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Abstract This paper derives new results for certain classes of chemical reaction
networks, linking structural to dynamical properties. In particular, it investigates their
monotonicity and convergence under the assumption that the rates of the reactions
are monotone functions of the concentrations of their reactants. This is satisfied for,
yet not restricted to, the most common choices of the reaction kinetics such as mass
action, Michaelis-Menten and Hill kinetics. The key idea is to find an alternative
representation under which the resulting system is monotone. As a simple example,
the paper shows that a phosphorylation/dephosphorylation process, which is involved
in many signaling cascades, has a global stability property. We also provide a global
stability result for a more complicated example that describes a regulatory pathway
of a prevalent signal transduction module, the MAPK cascade.
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1 Introduction

The study of the qualitative behavior of chemical reaction networks is an area of
growing interest, especially in view of the challenges posed by molecular and systems
biology. One of the goals, in this respect, is to understand cell function at the level of
chemical interactions. This will impact the design of drugs and of therapeutic treat-
ment schedules. In this context, the chemical reaction networks are typically highly
dimensional and quite complex, and this calls for the development of systematic tools
to handle questions such as: What is the functionality of a specific “pathway” or what
is its qualitative behavior? How robust (or insensitive) is the network to parameter
changes? Sometimes, such type of questions can be addressed using the theory of
monotone systems, which was largely developed in the eighties of the last century by
Hirsch (see Smith 1995 for a review).

Monotone systems techniques have been used advantageously for the analysis of
several biological systems, arising in ecology and microbiology, see for instance Smith
and Waltman (1995) and Angeli and Sontag (2003), and, for obvious historical rea-
sons, to a lesser extent in molecular and systems biology. As a result, a comprehensive
theory of chemical reaction networks grounded in the theory of monotone dynamical
systems, is still missing.

In general it is not clear when a chemical reaction network gives rise to a monotone
system. To the best of our knowledge, this question was only addressed before in
Volpert et al. (1994), Banaji (2009) where certain algebraic conditions were provided.
In contrast, our goal is to provide conditions in terms of properties of particular graphs
which are routinely used by molecular and systems biologists. Once monotonicity has
been established in this way, one may at least in principle appeal to monotone dynami-
cal systems theory to derive non-trivial statements concerning the asymptotic behavior
of all (or almost all) solutions. However, not all of the available results are sufficient
in the context of chemical reaction networks, and some new theory concerning the
dynamics of certain monotone systems had to be developed Angeli and Sontag (2008).
Also, our convergence results are achieved in conjunction with another important qual-
itative property that a chemical reaction network may or may not possess, namely that
of persistence. Roughly speaking, a network is persistent, if none of the chemicals
vanishes asymptotically, when they are all present initially. Fortunately, there is also
a graphical theory to verify persistence, see our earlier work Angeli et al. (2007), and
we will briefly review it in the Appendix for convenience of the reader.

In summary, the purpose of this paper is twofold:

1. To provide graphical conditions to check monotonicity of a chemical reaction
network in the reaction representation.

2. To establish (almost) global convergence to equilibria of chemical reaction net-
works that fulfill the previous test, provided that a ‘persistence’ condition is
satisfied.
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Monotonicity of chemical networks in reaction coordinates 583

The reaction representation of the network considered here is closely related to a
representation used in metabolic engineering Jamshidi and Palsson (2008), see also
Othmer (2003).

Two benchmark examples are provided that will illustrate our theory. The first exam-
ple concerns a model of a single phosphorylation reaction which was also investigated
in Angeli and Sontag (2008) where a certain strong monotonicity property had to be
verified in an ad-hoc manner. Here, we show that this can be avoided by checking a
persistence property instead, using the general methods from Angeli et al. (2007).

The rest of the paper is organized as follows. In Sect. 2 we provide some basic
definitions and assumptions that lead to the model of a chemical reaction network.
In Sect. 3 we define and briefly review some aspects of monotone systems, and we
formulate our first problem, namely determining which reaction networks give rise
to monotone systems. Section 4 introduces several graph theoretic concepts related
to chemical networks. Our main (almost) global convergence results are presented
in Sect. 5, and we show in Sect. 6 that they cover all possible networks that satisfy
our main assumptions. Several examples are provided in Sect. 7 and conclusions are
drawn in Sect. 8. The notion of persistence, and a persistence result are reviewed in
the Appendix.

Some of the results in this paper were initially announced in Angeli et al. (2006)
without detailed proofs. We provide the details of these proofs here, and make several
extensions. We also present several new examples of biochemical reaction networks
studied in the literature to which our theoretical results apply.

2 Basic definitions, terminology and assumptions

The set of vectors in R
n whose components are non-negative is denoted by R

n≥0,
sometimes called the non-negative orthant, the boundary of R

n≥0 is denoted by ∂R
n≥0,

and the interior by int(Rn≥0).
A chemical reaction network (CRN) is a list of chemical reactions Ri , where the

index i takes values in R := {1, 2, . . . , nr }. Reactions specify how certain certain
combinations of chemical species are converted into other combinations of chemical
species. The various chemical species are denoted as S j , where the index j takes
values in S := {1, 2, . . . ns}.

Chemical reactions are written as follows:

Ri :
∑

j∈S
αi j S j →

∑

j∈S
βi j S j ,

or

Ri :
∑

j∈S
αi j S j ↔

∑

j∈S
βi j S j

where the αi j and βi j are non-negative integers called the stoichiometry coefficients.
The first type of reactions are called irreversible, while the second are called revers-
ible. In the case of a reversible reaction, we call the→ (←) the forward (back ward)
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reaction. Notice that in both cases the compounds on the left-hand side are usually
referred to as the reactants, and these on the right-hand side are called the products of
the reaction. Of course, for reversible reactions this may seem ambiguous, since we
are free to decide which species are reactants and which are products. We avoid this
ambiguity by agreeing to, once and for always, fix the reactant side and the product
side of every reversible reaction at the start of our modeling process.

Throughout this paper we

H1 Exclude auto-catalytic reactions,

i.e. reactions (either reversible or not) in which a chemical appears both as a reactant
and as a product. More formally, if αi j > 0 for some i, j , then βi j = 0 and vice versa.
Notice however, that we are not excluding autocatalysis which occurs in one ore more
intermediate steps such as the autocatalysis of S1 in S1 + S2 → S3 → 2S1 + S4, and
therefore H1 is not as restrictive as it might first appear. The reasons for introducing
H1 will become clear when we discuss the assumptions on the reaction rates in the
CRN.

For convenient use later on we arrange the stoichiometry coefficients in a matrix,
called the stoichiometry matrix �, defined as follows:

[�]i j = β j i − α j i , (1)

for all i ∈ R and all j ∈ S. The stoichiometry matrix will be used later to write
the differential equation associated to the CRN. For future reference, we introduce the
terminology of the reaction vector associated to reaction j , which is defined as the
j th column of the stoichiometry matrix.

Next we discuss how the speed of the reactions is affected by the concentrations of
the different species. Each chemical reaction takes place continuously in time with its
own reaction rate. We make the natural and fundamental assumption that

H2 Every reaction rate depends monotonically on the concentrations

of the species taking part in the reaction.

To make this more precise we first define the vector S = [S1, S2, . . . Sns ]′ of
species concentrations and, as a function of it, the vector of reaction rates R(S) :=
[R1(S), R2(S), . . . Rnr (S)]′. Then for an irreversible reaction i , the rate at which it
takes place is a C1 function and satisfies the following monotonicity conditions:

∂ Ri (S)

∂S j

{≥ 0 if αi j > 0
= 0 if αi j = 0.

(2)

Similarly, if reaction i is reversible, then we assume that

Ri (S) = Ri, f (S)− Ri,b(S), (3)

where Ri, f (S) satisfies (2), and Ri,b(S) satisfies (2) but with αi j replaced by βi j .
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Monotonicity of chemical networks in reaction coordinates 585

Our assumption that the partial derivatives of the reaction rates never change sign,
is crucial to the development of our theory. This will become clear in the following
sections when we introduce particular graphs associated to a CRN. These graphs can
only be defined if the above partial derivatives are sign definite. In other words, if sign
definiteness fails, then these graphs cannot be defined and the rest of the theory cannot
be developed.

We assume that

H3 If any of the reactants of an irreversible reaction are missing, then the corre-
sponding reaction does not take place. If any of the reactants (products) of a
reversible reaction are missing, then the forward (backward) reaction does
not take place.

More precisely, if Si1 , . . . , SiN are the reactants of the irreversible (reversible) reac-
tion j , then R j (S) = 0 (R j, f (S) = 0) for all S such that [Si1 , . . . , SiN ] ∈ ∂R

N≥0. And
if reaction Si1 , . . . , SiM are the products of the reversible reaction j , then R j,b(S) = 0
for all S such that [Si1 , . . . , SiM ] ∈ ∂R

M≥0.
With the above notation, a chemical reaction network is described by the following

system of differential equations:

Ṡ = � R(S), S ∈ R
ns≥0. (4)

Pick a reference concentration S0 (for instance the initial condition to (4)). Note that

CS0 := R
ns≥0 ∩ ({S0} + Im(�))

is forward invariant for (4). We call CS0 the stoichiometry class associated to the
reference concentration S0 and we assume that

H4 All stoichiometry classes are compact sets.

