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Oscillations in I/O Monotone Systems Under
Negative Feedback

David Angeli and Eduardo D. Sontag, Fellow, IEEE

Abstract—Oscillatory behavior is a key property of many bio-
logical systems. The small-gain theorem (SGT) for input/output
monotone systems provides a sufficient condition for global asymp-
totic stability of an equilibrium, and hence its violation is a neces-
sary condition for the existence of periodic solutions. One advan-
tage of the use of the monotone SGT technique is its robustness
with respect to all perturbations that preserve monotonicity and
stability properties of a very low-dimensional (in many interesting
examples, just one-dimensional) model reduction. This robustness
makes the technique useful in the analysis of molecular biological
models in which there is large uncertainty regarding the values of
kinetic and other parameters. However, verifying the conditions
needed in order to apply the SGT is not always easy. This paper
provides an approach to the verification of the needed properties
and illustrates the approach through an application to a classical
model of circadian oscillations, as a nontrivial “case study,” and
provides a theorem in the converse direction of predicting oscilla-
tions when the SGT conditions fail.

Index Terms—Circadian rhythms, monotone systems, negative
feedback, periodic behaviors.

I. INTRODUCTION

MOTIVATED by applications to cell signaling, our pre-
vious paper [1] introduced the class of monotone input/

output systems and provided a technique for the analysis of
negative feedback loops around such systems. The main the-
orem gave a simple graphical test which may be interpreted as a
monotone small gain theorem (SGT) for establishing the global
asymptotic stability of a unique equilibrium, a stability that per-
sists even under arbitrary transmission delays in the feedback
loop. Since that paper, various papers have followed up on these
ideas, see, for example, [4], [5], [7], [11]–[14], [17], [18], [27],
and [35]. This paper has two purposes.

The first purpose is to develop explicit conditions so as to
make it easier to apply the SGT theorem, for a class of systems
of biological significance, a subset of the class of tridiagonal
systems with inputs and outputs. Tridiagonal systems (with no
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inputs and outputs) were introduced largely for the study of gene
networks and population models, and many results are known
for them; see, for instance, [32] and [34]. Deep achievements of
the theory include the generalization of the Poincaré–Bendixson
Theorem, from planar systems to tridiagonal systems of arbi-
trary dimension, due to Mallet–Paret and Smith [29] as well as
a later generalization to include delays due to Mallet–Paret and
Sell [28]. For our class of systems, we provide in Theorem 1
sufficient conditions that guarantee the existence of characteris-
tics (nonlinear dc gain), which is one of the ingredients needed
in the SGT theorem from [1].

Negative feedback is often associated with oscillations, and
in that context one may alternatively view the failure of the SGT
condition as providing a necessary condition for a system to
exhibit periodic behaviors, and this is the way in which the SGT
theorem has often been applied.

The conditions given in Theorem 1 arose from our analysis
of a classical model of circadian oscillations. The molecular
biology underlying the circadian rhythm in Drosophila is
currently the focus of a large amount of both experimental and
theoretical work. The most classical model is that of Goldbeter,
who proposed a simple model for circadian oscillations in
Drosophila; see [15] and [16]. The key to the Goldbeter model
is the auto-inhibition of the transcription of the gene per. This
inhibition is through a loop that involves translational and post-
transcriptional modifications as well as nuclear translocation.
Although, by now, several more realistic models are available,
in particular incorporating other genes, see, e.g., [25], [26],
this simpler model exhibits many realistic features, such as a
close to 24-h period, and has been one of the main paradigms
in the study of oscillations in gene networks. Thus, we use
Goldbeter’s original model as our “case study” to illustrate the
mathematical techniques.

