then Barbalat’s lemma16 implies
—by uniform continuity of x(t) and mini xi(t)— that mini
xi(t) ! 0 as t ! þ1. In particular, we have that the omega
limit set x(x0) of x(�) [i.e., the set of limit points of x(t)] is a
subset of @Rn

þ. As X is convex and compact, x(x0) is com-
pact and control invariant, i.e., for all x1 [ x(x0) there exists
~xð�Þ 2 Sðx1Þ such that ~xðtÞ 2 xðx0Þ for all t [ R (two other
names for this property are ‘‘weakly invariant’’ or ‘‘viable’’);
see Ref. 17, Lemma 6.2.

To complete the proof we need some additional notation.
For an arbitrary set Z ( {1,2,…,n} we let LZ denote
fx 2 Rn

þ : xi ¼ 0; 8 i 2 Z and xi > 0; 8 i 62 Zg. Clearly Rn
þ ¼S

Z�f1;2;…;ng LZ and @Rn
þ ¼ S

;6¼Z�f1;2;…;ng LZ. Hence there
exists Z = ; such that x(x0) \ LZ is nonempty. In fact, we
may assume that Z is minimal, i.e., there is no nonempty,
proper subset Z0 of Z with the property that x(x0) \ LZ0 is
nonempty.
We claim that x(x0) \ LZ is also forward control invari-

ant, that is, control invariant for non-negative times. To see
this, we choose for each ~x0 in x(x0) \ LZ, a solution
~xðtÞ 2 Sð~x0Þ which remains in x(x0) for all t � 0 [this is
possible by control invariance of x(x0)]. To finish the proof,
it is enough to show that ~xðtÞ 2 LZ for t [ 0. Suppose this
were not the case, then there would exist some s [ 0 such
that ~xðsÞ 62 LZ. Then there are two possibilities:

(1) There is some index i 62 Z such that ~xið0Þ > 0, but
~xiðsÞ ¼ 0.
(2) There is some index j [ Z such that ~xjð0Þ > 0, but

~xjðsÞ ¼ 0.

The first scenario is impossible by Lemma 2.4. In other
words, all components of ~xðtÞ that are initially positive,
remain positive for all forward times. As the second scenario
must occur, this implies that ~xðtÞ has entered a set LZ0 at
time s, where Z0 is a proper subset of Z. If Z0 ¼ ;, then the
solution has entered the interior of R+

n at time s, contradict-
ing that ~xðtÞ remains in qR+

n for all t � 0. If Z0 is a non-
empty, proper subset of Z, then we have a contradiction to
the fact that Z is minimal. Thus, x(x0) \ LZ is forward con-
trol invariant, as claimed.
We fix some ~x0 2 xðx0Þ\LZ. By the above, for some

~xðtÞ 2 Sð~x0Þ, we have that ~xðtÞ 2 xðx0Þ\LZ for all t � 0.
Notice that ~xðtÞ can be seen as embedded in a positive
orthant of lower dimension, (indeed ~xiðtÞ ¼ 0 for all i [ Z).
Let, for an arbitrary Rn�n matrix A, AZ be the Rn�jZj�n�jZj

principal submatrix obtained by removing the columns and
rows corresponding to indices contained in Z. We define XZ

as follows

XZ :¼ f ~A : 9A 2 X : ~A ¼ AZg:

Clearly, the nonzero components of ~x, (if any), are a solu-
tion of
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_̂xðtÞ 2 XZx̂ðtÞ: (34)