Notice that H4 implies that all solutions of (4) are bounded, and that it is satisfied if
there is some vector d ∈ (0,+∞)ns such that dT � = 0. Indeed, in that case the linear
function dT S remains constant along solutions of (4), and clearly the level sets of this
function intersect R

ns≥0 in a compact sets.
A basic question, one which is the main focus of this paper, is what happens to

solutions in each stoichiometry class.
For technical reasons, related to the use of certain results on monotone dynamical

systems, we will sometimes also need a stronger version of (2) and (3):

H5 The inequalities in (2) and (3) hold strictly for all S ∈ int(Rns≥0).

From now on, unless explicitly stated otherwise, we assume that

H1, H2, H3, H4 and H5 hold.

The most common examples found in the literature that satsify H2, H3 and H5 are
mass action kinetics, Michaelis-Menten (or Monod) kinetics and Hill kinetics, which
in case of an irreversible reaction are given by the following specific functional forms:

ki

∏

j :αi j >0

S
αi j
j , mi

∏

j :αi j >0

S j

S j + a j
, Mi

∏

j :αi j >0

S
n j
j

S
n j
j + b j

,
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586 D. Angeli et al.

respectively, where the real parameters ki , mi , a j , Mi , b j are positive, and the param-
eters n j are positive integers. However, our theory also allows that we mix the factors
in the above functional forms. For instance, for the reaction X + 2Y + 3Z → P , the
reaction rate

K
x2

x2 + 1

y

y + 1
z3,

for some K > 0, fits our framework. But in general, the reaction rates should not nec-
essarily be products of factors of these three forms: We only require them to satisfy
conditions H2, H3 and H5.

Notice also that if we would have allowed auto-catalytic reactions, then in the case
of mass action kinetics, the partial derivative of the reaction rate with respect to a
species which appears on both reactant and product side of the reaction, would change
sign. As we pointed out earlier, it is crucial in the development of our theory that these
partial derivatives never change sign, explaining the introduction of H1.

3 Problem formulation

To state the problem of interest it is useful to review some definitions from the theory
of monotone dynamical systems Smith (1995). We consider autonomous nonlinear
systems of the form ẋ = f (x), where f : X → R

n is a locally Lipschitz vector field,
and x takes values in a closed set X ⊂ R

n . We assume that a partial order� is defined
on X , viz. a binary relation satisfying the following axioms:

• Reflexivity: x � x for all x ∈ X
• Transitivity: x1 � x2 and x2 � x3 ⇒ x1 � x3, for all x1, x2, x3 ∈ X
• Antisymmetry: x1 � x2 and x2 � x1 ⇒ x1 = x2 for all x1, x2.

We also assume that this partial order is closed, i.e. that if xn → x and yn → y as
n→∞ and xn � yn for all n, then also x � y.

Typically such closed partial order relations will be defined by first introducing a
closed pointed convex cone K ⊂ R

n of “positive vectors” and calling x1 � x2 iff
x1 − x2 ∈ K . The geometric properties of such cones are easily translated into the
axioms above. We say that a system is monotone if for all x1 � x2 and all t ≥ 0
we have x(t, x1) � x(t, x2), where x(t, xi ) denotes the solution at time t with initial
condition xi (Notice that we implicitly assumed forward completeness of the system,
viz. global existence of solutions in the future). If the partial order is the one induced
by the positive orthant (viz. K = R

n≥0), then we say that the system is cooperative.
We will also need stronger monotonicity notions, based on the following definitions:
x1 
 x2 iff x1 � x2 and x1 �= x2, and if the partial order is generated by cone a with
non-empty interior, we have an even stronger notion of x1 � x2 iff x1− x2 ∈ int(K ).
We say that a system is strongly monotone if: x1 
 x2 implies x(t, x1)� x(t, x2) for
all t > 0.

Testing monotonicity of a system with respect to the partial order induced by an
orthant cone is particularly simple for C1 vector fields f (x), x ∈ X , see Smith (1995).
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Monotonicity of chemical networks in reaction coordinates 587

The property is in fact equivalent to the matrix �D f (x)� having non-negative off-
diagonal entries for all x ∈ X , where D f (x) denotes the Jacobian and � is some
suitably chosen diagonal matrix with −1 and 1 entries along the diagonal (� canon-
ically identifies the orthant). Alternatively, we may check monotonicity with respect
to an orthant induced order graphically as follows. We start by inspecting the signs of
the off-diagonal entries of the Jacobian matrix D f (x), and require that these entries
never change sign (i.e. either an entry is always positive or zero in X , or it is negative
or zero in X ). Now we can define the crucial ingredient, an undirected, signed graph
which we call the J-graph for lack of better terminology, as follows. The J-graph has n
nodes (where n is the dimension of x), and we draw an undirected positive (negative)
edge from node i to node j if [D f (x)] j i ≥ (≤)0 in X and [D f (x∗)] j i > (<)0 for at
least one x∗ ∈ X . If [D f (x)] j i = 0 for all x in X , then we don’t draw an edge from
node i to node j . Notice that al least in principle, since the J-graph is an undirected
graph, there could either be one edge, two edges of the same sign, or two edges of
different sign between two given nodes. To verify if the system ẋ = f (x) is monotone
with respect to an order induced by some orthant cone, it will suffice to check if the
associated J-graph (note that assuming the existence of the graph is already a nontrivial
assumption) has a particular property which will be reviewed in the next section, after
we have introduced some more graph theory terminology.

Since the monotonicity property of a system has important implications for its
asymptotic behavior, some of which will be summarized later, we are interested in
providing sufficient conditions that guarantee that system (4) is monotone with respect
to an orthant cone, after a suitably coordinate transformation that depends only on the
stoichiometry matrix � and not on the particular functional form of the reaction rate
vector R(S) in (4). In this way monotonicity can be inferred just by looking at the list
of chemical reactions involved in the network, without having to write down equations
and reaction rates explicitly. In Volpert et al. (1994) a similar problem was consid-
ered, but treated in a purely algebraic fashion. In Banaji (2009) instead, conditions are
determined in order to characterize the set of cones and associated partial orders which
make a certain reaction monotone. Importantly, it is established that monotonicity of
a network with respect to a given partial order independent of reaction kinetics (with
some minimal monotonicity assumptions) is equivalent to asking that each individual
reaction be monotone with respect to that same order.

It is also worth pointing out that our change of coordinates turns out to be the same
for all possible choices of R(S). A weaker but more general approach, for which sys-
tematic tools are still not available, is to allow the change of variables to depend on
the parameters of R(S). This is interesting, for instance, if mass-action kinetics are
adopted, because in that case the reaction vector R(S) is parameterized by a finite num-
ber of parameters, namely the positive rate constants. The results of this paper extend
those of Angeli et al. (2004) which were limited to reactions with certain tree topology.

4 Graph theoretical preliminaries

Most assumptions in our main results are of a graph theoretical nature, and are stated
in terms of several graphs associated to a CRN which we introduce below.

123
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4.1 The species-reaction graph

First we define an undirected bipartite {+,−}-labeled graph, i.e. a graph having two
types of nodes and two types of edges, called the species-reaction graph of a CRN,
or SR-graph for short. Mathematically, such a graph is specified by a quadruple

(VS, VR, E+, E−),

where VS is a finite set of nodes, each one associated to a species, VR is a finite set of
nodes (disjoint from VS), each one corresponding to a reaction (either irreversible or
reversible; in the latter case, the forward and backward reactions are taken into account
only once in the graph), while E+ and E− are the sets of positive and negative edges,
technically subsets of VS × VR . Whenever a certain reaction Ri of the form:

∑

j∈S
αi j S j →

∑

j∈S
βi j S j , or

∑

j∈S
αi j S j ↔

∑

j∈S
βi j S j , (5)

belongs to the network, we draw a positive edge between S j ∈ VS and Ri ∈ VR

for all S j ’s such that αi j > 0 (recall that, as mentioned in Sect. 2, at the start of the
modeling process, we declare for every reversible reaction, one side of the reaction to
be the reactant side, and the other side to be the product side); formally, we say that
(S j , Ri ) ∈ E+ iff αi j > 0. Intuitively, we draw a positive edge between S j ∈ VS and
Ri ∈ VR if S j is a reactant, and hence contributes to, the reaction R j . Similarly, we
draw a negative edge between Ri and every S j ∈ VS such that βi j > 0. Formally, this
means that (S j , Ri ) ∈ E− whenever βi j > 0.

It is interesting to note that the notion of the species-reaction graph, and close ana-
logs, were also considered in Feinberg (1991), Reddy et al. (1993), Zevedei-Oancea
and Schuster (2003), Craciun and Feinberg (2006), yet in different contexts. Here we
will use species-reaction graphs with a new purpose, namely to identify a class of
monotone reaction networks.

For future reference, we define a leaf of the SR-graph as a node N in VS ∪ VR for
which there is precisely one edge (N , M) (or (M, N )) in E− ∪ E+, for some M in
VS ∪ VR .