The second purpose of this paper is to further explore the idea
that, conversely, failure of the SGT conditions may lead to oscil-
lations if there is a delay in the feedback loop. (As with the Clas-
sical Small-Gain Theorem, of course, the SGT is far from neces-
sary for stability, unless phase is also considered.) As argued in
[3, Sec. III] and reviewed below, failure of the conditions often
means that a “pseudo-oscillation” exists in the system (provided
that delays in the feedback loop are sufficiently large), in the
rough sense that there are trajectories that “look” oscillatory if
observed under very noisy conditions and for finite time inter-
vals. This begs the more interesting question of whether true
periodic solutions exist. It turns out that some analogs of this
converse result are known for certain low-dimensional systems;
see [23] and [30]. In the context of failure of the SGT, Enciso re-
cently provided a converse theorem for a class of cyclic systems;

/ © 2008 IEEE
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see [10]. The Goldbeter model is far from being cyclic, however.
Theorem 2 in this paper proves the existence of oscillations for
a class of monotone tridiagonal systems under delayed negative
feedback, and the theorem is then illustrated with the Goldbeter
circadian model.

We first review the basic setup from [1].

II. I/O MONOTONE SYSTEMS, CHARACTERISTICS, AND

NEGATIVE FEEDBACK

We consider an input/output system

(1)

in which states evolve on some subset , and input
and output values and belong to subsets
and , respectively. The maps and

are taken to be continuously differentiable. An input
is a signal which is locally essentially com-
pact (meaning that images of restrictions to finite intervals are
compact), and we write for the solution of the initial
value problem with or just

if and are clear from the context, and .
Given three partial orders on (we use the same symbol

for all three orders), a monotone input/output system (MIOS),
with respect to these partial orders, is a system (1) which is for-
ward-complete (for each input, solutions do not blow up on fi-
nite time, so and are defined for all ), is a mono-
tone map (it preserves order), and, for all initial states for
all inputs , the following property holds: if and

(meaning that for all ), then
for all . Here, we consider par-

tial orders induced by closed proper cones in the sense
that iff . The cones are assumed to have a
nonempty interior and are pointed, i.e., . When
there are no inputs nor outputs, the definition of monotone sys-
tems reduces to the classical one of monotone dynamical sys-
tems studied by Hirsch et al. [33], which have especially nice
dynamics. Not only is chaotic or other irregular behavior ruled
out, but, in fact, under additional technical conditions (strong
monotonicity), almost all bounded trajectories converge to the
set of steady states (Hirsch’s generic convergence theorem [20],
[21]).

The most interesting particular case is that in which is an
orthant cone in , i.e., a set of the form ,
where for each . A useful test for monotonicity with
respect to arbitrary orthant cones (“Kamke’s condition” in the
case of systems with no inputs and outputs) is as follows. Let
us assume that all of the partial derivatives for

, for all , and for all
(subscripts indicate components) do not change sign, i.e.,

they are either always 0 or always 0. We also assume that
is convex (much less is needed.) We then associate a directed

graph to the given MIOS, with nodes, and edges
labeled “ ” or “ ” (or 1), whose labels are determined by
the signs of the appropriate partial derivatives (ignoring diag-
onal elements of ). One may define in an obvious manner
undirected loops in , and the parity of a loop is defined by
multiplication of signs along the loop. (See [2] for more de-

tails.) A system is monotone with respect to some orthant cones
in if and only if there are no negative loops in . In
particular, if the cone is the main orthant , the
requirement is that all partial derivatives must be nonnegative,
with the possible exception of the diagonal terms of the Jacobian
of with respect to . A monotone system with respect to the
main orthant is also called a cooperative system. This condition
can be extended to nonorthant cones; see [31] and [36]–[38].

In order to define negative feedback (“inhibitory feedback”
in biology) interconnections, we will say that a system is anti-
monotone (with respect to given orders on input and output
value spaces) if the conditions for monotonicity are satisfied,
except that the output map reverses order:

.

A. Characteristics

A useful technical condition that simplifies statements (one
may weaken the condition, see [27]) is that of the existence of
single-valued characteristics, which one may also think of as
step-input steady-state responses or (nonlinear) dc gains. To de-
fine characteristics, we consider the effect of a constant input

, , and study the dynamical system
. We say that a single-valued characteristic exists if, for

each , there is a state so that the system is globally
attracted to , and in that case we define the character-
istic as the composition . It is a remark-
able fact for monotone systems that (under weak assumptions
on and boundedness of solutions) just knowing that a unique
steady-state exists, for a given input value , already
implies that is in fact a globally asymptotically stable
state for ; see [6] and [24].