It is well known that principal submatrices of Metzler
Hurwitz matrices are again Hurwitz1 (obviously they are
also Metzler matrices), hence XZ is again a compact, convex
set of Hurwitz matrices. Moreover, the components of c cor-
responding to the elements of {1,2,…,n} \ Z, (let us denote
them by cZ,) act as a linear copositive weak Lyapunov func-
tion for (34), (indeed, it is trivial to see that c0�ZAZ � 0 for all
AZ [ XZ; the fact that c0Z AZ = 0 follows because AZ is Hur-
witz and hence nonsingular). Remarkably then, system (34)
satisfies the assumptions of our Theorem. Hence, by total
induction, (34) is asymptotically stable, and consequently
xð~x0Þ ¼ f0g. Since ~xðtÞ 2 xðx0Þ, for all t � 0, and since
x(x0) is compact, it follows that 0 [ x(x0).
By the Filippov Selection Lemma and Theorem 2, this

proves the stability result. Alternatively, we can derive the
conclusion as follows. Note that V is constant on x(x0).
Indeed, were this not the case, then we could find p, q [
x(x0) with p = q and V(p) = V(q). Moreover, by continuity
of V and x(�), there would then be two increasing sequences
tn ! 1 and sn ! 1 such that V(x(tn)) ! V(p) and V(x(sn))
! V(q) as tn,sn ! 1. As V(p) = V(q), this would contra-
dict that V(x(t)) is nonincreasing. It follows that V(x) ¼ 0 for
all x [ x(x0), and therefore x(x0) ¼ 0. h

Remark A.1. An alternative proof of the above can be
obtained by arguing as follows. Let ei denote the i-th ele-
ment of the canonical basis. As c0x is a weak Lyapunov
function, for each xiðtÞ 2 SðeiÞ we have c0xi(t) � c0ei. Pick
next n arbitrary in Rn (not necessarily positive initial
condition). Clearly n ¼ P

i niei and by linearity and Fili-
ppov’s Selection Lemma, for each xðtÞ 2 SðnÞ there
exists xiðtÞ 2 SðeiÞ so that xðtÞ ¼ P

i nixiðtÞ. Let us now
evaluate the function c0|x| along the considered solution
(here |�| denotes entrywise absolute values of a vector).
Clearly:

c0jxðtÞj ¼ c0
X
i

nixiðtÞ
�����

����� �
X
i

c0jnixiðtÞj

¼
X
i

jnijc0xiðtÞ �
X
i

jnijc0ei ¼ c0jnj:

Hence, denoting kxk :¼ c0|x|, we have shown kx(t)k �
kx(0)k. Notice, further that kxk ¼ 0 iff x ¼ 0 and kx þ yk
� kxk þ kyk. Hence, k�k is what in [20] is called an a priori
polytope norm for the differential inclusion (1). Under exis-
tence of such an a priori polytope norm, asymptotic stability
of (1) is equivalent to nonsingularity of all matrices in X, by
virtue of Theorem 2.1 in Ref. 18. The proof technique in
Ref. 18 is different and is built on an auxiliary linear dis-
crete difference inclusion for which existence of an apriori
norm implies validity of the so-called Finiteness Conjecture.
We feel that the alternative proof given here, though limited
to the special case of positive systems, is of independent in-
terest since it uses an induction argument and indeed rather
different tools from differential inclusions theory. h

Appendix B: Proof of Theorem 2

The proof of Theorem 2, which we discuss next, heavily
relies on a powerful technical lemma which was proved in
Ref. 19.

Proof of Theorem 2: Some of the implications, in particu-
lar 1 ) 2 ) 3 ) 4, are straightforward from the definition.
The homogeneity assumption clearly comes in when proving
the converse implications. Let us start from the easier one, 2
) 1, which was already stated without proof in Ref. 20. Let
n 2 Rn be such that |n| ¼ 1 and b be as in (12). By defini-
tion of class KL function there exists T such that b(1,T) �
1/2. Let M ¼ 2 b(1,0) and k ¼ log(2)/T. We claim that (11)
holds with M and k defined earlier. To see this, recall that
for homogeneous systems x(t, kn, r) ¼ kx(t,n,r), for all k [
0. As all estimates hold independently of the particular
switching signal and in order to keep the notation simple we
drop the dependence of x on r. Hence, for arbitrary k 2 N
we have,

jxðk �T; nÞj ¼ jxð �T; xððk � 1Þ �T; nÞÞj
� jxððk � 1Þ �T; nÞjbð1; �TÞ � jxððk � 1Þ �T; nÞj=2:

(35)