4.2 The reaction graph and the species graph

Next, we introduce the reaction graph (or R-graph for short) which can be derived
from the SR-graph. The reaction graph is usually simpler than the SR-graph, since it
only has nodes corresponding to reactions, yet it also carries meaningful sign infor-
mation on its edges. Formally, the reaction graph is defined as a triple (VR, Ẽ+, Ẽ−),
where VR is again a finite set of reactions, and where Ẽ− and Ẽ+ are the positive
and negative undirected edges of the graph, defined as follows. We let {Ri , R j } ∈ Ẽ−
(i �= j) whenever there exists Sk ∈ VS so that (Sk, Ri ) and (Sk, R j ) both belong either
to E− or E+. Symmetrically, we let {Ri , R j } ∈ Ẽ+ (i �= j) whenever there exists
Sk ∈ VS so that (Sk, Ri ) and (Sk, R j ) both belong to E−∪E+ but have opposite signs.
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Monotonicity of chemical networks in reaction coordinates 589

In other words, a signed edge is drawn between Ri and R j whenever there exists a
path of length two in the SR-graph, between the two reactions, and the corresponding
sign σ is computed as the opposite of the product of the signs of the edges included
in the path. At this stage the procedure does not mean much, but we will show in
later Sections that it is tied to the sign pattern of the Jacobian obtained by writing the
network in a suitable set of coordinates. Notice that more than one path (of length 2)
can exist in the SR-graph between two given reactions. Accordingly, up to two edges
(of opposite signs) might exist between any pair of reactions in the reaction graph.

A similar procedure can be adopted to define the species graph (S-graph for short)
associated to a CRN. This is again a triple (VS, Ê+, Ê−), defined according to the
following set of rules. We let {Si , S j } ∈ Ê− (i �= j) whenever there exists Rk ∈ VR

so that (Si , Rk) and (S j , Rk) both belong either to E− or E+. Symmetrically, we let
{Si , S j } ∈ Ê+ (i �= j) whenever there exists Rk ∈ VR so that (Si , Rk) and (S j , Rk)

both belong to E− ∪ E+ but have opposite signs. In other words, a signed edge is
drawn between Si and S j whenever there exists a path of length two in the SR-graph,
between the two species, and the corresponding sign σ is computed as the opposite
of the product of the signs of the edges included in the path. Of course more than one
path (of length 2) can exist in the SR-graph between two given species. Accordingly,
up to two edges (of opposite signs) might exist between any pair of species in the
S-graph.

4.3 The positive loop property

For an arbitrary J-, SR-, R- or S-graph, a simple loop is a path connecting nodes via
edges, whose first and last node coincide and with the property that no nodes or edges
are repeated twice, with the exception of the first and last node. The length of a simple
loop is defined as its total number of edges.

Definition 4.1 We say that a J-, SR-, R- or S-graph has the positive loop property if
any simple loop includes an even number of negative edges.

An important result, see e.g. Smith (1995), Smith and Hirsch (2003), is the
following:

Lemma 4.2 Let ẋ = f (x) be defined on X, where f is C1, and assume that the
J-graph exists. Then the system is monotone with respect to some orthant cone iff the
J-graph has the positive loop property.

We now turn to the question of establishing the positive loop property of the R- or
S-graph directly in terms of properties of the SR-graph. In the following Section, this
property, together with Lemma 4.2, will then lead to the monotonicity of an important
dynamical system -defined later- that is related to each CRN.

Bearing in mind that simple loops in the SR-graph always have an even number of
edges, we make the following definitions:

Definition 4.3 Let L be a simple loop in the SR-graph. We say that L is an e-loop if
letting λ be half of its length and σ the product of the signs of all of its edges, there
holds that (−1)λ = σ . Otherwise, we say that L is an o-loop.
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The concepts of e-loops and o-loops have also been used in different contexts, namely
in the analysis of multi-stability for chemical reaction networks with mass-action
kinetics (Craciun and Feinberg 2006). We need to develop some properties of e-loops
and start by their characterization.

Lemma 4.4 (e-loops characterization) The following facts are equivalent for a given
simple loop L in the SR-graph:
1. L is an e-loop.
2. L contains an even number of segments Rx Sy Rz with (Sy, Rx ) and (Sy, Rz) being

of the same sign.
3. L contains an even number of segments Sx Ry Sz with (Sx , Ry) and (Sz, Ry) being

of the same sign.

Proof We prove the statement for loops starting at an S node; the proof for loops
starting at an R node is similar. Let E1, E2, . . . En be the ordered sequence of edges
comprised in the loop L. Let σ(Ei ) be equal to +1 if Ei ∈ E+ and −1 if Ei ∈ E−.
Since n is an even number we can define λ = n/2. We have,

σ =
n∏

i=1

σ(Ei ) =
λ∏

k=1

σ(E2k−1)σ (E2k) = (−1)λ−n p

where n p denotes the number of times E2k−1 and E2k have the same sign Hence σ

equals (−1)λ iff n p is even. This completes the proof of the Lemma. ��
We have the following result that shows equivalence of the R-graph and S-graph

having the positive loop property to certain properties of the SR-graph.

Proposition 4.5 The R-graph (respectively the S-Graph) have the positive loop prop-
erty if and only if the following two conditions are met:
1. all simple loops in the SR-graph are e-loops;
2. in the SR-graph, each node in VS (respectively VR) is linked to at most two nodes

in VR (VS).

Proof We show first the sufficiency part for the case of an R-graph (the proof for
S-graph is entirely analogous). Let G denote the SR-graph and G R the reaction graph.
We need to show that each of the simple loops of G R contains an even number of
negative edges. If L is a simple loop of length two for G R , then we can lift this loop to
a -not necessarily unique- loop L̃ in G by following any length-2 path joining consec-
utive reactions in L . By H1 the loop L must necessarily contain two distinct species
nodes (if not, the single species would be a reactant and product of both reactions).
Thus L is of the form R1 − S1 − R2 − S2 − R1 with R1 �= R2 and S1 �= S2. Now
by condition 1, L is an e-loop, and hence by Lemma 4.4, the segments R1 − S1 − R2
and R2 − S2 − R1 are such that their edge pairs either have different sign (within
each segment), or all four edge pairs have the same sign. In the former case L has no
negative edges, while in the former L has two negative edges. In either case, L has
contains an even number of edges.
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Monotonicity of chemical networks in reaction coordinates 591

If L is a simple loop in G R of length 3 or higher, we again lift the loop in G R to a -not
necessarily unique- loop L̃ in G by following any length-2 path joining consecutive
reactions in L . We claim that the lifted loop L̃ is simple. Indeed, no reaction node can
be repeated twice, for otherwise L would not be simple; and this in turn implies that
no species node can be repeated twice for otherwise it would be connected to at least
3 reactions, thereby violating condition 2. By condition 1, L̃ is an e-loop, and hence,
by virtue of Lemma 4.4, it contains an even number of segments Rx Sy Rz with edges
(Sy, Rx ) and (Sy, Rz) of the same sign. Since these segments correspond to negative
edges in G R , we have that L contains an even number of negative edges, completing
the sufficiency part of the proof.

To prove the converse, we assume that either condition 1 or condition 2 is violated.
If condition 1 is violated, then there exist simple o-loops in the SR-graph G. By

Lemma 4.4, such o-loops have an odd number of segments Rx Sy Rz with (Sy, Rx )

and (Sy, Rz) of the same sign. The corresponding simple loop in G R therefore has
an odd number of negative edges, and thus G R does not have the positive loop
property.

If condition 2 is violated, then there is a species node Si in G which is linked
to more than two reactions; let us fix three of these reactions and without loss of
generality label them as R1, R2 and R3. Consider the following loop in the G R

graph:

L = {R1, R2}, {R2, R3}, {R3, R1}.

Lift this loop to the following (non-simple) loop in G: L̃ = R1 − Si − R2 − Si −
R3− Si − R1, where for simplicity we only indicated the sequence of nodes met along
the loop rather than its edges. By the definition of the sign of an edge in G R on the
basis of the corresponding signs in G (see the definition of R-graphs in the previous
subsection), it follows that the sign of L can be computed as (−1)3 · sign(L̃). Notice
however, that each edge is repeated twice in L̃ . Therefore, sign(L̃) = +1 and as a
consequence sign(L) = −1. Hence, L contains an odd number of negative edges, and
thus G R does not have the positive loop property. ��

4.4 The directed species-reaction graph

In the subsequent Sections, we will not only require that a certain system is monotone,
but that it is in fact strongly monotone. This stronger notion can be verified by check-
ing if its Jacobian matrix is irreducible, which in turn can be derived -as we shall see
later- from a graph associated to a CRN, which we define here and call the directed
species-reaction graph (or directed SR-graph for short). The directed SR-graph is a
bipartite graph, (VS, VRi , VRr , E), in which VS is again a finite set of nodes, each
one associated to a chemical species, VRi is a finite set of nodes, each one associated
to an irreversible reaction and VRr is a finite set of nodes, each one associated to a
reversible reaction. In particular, VRi ∩ VRr = ∅ and we may define VR = VRi ∪ VRr

and V = VR ∪ VS . The set E ⊂ V × V is a set of edges, which are defined according
to the following set of rules:
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Fig. 1 a SR-graph and
b directed SR-graph of (6)
(solid lines refer to positive,
dashed lines to negative edges)

1. an edge from S j ∈ VS to Rk ∈ VRr exists iff S j is a species involved in Rk ;
2. an edge from S j ∈ VS to Rk ∈ VRi exists iff S j is a reactant species of Rk ;
3. an edge from Rk ∈ VR to S j ∈ VS exists iff S j is a species involved in Rk .