B. Negative Feedback

Monotone systems with well-defined characteristics consti-
tute useful building blocks for arbitrary systems, and they be-
have in many senses like one-dimensional (1-D) systems. Cas-
cades of such systems inherit the same properties (e.g., mono-
tone or monostable response). Under negative feedback, one ob-
tains nonmonotone systems, but such feedback loops sometimes
may be profitably analyzed using MIOS tools.

We consider a feedback interconnection of a monotone and
an anti-monotone input/output system

(2)

(3)

with characteristics denoted by and , respectively. (We can
also include the case when the second system is a static function

.) As in [2], we will require here that the inputs
and outputs of both systems are scalar:

; the general case [9] is similar but requires more notation and
is harder to interpret graphically. The feedback interconnection
of the systems (2) and (3) is obtained by letting ''
and '', as depicted (assuming the usual real-
number orders on inputs and outputs) in Fig. 1.

The main result from [1], which we will refer to as the mono-
tone SGT theorem, is as follows. We plot together and , as
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Fig. 1. Negative feedback configuration.

Fig. 2. Characteristics.

shown in Fig. 2, and consider the following discrete dynamical
system:

on . Then, provided that solutions of the closed-loop system
are bounded, the result is that, if this iteration has a globally at-
tractive fixed point , as shown in Fig. 2 through a “spiderweb”
diagram, then the feedback system has a globally attracting
steady state. (An equivalent condition (see [7, Lemma 2.3]
and [12]) is that the discrete system should have no nontrivial
period-two orbits, i.e., the equation has
a unique solution.)

Furthermore, it is not hard to prove that arbitrary delays may
be allowed in the feedback loop. In other words, the feedback
could be of the form , and such delays (even
with time varying or even state-dependent, as long as

as ) do not destroy global stability of the
closed loop. Moreover, it is also known [11] that diffusion does
not destroy global stability: a reaction-diffusion system, with
Neumann boundary conditions, whose reaction can be modeled
in the shown feedback configuration, has the property that all
solutions converge to a (unique) uniform in space solution.

C. Robustness

It is important to point out that characteristics (e.g., dose
response curves, activity plots, or steady-state expression of a
gene in response to an external ligand) are frequently readily
available from experimental data, especially in molecular bi-
ology and pharmacology, in contrast to the rare availability and
high uncertainty regarding the precise form of the differential
equations defining the dynamics and values for all parameters
(e.g., kinetic constants) appearing in the equations. MIOS
analysis allows one to combine the numerical information pro-
vided by characteristics with the qualitative information given
by “signed network topology” (Kamke condition) in order to
predict global behavior. (See [35] for a longer discussion of
this “qualitative–quantitative approach” to systems biology.)
The conclusions from applying the monotone SGT are robust
with respect to all perturbations that preserve monotonicity and
stability properties of the 1-D iteration.

Moreover, even if one would have a complete system speci-
fication, the 1-D iteration plays a role vaguely analogous to that
of Nyquist plots in classical control design, where the use of a
simple plot allows quick conclusions that would be harder to ob-
tain, and be far less intuitive, when looking at the entire high-di-
mensional system.

III. EXISTENCE OF CHARACTERISTICS

The following result is useful when showing that characteris-
tics exist for some systems of biological interest, including the
protein part of the circadian model described later. The constant

represents the value of a constant control .
Theorem 1: Consider a system of the following form:

...

...

evolving on , where is a constant. Assume that and
all of the are differentiable functions
with everywhere positive derivatives and vanishing at 0

are bounded

and

are unbounded

We use the notation to indicate and simi-
larly for the other bounded functions. Furthermore, suppose that
the following conditions hold:

(4)

(5)

(6)
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Then, there is a (unique) globally asymptotically stable equilib-
rium for the system.