By induction, |x(kT,n)| � |n|/2k ¼ e�kkT|n|. Then, letting t
belong to [(k�1)T, kT) for some k 2 N, we have

jxðt; nÞj ¼ jxðt� ðk � 1Þ �T; xððk � 1Þ �T; nÞÞj
� jxððk � 1Þ �T; nÞjbð1; 0Þ � e�kðk�1Þ �T

� bð1; 0Þjnj � 2bð1; 0Þe�ktjnj:

We now turn to the most interesting implication, 4 ) 2.
We define the set of reachable states in time T, starting from
initial conditions in some compact K � Rn as

RTðKÞ ¼ fx 2 Rn : 9n 2 K; 9r 2 MR; 9�t 2 ½0; T
 : x
¼ xð�t; n; rÞg:

Further, we let RðKÞ be the set of states reachable from K
for arbitrary time, viz.

RðKÞ ¼
[
T�0

RTðKÞ: (36)

It is again a consequence of (7) that RTðkKÞ ¼ kRTðKÞ
for any positive k. For a given set S and input u one may
consider the ‘‘first crossing time’’,

sðn;S; uÞ ¼ infft > 0 : xðt; n; uÞ 2 Sg: (37)

Let e[ 0 be arbitrary; we define the set Ce as
Ce ¼ fx 2 Rn : e � jxj � 2eg: (38)

and Be the closed ball of radius e. Clearly, if RðCeÞ is
bounded, RðBeÞ is also bounded; as a matter of fact we have
jjRðBeÞjj � jjRðCeÞjj, where jjSjj denotes the norm of a set
S, which is defined as sups2S jsj. We will show next that, for
weakly attractive systems, RðCeÞ is bounded. In particular,
by virtue of weak attractivity, we have:

8n 2 Ce; 8r 2 MR 9t � 0 : xðt; n; rÞ 2 Be: (39)

By Corollary III.3 of Ref. 19, we have

Te ¼: sup
n2Ce;r2MR

sðn;Be; rÞ\þ1: (40)
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Since, for a forward complete family of systems, the set
of reachable states in bounded time from bounded initial
conditions is bounded (Ref. 19 Fact III.1), we have that

RðBeÞk k � RðCeÞk k ¼ RTeðCeÞ
�� �� ¼: de\þ1: (41)

It is worth pointing out how the equality above follows by
contradiction; indeed, in case jjRTeðCeÞjj\jjRðCeÞjj, there
would exist t [ Te, r 2 MR and n 2 Ce such that |x(t, n, r)|
[ |w| for all w 2 RTeðCeÞ and, a fortiori, for all
w 2 RTeðBeÞ. However, by definition (40) there exists s � Te
such that xðs; n;rÞ 2 Be\Ce. Let us, without loss of general-
ity take s � t to be the maximum real such that
xðs; n; rÞ 2 Be\Ce. Clearly, t � s � Te [again by (40)], so
that xðt; n;rÞ 2 RTeðBeÞ, thus contradicting our previous
conclusion.
Notice that, without using assumption (7), we already

proved that weak attractivity implies uniform Lagrange sta-
bility, viz.

8e > 0; 9de : jnj � e ) jxðt; n; rÞj � de; 8t � 0; 8rð�Þ:
(42)

For homogeneous systems this is equivalent to uniform
Lyapunov stability. In fact,

8e > 0; jnj � e ) jxðt; n; rÞj ¼ jnjjxðt; n=jnj; rÞj � ed1
8t � 0; 8rð�Þ

and hence,

8e > 0; 9~de ¼ e=d1 : jnj � ~de ) jxðt; n; rÞj � e;

8t � 0; 8rð�Þ:

Weak attractivity and Lyapunov stability imply attractivity
and Lyapunov stability, see Theorem 1 in Ref. 19. The main
result now follows from Theorem 2 in Ref. 19, where equiv-
alence of uniform Lyapunov stability plus attractivity and
uniform global asymptotic stability is shown. h

Manuscript received July 29, 2008, and revision received Aug. 27,
2008.

642 Biotechnol. Prog., 2009, Vol. 25, No. 3