We say that the directed species-reaction graph is R-strongly connected if for every
pair of distinct nodes Ra and Rb in VR , there is a directed path of pairwise distinct edges
in E such that the first edge originates from Ra and the last edge ends in Rb. Notice that
if every species in a CRN is both a reactant of at least one reaction, and a product of at
least one reaction (these reactions must be different by H1), then strong connectedness
and R-strong connectedness are equivalent for a directed species-reaction graph.

4.5 Illustrative example

In order for the reader to familiarize himself with the various graphs introduced in this
Section we consider the following well-known enzymatic reaction network:

E + S ↔ E S→ E + P, (6)

where E is an enzyme and S a substrate which upon reacting give rise to the inter-
mediate complex E S. The complex then splits into the product P and the original
enzyme. We depict the associated SR-, R-, S-, and directed SR-graph in Figs. 1 and 2.

Notice from the SR-graph that it has two leaves, namely the species nodes S and
P , and that it has a single simple loop R1− E S− R2− E− R1 and that it is an e loop.
Thus, it follows from the structure of the SR-graph by Proposition 4.4 that the R-graph
has the positive loop property, a fact which can also be easily seen by direct inspection
of the R-graph. It is also clear that the directed SR-graph is R-strongly connected.

5 Analysis in reaction coordinates

For a given CRN, we now introduce the so-called system in reaction coordinates.
Choosing an arbitrary representative S0 of a given stoichiometry class CS0 , the system
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Fig. 2 a R-graph and b S-graph
of (6)

in reaction coordinates is defined as follows:

ẋ(t) = R(S0 + �x(t)), x ∈ X0 := {x ∈ R
nr | S0 + �x ≥ 0}, (7)

where xi (i ∈ R) is called the extent of the i-th reaction Othmer (2003). System (7) is
closely related to representations of CRN’s frequently used in metabolic engineering.
There, systems whose state is a ’flux vector’ are considered, see for instance Jamshidi
and Palsson (2008).

In fact, the linearization of (7) at some steady state, is such a system.
The following result shows that, at least in principle, the dynamics of system (4)

can be understood by studying the dynamics of system (7).

Proposition 5.1 Let x(t) be a solution of (7). Then

S(t) = S0 + �x(t) (8)

is a solution of (4) in CS0 . Conversely, let S(t) be a solution of (4) in CS0 . Then there
is a (not necessarily unique) solution x(t) of (7) such that (8) holds.

Proof The first assertion is immediate. To prove the second, since S(0) ∈ CS0 , we can
find some (not necessarily unique) x0 such that S(0) = S0 + �x0. Then define

x(t) = x0 +
t∫

0

R(S(τ ))dτ.

Clearly, (8) holds for t = 0. Moreover, as d/dt (S0 +�x(t)) = � ẋ(t) = �R(S(t)) =
d/dt (S(t)), for all t . But since solutions of (4) are unique, it follows that (8) must
hold for all t . It is then also immediate that x(t) is a solution of (7). ��

In the following subsections we will thoroughly analyze system (7).

5.1 Strong monotonicity

We start by establishing the following result.
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Theorem 1 Pick any S0 ∈ R
ns . Then system (7) is monotone with respect to an order

induced by some orthant cone iff the R-graph has the positive loop property.

Proof By Lemma 4.2, system (7) is monotone with respect to the order induced by
some orthant cone iff the J-graph associated to system (7) exists and has the positive
loop property. Therefore, it suffices to show that the latter holds iff the R-graph has
the positive loop property.

Assume first that the R-graph has the positive loop property. We start by showing
that in this case, the J-graph of (7) exists. The Jacobian matrix of (7) reads as follows:

DR · �.

Let us see if the sign of the edge joining xl to xm with l �= m can be determined
unambiguously. First note that matrix multiplication yields that the (m, l)-th entry of
the Jacobian matrix is:

∑

j∈S
[DR]mj [�] jl .

Notice that by H2 (and in particular by using (2) and (3)), together with (1), there
holds that

[DR]mj � −[�] jm,

where we used the notation that a � b iff ab ≥ 0. Consequently, it follows that the
sign of each term in the above sum is determined as follows:

[DR]mj [�] jl � −[�] jm[�] jl .

We claim that the sign of every term is the same. If not, then there would be j1 �= j2
such that [�] j1m[�] j1l and [�] j2m[�] j2l have different sign. But then the SR-graph
would contain a simple o-loop Rl − S j1 − Rm − S j2 − Rl . This in turn would imply by
Proposition 4.5, that the R-graph does not have the positive loop property, a contra-
diction. This establishes our claim. Consequently, none of the entries of the Jacobian
matrix change sign in X0, and this in turn implies that the J-graph does indeed exist.

Next we show that the J-graph has the positive loop property. Notice that the above
formula that determines the sign of the (m, l)th entry of the Jacobian matrix (and
equivalently, of the sign of the edge connecting the lth and mth node of the J-graph),
shows that this sign is the same as the sign of the edge connecting reaction node Rl

to reaction node Rm in the R-graph. Thus, the J-graph of system (7) must have the
positive loop property, because the the R-graph has this property.

To conclude the proof, we need to show that if the J-graph exists, and has the
positive loop property, then the R-graph has the positive loop property. This follows
again from the fact that the sign of the edge connecting the Rl node to the Rm node
in the R-graph, is the same as the sign of the edge connecting the lth node to the mth
node in the J-graph. ��
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Remark 5.2 Obviously, monotonicity of system (7) could be established in the tradi-
tional way Smith (1995), Smith and Hirsch (2003) using the J -graph as in Lemma 4.2.
But for a given CRN it is not clear what the J -graph looks like without a (often lengthy)
calculation of the Jacobian matrix of the vector field of system (7). The R-graph on the
other hand is easily derived from the CRN, and hence the monotonicity test described
in Theorem 1 is much more natural and user-friendly in this context. In fact, this
feature is one of the main reasons for introducing the R-graph in this work.

For technical reasons, it is also useful to provide sufficient conditions ensuring that
the Jacobian matrix of system (7) is irreducible. Indeed, for orthant-monotone systems
with irreducible Jacobian throughout their state-space, the flow is strongly monotone,
and this typically allows to draw stronger conclusions regarding the possible qualita-
tive asymptotic behaviors of the system, see for instance Angeli and Sontag (2008)
and Hirsch (1988).

We claim that irreducibility for the Jacobian matrix associated to system (7) can be
established by inspection of the directed SR-graph.

Proposition 5.3 Assume that the R-graph has the positive loop property. Then the
Jacobian matrix of system (7) is irreducible in int(X0) = {x ∈ R

nr≥0 | x0 + �x � 0}
iff the directed SR-graph is R-strongly connected.

Proof Before starting the proof, we point out that the restriction of irreducibility of
the Jacobian matrix of system (7) to a proper subset of its state space, stems from the
fact that H5 only holds on int(Rns≥0), but not necessarily on R

ns≥0.
We start by showing that the ( j, i)th entry of the Jacobian matrix of (7) is nonzero

iff there is a path of length 2 in the directed SR-graph connecting Ri to R j .
Denoting the vector field of (7) by f (x), we use the chain rule to compute the

( j, i)th entry of the Jacobian matrix of (7), yielding

D f ji =
∑

k

[DR] jk�ki .

Since the R-graph has the positive loop property, it follows from the proof of
Theorem 1 that no two terms in this sum have opposite sign. Therefore, the above
sum is different from zero iff it contains at least one nonzero term. By H5 this
will happen iff in the directed SR-graph, there exists a path of length 2, connecting
Ri to R j .

By definition, the Jacobian matrix of (7) is irreducible if given any pair of distinct
indices ( j, i), there are pairwise distinct indices k1, . . . , kl with k1 = i and kl = j
such that

D fkl kl−1 . . . D fk2k1 �= 0.

This happens if each factor in the product is nonzero, which, by the above argument is
equivalent to asking that in the directed SR-graph, there is a path of length 2, connect-
ing the reactions Rkr to Rkr+1 for all r . This in turn is equivalent to requiring that the
directed SR-graph is R-strongly connected. Thus we have established that the Jacobian
matrix of (7) is irreducible iff the directed SR-graph is R-strongly connected. ��
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Combining Theorem 1 and Proposition 5.3 we find that

Corollary 1 If the R-graph has the positive loop property, and if the directed SR-graph
is R-strongly connected, then system (7) is monotone on X0 with respect to the order
induced by some orthant cone, and also strongly monotone on int(X0) with respect to
that same order.

5.2 Convergence

The change to the system in reaction variables introduced so far is not particularly
useful if we cannot establish a link between the dynamics of the original chemical
reaction network and those of the system in reaction coordinates, even if we assume
that the latter system is strongly monotone. This may at first seem a bit surprising,
given the simple relationship between solutions of systems (4) and (7) established in
Proposition 5.1. But there, we ignored that a priori there is no guarantee that solutions
of (7) are bounded (notice that the state space of system (7) is not compact, unlike the
state space CS0 of system (4)). In fact, this issue constitutes the main technical difficulty
that needs to be surmounted in order for us to obtain some meaningful convergence
results for system (4).

Our subsequent analysis aims at establishing convergence for (4), using the strong
monotonicity of system (7), for instance, under the assumptions of Corollary 1. We
will distinguish two cases and each case will be treated with different techniques. In
particular, letting K be the orthant cone that induces the partial order preserved by
(7), we assume that either one of the following holds:

Ker[�] ∩ int(K ) �= ∅ , (9)

Ker[�] ∩ K = {0}. (10)

Interestingly, under the conditions of our main result in Theorem 2 below, we will
show in the next Section that the intermediate case, in which the Kernel of � intersects
K in non-trivial points of ∂K , but not in points of int(K ), never occurs.