Observe that (5) (applied with ) together with (6) imply
that also

(7)

Proof: We start by noticing that solutions are de-
fined for all . Indeed, consider any maximal solution

. From

(8)

we conclude that there is an estimate
for each coordinate of and, hence, that there

are no finite escape times.
Moreover, we claim that is bounded. We first show that

are bounded. For , it is enough to notice that
, so that

Thus, (7) shows that is bounded. Similarly, for ,
, we have that

so (4) provides boundedness of these coordinates as well.
Next, we show boundedness of and .
Since the system is a strongly monotone tridiagonal system,

we know (see [32, Corollary 1]) that is eventually mono-
tone, that is, for some , either

(9)

or

(10)

Hence, admits a limit, either finite or infinite.
Assume first that is unbounded, which means that

because of eventual monotonicity. Then, (10)
cannot hold, so (9) holds. Therefore

for all , which implies that

as well. Looking again at (8), and using that [(6)],
we conclude that

for all sufficiently large. Thus,
is bounded (and nonnegative), and this implies that is
bounded, which is a contradiction since we showed that

. Thus, is bounded.

Next, notice that
. The two positive terms are bounded, because

both and are bounded. Thus

where for some constant . Thus,
whenever , and this proves that is
bounded, as claimed.

Once that boundedness has been established, if we also show
that there is a unique equilibrium, then the theory of strongly
monotone tridiagonal systems [32], [33] (or [6] and [24] for
more general monotone systems results) will ensure global
asymptotic stability of the equilibrium. Thus, we show that
equilibria exist and are unique.

Let us write for the right-hand sides of the equations,
so that for each . We need to show that there is a
unique nonnegative solution of

Equivalently, we can write the equations as follows:

(11)
...

(12)
...

(13)

Since , (13) has the
unique solution , which is well defined
because property (6) says that .

Next, we consider (11). This equation has the unique solution

which is well defined because is a bijection.
Pick and suppose that we have uniquely

determined for each . We will show that is
also uniquely defined. Equation (12) is

and has the unique solution

which is well defined because property (5) says that
for each . By induction

on , we have completed the uniqueness proof.

IV. GOLDBETER CIRCADIAN MODEL

The original Goldbeter model of Drosophila circadian
rhythms is schematically shown in Fig. 3. The assumption is
that PER protein is synthesized at a rate proportional to its
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Fig. 3. Goldbeter’s model.

TABLE I
PARAMETER VALUES

mRNA concentration. Two phosphorylation sites are avail-
able, and constitutive phosphorylation and dephosphorylation
occur with saturation dynamics, at maximum rates and
with Michaelis constants . Doubly phosphorylated PER is
degraded, also described by saturation dynamics (with param-
eters and ), and it is translocated to the nucleus, with
rate constant . Nuclear PER inhibits transcription of the
per gene, with a Hill-type reaction of cooperativity degree
and threshold constant . The resulting mRNA is produced
and translocated to the cytoplasm, at a rate determined by a
constant . Additionally, there is saturated degradation of
mRNA (constants and ).

Corresponding to these assumptions and assuming a
well-mixed system, one obtains an ordinary differential
equation (ODE) system for concentrations are as follows:

(14)

where the subscript ,1,2 in the concentration indicates
the degree of phosphorylation of PER protein, is used to in-
dicate the concentration of PER in the nucleus, and indicates
the concentration of per mRNA.

The parameters (in suitable units M or h ) used by Gold-
beter are given in Table I. With these parameters, there are limit
cycle oscillations. If we take as a bifurcation parameter, a
Hopf bifurcation occurs at .

As an illustration of the SGT, we will show now that the the-
orem applies when . This means that not only will
stability of an equilibrium hold globally in that case, but this

Fig. 4. Systems in feedback.

stability will persist even if one introduces delays to model the
transcription or translation processes. (Without loss of gener-
ality, we may lump these delays into one delay, say in the term

appearing in the equation for .) On the other hand, we
will see later that the SGT discrete iteration does not converge,
and in fact has a period-two oscillation, when . This
suggests that periodic orbits exist in that case, at least if suffi-
ciently large delays are present, and we analyze the existence of
such oscillations.