In case (9) holds, we will use a recently obtained theoretical result Angeli and
Sontag (2008), that adds to the tools available for monotone systems. It is a global
convergence result which exploits strong monotonicity and translation invariance in
order to build a suitable Lyapunov function for the system. In general, we say that a
semiflow 
 : R≥0× X → X is translation invariant with respect to a set V , if x ∈ X
implies that x+v ∈ X , and that 
(t, x+v) = 
(t, x)+v for all v ∈ V and t ∈ R≥0.
Notice that the flow induced by the solutions of system (7) is translation-invariant with
respect to Ker[�].

In case (10) holds, we will exploit Hirsch’s generic convergence Theorem Hirsch
(1988) instead; not for the system (7) in reaction coordinates, which may have
unbounded solutions, but for a suitable reduced system which is also strongly mono-
tone.

Theorem 2 below requires that the CRN’s of interest are persistent, a topic worthy
of the development of a theory in its own right, see our previous work in Angeli et al.
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(2007). For convenience we have included an Appendix reviewing the main definitions
and result.

Theorem 2 Pick any S0 ∈ int(Rns ).
Assume that system (4) is persistent.
Assume also that system (7) is monotone on X0 with respect to the partial order

induced by some orthant K , and strongly monotone on int(X0) with respect to that
same order.

If (9) holds, then all solutions of (4) in int(Rns≥0) converge to an equilibrium, and
moreover, this equilibrium is unique within each stoichiometry class.

If (10) holds, then almost all solutions of (4) in int(Rns≥0) converge to the set of
equilibria, the measure of the set of possibly non-converging initial conditions being
zero.

Proof We pick S0 ∈ int(Rns ) and consider its corresponding stoichiometry class CS0 .
We first establish that for every solution x(t) of system (7) in int(X0), there exist

δ > 0 and T > 0 such that

d (x(t), ∂ X0) ≥ δ, for all t ≥ T, (11)

where d(y, ∂ X0) denotes the Euclidean distance from y to the boundary of X0, ∂ X0. If
this were not the case, then there would be a solution x(t) in int(X0) and an increasing
sequence tk →+∞ such that

lim
tk→+∞

d(x(tk), ∂ X0) = 0. (12)

Since {S(tk)} is a sequence in the compact set CS0 , we may pass to a converging subse-
quence with limit S∗. Then (12), (8) in Proposition 5.1 and the definition of X0, imply
that S∗ ∈ ∂(R

ns≥0). And since S∗ ∈ ω(S(0)), it follows that ω(S(0)) ∩ ∂(R
ns≥0) �= ∅,

contradicting the assumption that system (4) is persistent.
Assume that (9) holds. In this case, it can be shown Angeli and Sontag (2008) that

Ker[�] is 1-dimensional, and thus Ker[�] := span(v) for some unit vector v belonging
to int(K ). Then all the assumptions of the Main Result in Angeli and Sontag (2008)
hold for system (7), except for the fact that here, system (7) is strongly monotone in
int(X0), but not necessarily in X0. However, the same proof given there in fact shows
that the conclusion of the Main Result in Angeli and Sontag (2008) remains valid, if
for every solution x(t) of (7) in int(X0), there is some δ > 0 and some T > 0 such
that (11) holds. But earlier, we have already established that this is indeed the case.

Denoting the projection πv(x) := x − (v′x)v of x on the linear space v⊥, it now
follows from this modification of the Main Result in Angeli and Sontag (2008) that
πv(x(t))→ x̄ for some x̄ ∈ v⊥, and that this value is uniquely defined and indepen-
dent from initial conditions. Therefore, in original coordinates, S(t) = S0 + �x(t) =
S0 + �πv(x(t)) → S0 + � x̄ , as t → +∞. Thus, S0 + � x̄ is the unique globally
attractive equilibrium contained in the stoichiometry class of S0.

Now we assume that (10) holds. Consider (7) and let’s perform a linear coordinate
transformation x = T z, where the last m columns of the matrix T are m basis vectors
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of Ker[�] (the first nr − m columns don’t really matter as long as T is invertible):

ż = T−1 R(S0 + �T z), z ∈ Z0 := {z ∈ R
nr |S0 + �T z ≥ 0},

or, in blocks of coordinates:

ż1 = R̃1

(
S0 + �

(
z1
0

))
(13)

ż2 = R̃2

(
S0 + �

(
z1
0

))
(14)

on Z0, where R̃1 and R̃2 are suitably defined smooth vector fields. Since (7) is mono-
tone (strongly monotone) on X0 (int(X0)) with respect to the partial order induced by
the cone K , it follows that (13)–(14) is monotone (strongly monotone) on Z0 (int(Z0))
with respect to the partial order induced by K̃ := T−1 K which is also a closed convex
pointed cone in R

nr with non-empty interior.
Now apply Lemma 8.1 with L = Ker[�], which yields the cone K ′ = π(K̃ )

We claim that system (13), defined on

�1 := π(Z0) = {z1 ∈ R
nr−m | S0 + �T (z1 0)′ ≥ 0},

is monotone with respect to the order induced by the cone K ′. (Note also that �1 is
compact since it is the preimage of the compact set CS0 under the isomorphism of
R

nr−m which maps z1 to S0 + �T (z1 0)′).
To prove this, let p, q ∈ π(Z0) be such that q − p ∈ K ′. We need to show that

q(t)− p(t) ∈ K ′ for all t ≥ 0. By monotonicity of (13)–(14) on Z0, we have that:

q − p ∈ K ′ ⇒
(

q − p
y

)
∈ K̃ for some y ∈ R

m ⇒
(

q
y

)
−

(
p
0

)
∈ K̃ ⇒

(
q(t)
y(t)

)
−

(
p(t)
r(t)

)
∈ K̃ for all t ≥ 0⇒

q(t)− p(t) ∈ K ′ for all t ≥ 0,

where (q(t) y(t))′ and (p(t) r(t))′ are solutions of (13)–(14) starting at t = 0 in
(q y)′ and (p 0)′ respectively.

Moreover, we claim that (13) is strongly monotone on int(�1) (which is clearly
non-empty since π is an open mapping and Z0 has non-empty interior). To prove this,
assume that p, q ∈ int(�1) with q− p ∈ K ′\{0}. We need to show that q(t)− p(t) ∈
int(K ′) for all t > 0. By strong monotonicity of (13)–(14) on int(Z0), we have that:

q − p ∈ K ′\{0} ⇒
(

q
y

)
−

(
p
0

)
∈ K̃\{0} for some y ∈ R

m ⇒
(

q(t)
y(t)

)
−

(
p(t)
r(t)

)
∈ int(K̃ ) for all t > 0⇒

q(t)− p(t) ∈ int(K ′) for all t > 0,
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All the assumptions required for the application of the generic convergence
Theorem Hirsch (1988) to the strongly monotone system (13) on int(�1) are now
satisfied, except that we need to check that ω(z1) ⊂ int(�1) for all z1 ∈ int(�1) (We
already know by compactness of �1, that the omega limit sets of solutions in �1 are
nonempty, compact sets in �1).

If this were not the case, then there would be some z1,0 ∈ int(�1) such that there is
some p ∈ ω(z1,0) with p ∈ ∂�1. Consider a solution z(t) = (z1(t) z2(t)) of system
(13)–(14) starting in (z1,0 z2,0) for some z2,0 at t = 0. Then there is an increasing
sequence tk →∞ such that z1(tk)→ p. This implies that

lim
tk→∞

d(z(tk), ∂ Z0) = 0,

and hence via x(t) = �z(t) that

lim
tk→∞

d(x(tk), ∂ X0) = 0,

contradicting (11).
Hence, we conclude that for almost all z1(0) ∈ int(�1), z1(t) converges to the set

of equilibria in int(�1). But by Proposition 5.1, and since z = T x , every solution S(t)
of (4) in CS0 satisfies

S(t) = S0 + �x(t) = S0 + �T

(
z1(t)

0

)
,

for some solution z(t) of (13), and thus almost all solutions of (4) in CS0 ∩ int(Rns )

converge to the set of equilibria. ��

6 Have all cases been covered?

In principle it is possible that

{0} �= Ker[�] ∩ K ⊂ ∂K , (15)

a case we are seemingly neglecting when proving Theorem 2. However, we will
prove in this Section that if the R-graph has the positive loop property and if the
directed SR-graph is R-strongly connected (notice that these are precisely the condi-
tions from Corollary 1 that imply that (7) is strongly monotone in int(X0), which is
the main hypothesis in Theorem 2), and if K is the corresponding orthant cone from
Theorem 1, then (15) cannot hold.

In, other words, we have the following dichotomy.

Lemma 6.1 Suppose that the R-graph has the positive loop property and that the
directed SR-graph is R-strongly connected, and let K be the orthant cone from
Theorem 1. Then either one of (9) or (10) must hold.
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Before proving Lemma 6.1, we make the following definition:

Definition 6.2 Let

L = R1, S1, R2, S2, . . . , Sm−1, Rm, Sm, R1,

be a simple loop in the SR-graph [The assumption that the species and reactions in
the loop are ordered like this means no loss of generality since we can always relabel
them.] We say that L is unitary if

(−1)m
m∏

j=1

� j j

� j ( j+1)

= 1,

where m + 1 means 1.