For the theoretical developments, we assume from now on
that

(15)

and the remaining parameters will be constrained below, in such
a manner that those in Table I will satisfy all of the constraints.

A. Breaking Up the Circadian System and Applying the SGT

We choose to view the system as the feedback interconnection
of two subsystems, one for and the other one for ; see Fig. 4.

mRNA Subsystem: The mRNA subsystem is described
by the scalar differential equation

with input and output .
As state-space, we will pick a compact interval ,

where

(16)

and we assume that . The order on is taken to be
the usual order from .

Note that the first inequality implies that

(17)

and therefore

for all , so that indeed is forward-invariant for the
dynamics.
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With the parameters shown in Table I [except for , which
is picked as in (15)],

satisfies all the constraints.
As input space for the mRNA system, we pick , and

as output space . Note that
, by (16), so the output belongs to . We view as having

the reverse of the usual order, and is given the usual order
from .

The mRNA system is monotone because it is internally mono-
tone ( , as required by the reverse order on ), and
the output map is monotone as well.

The existence of characteristics is immediate from the fact
that for and for ,
where, for each constant input , we have

(which is an element of ).
Note that all solutions of the differential equations which de-

scribe the -system, even those that do not start in , enter
in finite time (because whenever ,

for any input ). The restriction to the state space (in-
stead of using all of ) is done for convenience, so that one
can view the output of the system as an input to the -sub-
system. (Desirable properties of the -subsystem depend on the
restriction imposed on .) Given any trajectory, its asymptotic
behavior is independent of the behavior in an initial finite time
interval, so this does not change the conclusions to be drawn.
(Note that solutions are defined for all times—no finite explo-
sion times—because the right-hand sides of the equations have
linear growth.)

Protein Subsystem: The second subsystem is four-di-
mensional and is given as

with input and output .
For the subsystem, the state space is with the main

orthant order, and the input space is and the output
space is (with the orders specified earlier). Internal
monotonicity of the subsystem is clear from the fact that

for all (cooperativity). In fact, be-
cause these inequalities are strict and the Jacobian matrix is
tridiagonal and irreducible at every point, this is an example of
a strongly monotone tridiagonal system [32], [33]. The system
is anti-monotone because the identity mapping reverses order
(recall that has the reverse order, by definition).

We obtain the following result as a corollary of Theorem 1,
applied with , ,

, and so on. It says that, for the parameters in Table I, as well

Fig. 5. Stability of spiderweb (v = 0:4).

as for a larger set of parameters, the system has a well-defined
characteristic, which we will denote by . (It is possible to give
an explicit formula for , in this example.)

Proposition 4.1: Suppose that the following conditions hold:
• ;
• ;
• ;
•

and that all constants are positive and the input . Then,
the -system has a unique globally asymptotically stable equi-
librium.

V. CLOSING THE LOOP

Solutions of the closed-loop system, i.e., of the original
system (14), are bounded under the above assumptions. To see
this, we argue as follows. Take any solution of the closed-loop
system. As we pointed out earlier, there are no finite time
explosions, and the -coordinate will converge to the set

.
This means that the subsystem corresponding to the -coor-

dinates will be forced by an input such that
for all , for some . Now, for constant inputs in ,
which contains , we have proved that a characteristic

exists for the open-loop system corresponding to these coor-
dinates. Therefore, by monotonicity, the trajectory components

will lie in the main or-
thant-order rectangle for each , where is
the solution with constant input and and
where is the solution with constant input , and

. Since and converge to , the
omega-limit set of is included in , and there-
fore the -components are bounded as well.

Now, we are ready to apply the main theorem in [1]. In order
to do this, we first need to plot the characteristics. See Fig. 5
for the plots of and (dashed and dotted curves) and the
a typical “spiderweb diagram” (solid lines), when we pick the
parameter . It is evident that there is global convergence
of the discrete iteration. Hence, no oscillations can arise, even
under arbitrary delays in the feedback from to , and in
fact that all solutions converge to a unique equilibrium.
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Fig. 6. Instability of spiderweb (v = 0:5).

On the other hand, for a larger value of , such as
, the discrete iteration conditions are violated; see Fig. 6 for

the “spiderweb diagram” that shows divergence of the discrete
iteration. Thus, one may expect periodic orbits in this case. We
next prove a result that shows that this does indeed happen.

VI. PERIODIC BEHAVIOR WHEN SGT CONDITIONS FAIL

One may conjecture that there is a connection between
periodic behaviors of the original system, at least under delayed
feedback, and of the associated discrete iteration. We first
present an informal discussion and then give a precise result.

For simplicity, let us suppose that already denotes the com-
position of the characteristics and . The input values with

, which do not arise from the unique fixed point of
, are period-two orbits of the iteration .

Now suppose that we consider the delay differential system
, where the delay is very large.

We take the initial condition , , where
is picked in such a manner that , and are
two elements of such that and . If
the input to the open-loop system is ,
then the definition of characteristic says that the solution
approaches , where , Thus, if the delay length
is sufficiently large, the solution of the closed-loop system will
be close to the constant value for . Repeating this pro-
cedure, one can show the existence of a lightly damped “oscil-
lation” between the values and , in the sense of a trajec-
tory that comes close to these values as many times as desired
(a larger that in principle is required in order to come closer
and more often). In applications in which measurements have
poor resolution and time duration, it may well be impossible to
practically determine the difference between such pseudo-os-
cillations and true oscillations. See also [8] for a weaker type of
pseudo-oscillatory behavior for circadian models under delay.

It is an open question to prove the existence of true periodic
orbits, for large enough delays, when the small-gain condition
fails. The problem is closely related to questions of singular per-
turbations for delay systems, by time reparametrization. We il-
lustrate this relation by considering the scalar case and with

. The system has periodic orbits for suffi-
ciently large if and only if the system

has periodic orbits for sufficiently small . For , we
have the algebraic equation that defines the charac-
teristic . Thus, one would want to know that periodic
orbits of the iteration , seen as the degenerate case

, survive for small . A variant of this statement
is known in dimension one from the work of Nussbaum and
Mallet-Paret [30], which shows the existence of a continuum of
periodic orbits which arise in a Hopf bifurcation and persist for

; see also the more recent work [23]. (We thank Hal
Smith for this observation.)

We now show that, at least, for a class of systems which is
of some general interest in biology and which contains the cir-
cadian model, oscillations can be proved to exist if delays are
sufficiently large and the SGT fails locally (exponential insta-
bility of the discrete iteration).

A. Predicting Periodic Orbits When the Condition Fails

Here, we prove the following theorem, which applies imme-
diately to the complete circadian model (14).

Theorem 2: Consider a tridiagonal system with
scalar input

...

(18)

and scalar output . The functions are twice con-
tinuously differentiable, and (cooperatively) all of the off-di-
agonal Jacobian (with respect to ) entries are positive. Sup-
pose that there is a unique pair such that

and that , and consider
the linearized system , where ,

, and , which is the Jacobian of the
vector field evaluated at . Assume that is non-
singular, and let be the dc gain of the lin-
earized system. Let be a differentiable function,
let , evaluated at , and suppose
that . Then, for some , the system (18) under the
feedback admits a periodic solution and,
moreover, the omega-limit set of every bounded solution is ei-
ther a periodic orbit, the origin, or a nontrivial homoclinic orbit
with .