Proof We will assume without loss of generality that K = R
nr≥0. Indeed, this can

always be achieved by performing a linear diagonal coordinate transformation z = �x
for system (7), where the diagonal entries of � are either+1 or−1. Since we assume
that the R-graph has the positive loop property, it follows from Proposition 4.5 that
every chemical species participates in at most 2 reactions. This implies in particular
that every row of � contains at most two non-zero entries.

Since we assume that the directed SR-graph is R-strongly connected, both the SR-
and R-graph alike must be connected (that is, for each pair of nodes in these graphs,
there exists a path of undirected edges in the graph that connects the two nodes).

We now distinguish two cases.

Case A. There are species which take part in just one reaction.

Such species are leaves of the SR-graph. Let v ∈ R
n≥0 be in Ker[�]. We will show

that necessarily v = 0. Let species Si be such a species taking part in just one reaction
R j . Then necessarily v j = 0. Now consider the set of all species Si ′ which participate
either as a reactant or as a product in reaction R j (if this set is empty, the proof is
done). Then either Si ′ participates in a second reaction R j (i ′), in which case v j (i ′) = 0
(indeed, in this case the i ′th row in � has exactly two nonzero entries, one in the i th
column, the second in the j (i ′)th column; in order for the dot product of the i ′th row
and the vector v to be zero, there must then necessarily hold that v j (i ′) = 0), or not,
in which case Si ′ is also a leaf of the SR-graph. Since the SR-graph is connected,
this argument can be applied recursively by propagating through the SR-graph, and it
leads to the conclusion that v = 0.

Case B. Every species takes part in exactly two reactions.

Without loss of generality we assume that the two non-zero entries in each row of
� have opposite signs: Indeed, if this were not the case for, say row i , then there
would exist j1 �= j2 so that �i j1�i j2 > 0. But then v ∈ Ker[�] would imply that
v j1 = v j2 = 0, and one could argue as in Case A to show that necessarily v = 0.
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There are two sub-cases to consider:

Case B1: All simple loops in the SR-graph are unitary.

We will show that in this case there always exists a positive vector v such that �v = 0,
and we will construct this vector. It is useful to interpret the components of this vector
v as positive weights assigned to the reaction nodes in the SR-graph. These weights
will be assigned according to a simple rule outlined below by propagation through the
connected SR-graph.

The process starts by choosing an arbitrary species node, say S1, and considering
the two distinct reactions in which it participates. Suppose these reactions correspond
to the nodes R j and Rk in the SR-graph. Label node R j by an arbitrary positive number
v j > 0, and assign the weight vk of node Rk as follows:

vk = −�1 j

�1k
v j .

Note that vk is positive since �1 j and �1k have opposite signs, as pointed out above.
Notice also that every vector v∗ whose j th and kth components equal v j and vk respec-
tively, is such that the dot product of the first row of � and v∗ is zero, regardless of the
values of the other components of v∗. In other words, any weight assignments which
we will make later to reaction nodes other than R j and Rk , have no effect on the zero
value of this dot product.

By connectedness of the SR-graph, we can find a second species, say S2 (this means
no loss of generality because we can always relabel the species) which participates in
Rk and in a third reaction Rl , which could possibly be R j . Assume first that Rl is not
R j (the case were Rl equals R j is treated below in more generality), so that the three
reaction nodes encountered so far are distinct. Then we label node Rl by the weight
vl , given by the rule:

vl = −�2k

�2l
vk .

As before, vl is positive, and any vector v∗ whose k and lth components equal vk and
vl respectively, is such that the dot product of the second row of � and v∗ is zero.
Using the same rule, it is clear how to continue this process and label all reaction
nodes in the SR graph, at least as long as only unlabeled reaction nodes are encoun-
tered. If an already labeled reaction node is encountered, the weight we wish to assign
to it according to the above rule, could in principle be different from the weight it
already carries. We show next that this cannot happen because of our assumption that
all simple loops are unitary. Let

L = R1, S1, R2, S2, . . . , Sm−1, Rm, Sm, R1

be a simple loop in the SR-graph for which the assignment of v1, v2, . . . , vm is unam-
biguous, but where moving from Rm through Sm to R1 yields a different weight for
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reaction node R1 (which already carries label v1). More precisely, we have the fol-
lowing inequality:

v1 �= vnew
1 ,

where

vnew
1 =

m∏

j=1

−� j j

� j ( j+1)

v1 = v1(−1)m
m∏

j=1

� j j

� j ( j+1)

,

by the rule described above. Since v1 > 0, this implies that

1 �= (−1)m
m∏

j=1

� j j

� j ( j+1)

,

which violates the assumption that L is unitary.

Case B2: There is a simple loop L in the SR-graph which is not unitary.

We will show that in this case, whenever v ∈ K = R
nr≥0 satisfies �v = 0, then

necessarily v = 0. First, after a possible relabeling, we let

L = R1, S1, R2, S2, . . . , Sm−1, Rm, Sm, R1

be a simple loop in the SR-graph which is not unitary. We claim that necessarily
v1 = v2 = · · · = vm = 0. Suppose not, then v1 > 0, and as we argued in Case B1,
we have that:

v1 =
m∏

j=1

−� j j

� j ( j+1)

v1.

Since v1 > 0, it follows that

m∏

j=1

−� j j

� j ( j+1)

= 1,

contradicting the fact that L is not unitary.
We have thus shown in particular that whenever �v = 0, there must be at least one

v j = 0. From here on, we can argue as in the proof of Case A (the only difference
is that the possibility of encountering leaves in the SR graph as in Case A, does not
occur here).

Summarizing, we have shown that the intersection of Ker[�] and K is either the
zero vector, or contains a vector in int(K ). ��
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7 Examples

The application of Theorem 2 to the following two examples requires that we estab-
lish that the CRN’s are persistent. To avoid diverting attention from the main purpose
of this Section, which is to establish global or almost global convergence, we will
here only state, but not prove, that the respective CRN’s are indeed persistent. In the
Appendix we will review the required material from Angeli et al. (2007) to establish
persistence for an arbitrary CRN, and we will only illustrate it for Example 2 (and not
for Example 1), which treats the most complex CRN encountered in this Section.

We also point out that although both examples are usually modeled under the
assumption of mass action kinetics for all involved reactions, this requirement can
be relaxed as long as the reactions rates satisfy H2, H3 and H5. We illustrate how
non-mass action reaction rates arise as a result of quasi steady state approximations
in the first example.

7.1 Example 1: single phosphorylation

In molecular systems biology, certain “motifs” or subsystems appear repeatedly, and
have been the subject of much recent research. One of the most common is that in
which a substrate S1 is ultimately converted into a product S2, in an “activation” reac-
tion triggered or facilitated by an enzyme E , and, conversely, S2 is transformed back
(or “deactivated”) into the original S1, helped on by the action of a second enzyme
F . This type of reaction is sometimes called a “futile cycle” and it takes place in
signaling transduction cascades, bacterial two-component systems, and a plethora of
other processes. The transformations of S1 into S2 and vice versa can take many forms,
depending on how many elementary steps (typically phosphorylations, methylations,
or additions of other elementary chemical groups) are involved, and in what order they
take place. A chemical reaction model for such a set of transformations incorporates
intermediate species, called complexes, corresponding to the binding of the enzyme
and substrate. The simplest such CRN is as follows:

S1 + E ↔ E S1 → S2 + E
S2 + F ↔ F S2 → S1 + F,

(16)

Ordering the species as S = (S1, E, E S1, S2, F, F S2)
′, the stoichiometry matrix

is

� =

⎛

⎜⎜⎜⎜⎜⎜⎝

−1 0 0 1
−1 1 0 0
1 −1 0 0
0 1 −1 0
0 0 −1 1
0 0 1 −1

⎞

⎟⎟⎟⎟⎟⎟⎠

and we note that 1T � = 0 which implies that H2 holds. The SR-graph of this network
is shown in Fig. 3. We point out that the above reaction is not weakly reversible (using
the language of Feinberg (1979)). This is because the following directed graph of
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Fig. 3 SR-graph associated to
(16): dashed edges are negative
(−), while solid edges are
positive (+)

complexes associated to the network:

C1 ↔ C2 → C3
C4 ↔ C5 → C6

, (17)

is such that neither of its connected components {C1, C2, C3} and {C4, C5, C6} are
strongly connected (indeed, there is no path from C3 to C1 or C2 for instance; similarly,
there is no path from C6 to C4 or C5). The lack of weak reversibility implies that even if
we would restrict to mass action kinetics, the zero-deficiency theorem Feinberg (1979)
is not applicable to study the dynamics of this system. (The zero deficiency theorem
implies local stability of unique steady states within each stoichiometry class, pro-
vided all reaction rates are mass action and the network satisfies additional conditions,
one of which being weak reversibility).