Note that the uniqueness result for closed-loop equilibria will
always hold in our case, and the dc gain property cor-
responds to a locally unstable discrete iteration. The matrix
is Hurwitz when we have hyperbolicity and parameters as con-
sidered earlier (existence of characteristics). The conclusion is
that, for a suitable delay length , there is at least one periodic
orbit, and, moreover, bounded solutions not converging to zero
exhibit oscillatory behavior (with periods possibly increasing to
infinity, if the omega-limit set is a homoclinic orbit). (Moreover,
we conjecture that, for the circadian example, in fact almost all
solutions converge to a periodic orbit. Proving this would re-
quire establishing that no homoclinic orbits exist for our system
(14) when a delay is introduced in the term appearing in the
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equation, just as shown, when no delays present, for a large
class of systems in [29].)

Before proving Theorem 2, we show the following simple
lemma about linear systems.

Lemma 6.1: Consider a linear -dimensional single-input
single-output (SISO) system , with
and , and suppose that is a linear tridiag-
onal matrix

with for all (in particular, this holds if all off-diag-
onal elements are positive). Then, the transfer function

has no zeroes and has distinct real poles; more
specifically, , where and

for distinct real numbers . More-
over, there are two real-valued functions and

so that the logarithmic derivative
satisfies for every that is not a root
of .

Proof: The fact that has distinct real eigenvalues is a
classical one in linear algebra; we include a short proof to make
the paper more self-contained. Pick any positive number and
define inductively

for . Let . Then,
is a tridiagonal symmetric matrix

where and .
Therefore, , and hence also , has all its eigenvalues real.
Moreover, there is a basis consisting of orthogonal
eigenvectors of , and so admits the linearly independent
eigenvectors . Moreover, all eigenvalues of (and so of )
are distinct. (Pick any and consider . The first

rows of look just like those of , with .
The matrix consisting of these rows has rank
(just consider its last columns, a nonsingular matrix), so it
follows that has . Therefore, the kernel of has
dimension of at most one.) We conclude that has distinct
real eigenvalues and, hence, its characteristic polynomial has the
form .

By Cramer’s rule, , where
“cof” indicates matrix of cofactors. Thus, ,
where is the entry of , i.e.,
times the determinant of the matrix obtained
by deleting from the first row and last column.

The matrix is upper triangular, and its deter-
minant is . Therefore,

, as claimed.
Finally, consider . Write

so that

where , and therefore

as desired.
We now continue the proof of Theorem 2, by first studying

the closed-loop linearized system .
The closed-loop transfer function

corresponding to a negative feedback loop with delay and gain
simplifies to

where .
In order to prove that there are oscillatory solutions for some

, we proceed as follows. We will use the weak form of the
Hopf bifurcation theorem (“weak” in that no assertions are made
regarding super or subcriticality of the bifurcation) as given in
[19, Theorem 11.1.1]. The theorem guarantees that oscillatory
solutions will exist for the nonlinear system and for some value
of the delay arbitrarily close to a given , provided that
the following two properties hold for .

H1: There is some such that ,
is a simple root of , and (nonresonance)

for all integers ;
and letting be a function such that
for all near and (such a function always
exists).
H2: .

In order to prove these properties, we proceed analogously to
what is done for cyclic systems in [10]. (Cyclic systems are the
special case in which for each ,
which is not the case in our circadian system.)

We first show that for some and
. Since and

for all real numbers (because has only real roots, and is
nonsingular, thus also ), it is enough to find
and such that , where

. Since is a continuous function on ,
by assumption, and

, there is some such that ,
so that for some , which we may take in the
interval . It thus suffices to pick , so
that .

Fix any such . Since, for retarded delay equations, there
are at most a finite number of roots on any vertical line, we
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can pick with largest possible magnitude, so that nec-
essarily for all integers . To prove
that (H1) and (H2) hold for these and , we first prove that

is nonzero. By the implicit function theorem,
this will imply that is a simple root, as needed for (H1).

Since

At points where , , so at such
points

where we are denoting . Since
, in order to show that , it is

enough to prove that , for which it is enough,
in turn, to show that . From the formula

(with real-valued and ) we have that, at the
point , ; its imag-
inary part is nonzero, as wanted. We conclude that
(H1) indeed holds.