However, notice that all simple loops in the SR-graph are e-loops and that each spe-
cies node is linked to at most two reaction nodes. Then by Proposition 4.5, the R-graph
(not displayed; it has 4 reaction nodes connected in a simple loop through positive
edges) has the positive loop property. It is easily verified that the directed SR-graph
(not displayed, but easily obtained from modifying the SR-graph by adding arrows to
the edges based on the CRN (16)) is R-strongly connected. Thus, by Corollary 1 the
associated reaction coordinate system (7) is monotone on X0 with respect to an orthant
cone, and strongly monotone on int(X0). It turns out that the orthant cone is R

4≥0, and
thus (7) is cooperative. (As a side remark notice that the S-graph does not have the
positive loop property, showing that analysis in species coordinates does not allow
to derive similar conclusions. On the other hand, eliminating E and F would allow
proving monotonicity of a reduced system, but this approach does not help directly in
establishing global convergence properties.) Moreover, the kernel of the stoichiometry
matrix ker[�] is given by span[1, 1, 1, 1]′, and thus (9) holds. It was shown in Angeli
et al. (2007) that (16) is persistent, see also the Appendix. It follows from Theorem 2
that all solutions of (4) corresponding to initial conditions in int(R6≥0), converge to a
unique equilibrium in (the interior of) each stoichiometry class.

We remark that this example was also investigated in Angeli and Sontag (2008).
The same convergence result was established there, but the proof relied on an ad-hoc
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and complicated verification of strong monotonicity of system (7) on certain parts of
X0. This is avoided here, by instead establishing the persistence property of system
(16), which is based on generally applicable methods from our work in Angeli et al.
(2007).

Non-mass action kinetics It is standard practice in the analysis of CRN’s with mass
action kinetics to make the quasi steady state approximation (QSSA) assumption
Keener and Sneyd (1998), typically when certain reactions are known to be fast com-
pared to others (for instance, dimerization reactions of proteins are much faster than
the binding of RNA polymerase to DNA, which is the first step in transcription). In
general, this leads to simplified CRN’s with non-mass action kinetics which we illus-
trate next for the network (16), assuming that the complex F S2 is at quasi steady state.
It is well-known Keener and Sneyd (1998) that the CRN then simplifies to (after first
using a conservation law to eliminate one of the system variables, and then making
the QSSA assumption):

S1 + E ↔ E S1 → S2 + E (18)

S2 → S1 (19)

where the reaction rates of the reactions in (18) still obey the mass action kinetics law,
while the reaction rate of the reaction in (19) follows the Michaelis-Menten law:

R3(S2) = k
S2

a + S2
,

for suitable positive constants k and a that can be expressed in terms of the rate con-
stants of the original CRN. Note that H1, H2, H3 and H5 hold. Here, the stoichiometry
matrix is:

� =

⎛

⎜⎜⎝

−1 0 1
−1 1 0
1 −1 0
0 1 −1

⎞

⎟⎟⎠

and thus 1T � = 0 which implies that H4 holds. We depict the SR-graph of CRN
(18)–(19) in Fig. 4 and note that all simple loops are e-loops, and each species node is
linked to at most two reaction nodes. Thus the R-graph (not depicted) has the positive
loop property by Proposition 4.5. Moreover, it is easily established that the directed
SR-graph is R-strongly connected. By Corollary 1 the associated reaction coordinate
system (7) is monotone on X0 with respect to the orthant cone R

3≥0, and strongly
monotone on int(X0). Also, ker[�] = span[1, 1, 1, 1]′, and thus (9) holds. Finally, it
can be shown that (18)–(19) is persistent. It follows from Theorem 2 that all solutions
of (4) corresponding to initial conditions in int(R4≥0), converge to a unique equilibrium
in (the interior of) each stoichiometry class. We also note that the zero-deficiency the-
orem Feinberg (1979) is not applicable here because the reaction rate of the reaction
in (19) is not of mass-action type.
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Fig. 4 SR-graph associated to
(18)–(19): dashed edges are
negative (−), while solid edges
are positive (+)

7.2 Example 2: An EGF pathway model

Consider Fig. 5 which depicts a model of (part of) the EGF pathway, a particular
example of a signal transduction pathway. This pathway is triggered by the binding
of extracellular growth factors on the cell’s receptors, and ultimately affects transcrip-
tion (by activating transcription factors for instance) and translation (by activating
ribosomal proteins for instance, thereby altering translation of mRNA into proteins).

A particular part of this pathway is the so-called MAPK (mitogen activated pro-
tein kinase) cascade, see the cascade of the kinases RAF, MEK and MAPK in Fig. 5.
Each kinase induces the phosphorylation of the next level, and the last kinase, MAPK,
can phosphorylate proteins that interfere with transcription and translation directly or
indirectly. Here, MEK stands for MAPK/ERK Kinase and ERK for the Extracellular
signal Regulated Kinase. Historically, MAPK was called ERK, being the first kinase
to be isolated in this pathway.

In Example 1 above, and also in previous work we investigated the properties of
particular models for such cascades Angeli and Sontag (2008), Angeli et al. (2004).
Here we will focus on the role played by RKIP, a Raf-1 kinase inhibitor protein, using
the model described in Cho et al. (2003) and briefly reviewed in the next section. This
protein, by binding to Raf-1, inhibits the phosphorylation of MEK by Raf-1.

7.2.1 RKIP network

Consider the following CRN, which we will call the RKIP network in the sequel:

Raf-1+ RKIP ↔ Raf-1/RKIP (20)

Raf-1/RKIP+ ERK-PP ↔ Raf-1/RKIP/ERK-PP (21)

Raf-1/RKIP/ERK-PP→ Raf-1+ ERK+ RKIP-P (22)

MEK-PP+ ERK ↔ MEK-PP/ERK (23)

MEK-PP/ERK→ MEK-PP+ ERK-PP (24)
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Fig. 5 Model of an EGF
pathway, from http://en.
wikipedia.org/wiki/MAPK/
ERK_pathway

RKIP-P+ RP ↔ RKIP-P/RP (25)

RKIP-P/RP→ RKIP+ RP (26)

This CRN is illustrated graphically in Fig. 6. The protein RKIP inhibits phosphoryla-
tion of MEK by binding to Raf-1, thereby forming the complex Raf-1/RKIP.

Free Raf-1 phosphorylates MEK into its activated form MEK-PP. This activated
form binds to ERK to form the MEK-PP/ERK complex which gives rise to the activated
ERK-PP, and the original MEK-PP.

The complex Raf-1/RKIP and ERK-PP yield the Raf-1/RKIP/ERK-PP complex.
This complex breaks up into the phosphorylated RKIP-P, Raf-1 and dephosphoryl-
ated ERK (dephosphorylation occurs via two unmodeled phosphatases). Finally, the
phosphatase RP, dephosphorylates RKIP-P into RKIP via the intermediate complex
RKIP-P/RP.

When we order the biochemical species in (20)–(26) from left to right and from top
to bottom (for instance, RAF-1 is x1 and RKIP-P is x7), and we order the reactions
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Fig. 6 The RKIP network

similarly, then it is straightforward to write the stoichiometry matrix � associated to
this CRN.

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 1 0 0 0 0
−1 0 0 0 0 0 1
1 −1 0 0 0 0 0
0 −1 0 0 1 0 0
0 1 −1 0 0 0 0
0 0 1 −1 0 0 0
0 0 1 0 0 −1 0
0 0 0 −1 1 0 0
0 0 0 1 −1 0 0
0 0 0 0 0 −1 1
0 0 0 0 0 1 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In Fig. 7 we depict the SR-graph of the RKIP network. Notice that all simple loops
in the SR-graph are e-loops and each species node is connected to at most two reac-
tion nodes. This implies that the R graph (not depicted) has the positive loop property
by Proposition 4.1. It is easily verified that the directed SR-graph is R-strongly con-
nected, see Fig. 8. Thus, by Corollary 1 the associated reaction coordinate system (7)
is monotone on X0 with respect to an orthant cone, and strongly monotone on int(X0).
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Fig. 7 SR-graph of the RKIP network. Dashed edges are negative (−), while solid edges are positive (+)

It turns out that the orthant cone is R
7≥0, and thus (7) is cooperative. Moreover, the

following vector belongs to both ker[�] and to int(R7≥0):

(
1, 1, 1, 1, 1, 1, 1

)′

This implies that (9) holds. In the Appendix we show that (16) is persistent using the
results from Angeli et al. (2007). It follows from Theorem 2 that all solutions of (4)
corresponding to initial conditions in int(R11≥0), converge to a unique equilibrium in
(the interior of) each stoichiometry class.

8 Conclusions

We have presented a new method, entirely based on graphical conditions, for analyzing
the dynamical behavior of chemical reaction networks. A key idea of our approach
is to switch from a system description in the usual species coordinates -where the
state vector contains the traditional species concentrations of the various chemicals
participating in the network- to a new set of coordinates which we call the reac-
tion coordinates. The main reason for doing this is that quite surprisingly, in many
examples, including very large ones taken from the current biochemical literature, the
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Fig. 8 Directed SR-graph associated to the RKIP network. Note that three additional edges are now bidi-
rectional, compared to Fig. 6

system description in reaction coordinates turns out to be strongly monotone. Con-
sequently, one can prove convergence or generic convergence for this system, using
the recent result in Angeli and Sontag (2008) in case of convergence, and Hirsch’s
classical results Hirsch (1988) in case of generic convergence. This, coupled with
our earlier work on persistence Angeli et al. (2007) allows us to draw similar con-
clusions for the actual system of interest, which is the traditional species coordinates
system.

The theory is illustrated on a benchmark model in the area of enzyme kinetics, and
on two more recent and more complex reaction networks which arise in many signal
transduction pathways, the futile cycle and the RKIP inhibited ERK pathway from
Cho et al. (2003).