Notice that at points where

Using the Implicit Function Theorem, there is a smooth function
so that in a neighborhood of and

. Taking derivatives with respect to yields

Since for all ,
. This last expression has the same sign as

which, as shown earlier, is nonzero. Thus, , and
(H1) and (H2) both hold.

To conclude the proof, we note that the conclusion about
global behavior follows from the Poincaré–Bendixson for
delay-differential tridiagonal systems due to Mallet-Paret and
Sell [28].

Note that, since , if is near enough , then
the system (18) under negative feedback ad-
mits a pair of complex conjugate eigenvalues for its lin-
earization, with . Thus, its equilibrium is exponentially
unstable, and therefore every bounded solution not starting from
the center-stable manifold will in fact converge to either a ho-
moclinic orbit involving the origin or a periodic orbit.

B. Examples

As a first example, we take the system with the parameters
that we have considered, and . We have seen that the
spiderweb diagram suggests oscillatory behavior when delays

Fig. 7. Oscillations seen in simulations (v = 0:5, delay = 100 h, initial
conditions all at 0.2), using MATLAB’s dde23 package.

are present in the feedback loop. We first compute the equilib-
rium of the closed-loop system (with no delay), which is ap-
proximately

We now consider the system with variables , , , , and
in which the feedback term is replaced

by an input . Let be the Jacobian of this open-loop dynamics
evaluated at the positive equilibrium given above. Then

and hence the transfer function , where
and , is

where and

The dc gain of the system is (which is
positive, as it should be, since the open-loop system is mono-
tone and has a well-defined steady-state characteristic) and

when evaluated at the com-
puted equilibrium. Thus, , as required.
Indeed

and hence for all .
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Fig. 8. Oscillations seen in simulations (v = 0:6, delay = 1 h, initial condi-
tions all at 0.2), using MATLAB’s dde23 package.

We show in Fig. 7 one simulation, with , showing
a periodic limit cycle. The delay length needed for oscillations
when is biologically unrealistic, so we also show sim-
ulations for , a value for which no oscillations occur
without delays, but for which oscillations (with a period of about
27 h) occur when the delay length is about 1 h; see Fig. 8.

VII. COUNTEREXAMPLE

We now provide a (nonmonotone) system as well as a feed-
back law so that:

• the system has a well-defined and increasing characteristic
;

• the discrete iteration converges globally,
and solutions of the closed-loop system are bounded;

yet a stable limit-cycle oscillation exists in the closed-loop
system. This establishes, by means of a simple counterexample,
that monotonicity of the open-loop system is an essential as-
sumption in our theorem. Thus, robustness is only guaranteed
with respect to uncertainty that preserves monotonicity of the
system.

The idea underlying the construction is very simple. The
open-loop system is linear and has the following transfer
function:

Since the dc gain of this system is and the system
is stable, there is a well-defined and increasing characteristic

. However, a negative feedback gain of 1/2 destabilizes
the system, even though the discrete iteration is
globally convergent. (The gain of the system is, of course,
larger than 1, and therefore the standard small-gain theorem
does not apply.) In state-space terms, we use the system

Fig. 9. Limit cycle in a counterexample.

Note that, for each constant input , the solution of the
system converges to (0, ), and therefore the output con-
verges to , so indeed the characteristic is the identity.

We only need to modify the feedback law in order to
make solutions of the closed-loop globally bounded. For
the feedback law, we pick , where

is a saturation function. The only
equilibrium of the closed-loop system is at (0,0).

The discrete iteration is

With an arbitrary initial condition , we have that
, so that . Thus,

for all , and indeed , so global convergence of the
iteration holds.

However, global convergence to equilibrium fails for the
closed-loop system, and in fact there is a periodic solu-
tion. Indeed, note that trajectories of the closed-loop system
are bounded, because they can be viewed as solutions of a
stable linear system forced by a bounded input. Moreover,
since the equilibrium is a repelling point, it follows by the
Poincaré–Bendixson Theorem that a periodic orbit exists.
Fig. 9 is a simulation showing a limit cycle.
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