Related work by Feinberg (1979) identifies classes of chemical reaction networks
for which each positive stoichiometry class has a unique positive equilibrium point
which is locally stable. Those results require that all reaction rates are of mass action
type. In contrast, we relax this constraint on the reaction rates and moreover, we obtain
global stability results.

Other related but more recent work in Craciun and Feinberg (2006) relies on the
same graphical concepts -in particular the species-reaction graph- presented here, yet
it has a very different scope. While we present global stability results, that work is
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concerned with the problem of identifying which chemical reaction networks may
have multiple equilibria in their stoichiometry classes.

Our current research efforts are focused on the extension of the presented theory to
chemical reaction networks with time-varying kinetics and with inflows and outflows
of chemical species.

Acknowledgments PDL was supported in part by NSF grant DMS-0614651. EDS was supported in part
by NSF grants DMS-0504557 and DMS-0614371 and AFOSR grant FA9550-08.

Appendix

For convenience of the reader, we provide some auxiliary results in this Appendix.
We start with the following.

Lemma 8.1 Let K̃ be a closed and pointed convex cone in R
nr with non-empty inte-

rior, and let L be a subspace in R
nr . Assume that

K̃ ∩ L = {0}. (27)

If L is m-dimensional, we can pick a basis for R
nr such that the last m basis vectors

belong to L and thus L = {0} ×R
m in this basis. With respect to this basis, we define

the projection π : Rnr = R
nr−m × R

m → R
nr−m such that π(x, y) = x ∈ R

nr−m.
Then

K ′ := π(K̃ ), (28)

is a closed and pointed convex cone in R
nr−m, with non-empty interior.

Proof 1. (K ′ is a convex cone) This is immediate from the fact that the image of a
convex cone under the linear mapping π is a convex cone as well.

2. (K ′ is closed) Let {xn} be a sequence in K ′ with xn → x . We want to prove that
x ∈ K ′. Pick a sequence {yn} in R

m such that (xn, yn) ∈ K̃ . There are two cases
to consider.
Case (i): The sequence {yn} is bounded. In this case, we can pick a converging sub-
sequence and assume wlog that yn → y for some y. Then (xn, yn)→ (x, y) ∈ K̃ ,
because K̃ is closed, and hence x ∈ K ′.
Case (ii): The sequence yn is unbounded. We will show that this cannot hap-
pen. In this case, pick a subsequence and wlog assume |yn| → +∞. Let un :=
xn/|yn|. Since the sequence xn is bounded (because it is convergent), it follows that
un → 0. Let vn = yn/|yn|. These are unit vectors, so pick a subsequence and
wlog assume vn → v, for some unit (and hence nonzero) vector v. So we have
that (un, vn)→ (0, v) with v �= 0. Now, (un, vn) = (1/|yn|)(xn, yn) is in K̃ for
all n, since K̃ is a cone. It follows that (0, v) ∈ K̃ because K̃ is closed. On the
other hand, (0, v) ∈ L . From (27), it follows that v = 0, a contradiction.

3. (K ′ is pointed) If not, then there is x �= 0 such that x ∈ K ′ ∩ (−K ′). This
implies the existence of y1 and y2 such that (x, y1) ∈ K̃ and (−x, y2) ∈ K̃ .

123



612 D. Angeli et al.

Moreover, y2 �= −y1 because K̃ is pointed. Since K̃ is a convex cone, it follows
that (x, y1) + (−x, y2) = (0, y1 + y2) ∈ K̃ , where y1 + y2 �= 0. We also have
that (0, y1 + y2) ∈ L , yielding a contradiction because of (27).

4. (K ′ has non-empty interior) This is immediate from the fact that π is an open
map: If U is a non-empty open set in K̃ , then its image π(U ) is a non-empty open
set in K ′, hence K ′ has non-empty interior. ��

Let us now turn to the concept of persistence of a CRN, and review how it can be
established using certain graphical tools. We provide only the essential background
and statement of the main persistence result, and readers who wish to consult the proofs
are referred to Angeli et al. (2007). The set-up in that paper is slightly different than
here because reversible reactions are treated as two separate (irreversible) reactions,
the forward and the backward reaction. As a consequence, the stoichiometry matrix is
extended to a matrix with additional columns, one for each reversible reaction. This
is done by inserting a new column right after the column vector that represents the
reaction vector associated to every reversible reaction. For a given reversible reaction,
the column vector that is inserted is equal to the opposite of the reaction vector of the
given reaction. The resulting matrix is called the extended stoichiometry matrix and
it is denoted by �e. To illustrate this procedure, recall the stoichiometry matrix � of
Example 2. Then the corresponding �e is given by:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 1 0 0 0 0 0 0
−1 1 0 0 0 0 0 0 0 0 1
1 −1 −1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 1 0 0 0
0 0 1 −1 −1 0 0 0 0 0 0
0 0 0 0 1 −1 1 0 0 0 0
0 0 0 0 1 0 0 0 −1 1 0
0 0 0 0 0 −1 1 1 0 0 0
0 0 0 0 0 1 −1 −1 0 0 0
0 0 0 0 0 0 0 0 −1 1 1
0 0 0 0 0 0 0 0 1 −1 − 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The 2nd, 4th, 7th and 10th columns in �e are the respective opposite of the preceding
columns, which are precisely the reaction vectors of one of the four reversible reactions
in the CRN. The reaction rate vector R(S) is also extended to the extended reaction
rate vector Re(S) to reflect the replacement of each reaction rate of a reversible reac-
tion by two reaction rates. For a reversible reaction with rate Ri (S) = Ri, f (S)− Ri,b

(recall (3)), we replace the i th coordinate Ri (S) of the reaction rate vector R(S) by
the pair Ri, f (S), Ri,b(S).

It is easy to see that with this new notation, the differential equation (4) for the
species concentrations, can also be written as follows:

Ṡ = �e Re(S), S ∈ R
ns≥0, (29)

Denoting the omega limit set of the solution of (29) (i.e. (4)) starting from S0 at
t = 0 by ω(S0), we have:

123



Monotonicity of chemical networks in reaction coordinates 613

Fig. 9 SR-net of the RKIP network

Definition 8.2 System (29), or equivalently, system (7), and the associated CRN are
all said to be persistent if ω(S0) ∩ ∂R

ns≥0 = ∅, for all S0 ∈ int(Rns≥0).

We now associate to a CRN a bipartite directed graph, called the species-reaction
Petri Net, or SR-net for short. Mathematically, this is a triple

(VS, VR, E) ,

where as before, VS is a set of species nodes, and VR the set of reaction nodes, and E is
a set of edges as described below. First we denote the set of all nodes by V := VR∪VS .
Then the edge set E ⊂ V×V is defined as follows. If a certain reaction Ri (necessarily
irreversible in this context) belongs to the CRN, then there is an edge from S j ∈ VS

to Ri ∈ VR for all S j ’s such that αi j > 0. That is, (S j , Ri ) ∈ E iff αi j > 0, and we
say in this case that Ri is an output reaction for S j . Similarly, we draw an edge from
Ri ∈ VR to every S j ∈ VS such that βi j > 0. That is, (Ri , S j ) ∈ E whenever βi j > 0,
and we say in this case that Ri is an input reaction for S j . The set of input (or output)
reactions of a nonempty set � ⊂ VS is simply defined as the union of the set of input
(output) reactions of every element of �.

Definition 8.3 A P-semiflow is any row vector c 
 0 such that c �e = 0. Its support
is the set of indices {i ∈ VS : ci > 0}.
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Fig. 10 The five minimal siphons of the RKIP network

Definition 8.4 A nonempty set � ⊂ VS is called a siphon if each input reaction asso-
ciated to � is also an output reaction associated to �. A siphon is minimal if it does
not contain (strictly) any other siphon.

The main persistence result from Angeli et al. (2007) is as follows.

Theorem 3 Consider a CRN satisfying the following assumptions:1

1. There is a positive P-semiflow.
2. Every minimal siphon of the CRN contains the support of a P-semiflow.

Then the CRN is persistent.

To illustrate these various concepts, we consider Example 2 and will show that the
CRN considered there is persistent. First, we depict the associated SR-net in Fig. 9, and
we notice in particular that every reversible reaction in Fig. 6 has now been replaced

1 The persistence result in Angeli et al. (2007) requires that all reaction rates are real-analytic functions,
but it can be shown that this can be relaxed to demanding that they are only C1, the assumption made in
this paper.
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by two reactions. As illustrated in Fig. 10, the RKIP network has five minimal siphons:

S1 = {Raf-1, Raf-1/RKIP, Raf-1/RKIP/ERK-PP},
S2 = {ERK-PP, Raf-1/RKIP/ERK-PP, ERK, MEK-PP/ERK},
S3 = {RKIP, Raf-1/RKIP,Raf-1/RKIP/ERK-PP, RKIP-P, RKIP-P/RP},
S4 = {RP, RKIP-P/RP}
S5 = {MEK-PP, MEK-PP/ERK}.

It is easily verified that the following vectors are P-semiflows:

c1 =
(
1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0

)
,

c2 =
(
0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0

)
,

c3 =
(
0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1

)
,

c4 =
(
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1

)
,

c5 =
(
0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0

)
.

Moreover, for every i , the support of ci coincides with (the support of) siphon Si .
Notice also that the sum of all vectors ci is a positive vector, and a P-semiflow. Thus,
both assumptions in Theorem 3 are satisfied, and hence the RKIP network is persistent.
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