
D. Angeli et al. Festschrift in Honor of Uwe Helmke

Behavior of responses of monotone and sign-definite
systems

David Angeli
Electrical & Electronic Eng.

Imperial College London, U.K.
and Dip. Sistemi e Informatica
Università di Firenze, Italy

d.angeli@imperial.ac.uk

Eduardo D. Sontag
Dept. of Mathematics

Rutgers University, NJ, USA
sontag@math.rutgers.edu

Abstract. This paper study systems with sign-definite interactions between variables,
providing a sufficient condition to characterize the possible transitions between
intervals of increasing and decreasing behavior.

1 Introduction
We consider systems with inputs and outputs

ẋ = f (x,u), y = h(x) (1)

for which the entries of the Jacobian of f and h with respect of x and u have a
constant sign. For such systems, we provide a graph-theoretical characterization of
the possible transitions between intervals of increasing and decreasing behavior of
state variables (or output variables). A particular case is that of monotone systems,
for which it follows that only monotonic behavior can occur, provided that the input
is monotonic and the initial state is a steady state. These results, although very simple
to prove, are very useful when invalidating models in situations, such as in systems
molecular biology, where signs of interactions are known but precise models are
not. We also provide a discussion illustrating how our approach can help identify
interactions in models, using information from time series of observations.

1.1 Notations and definitions

We assume in (1) that states x(t) evolve on some subset X ⊆�n, and input and output
values u(t) and y(t) belong to subsets U ⊆�m and Y ⊆�p respectively. The maps
f ∶ X ×U →�n and h ∶ X →Y are taken to be continuously differentiable, in the sense
that they may be extended as C1 functions to open subsets, and technical conditions
on invariance of X are assumed, [1]. (Much less can be assumed for many results,
so long as local existence and uniqueness of solutions is guaranteed.) An input is a
signal u ∶ [0,∞)→U which is measurable and bounded on finite intervals (in some
of our results, we assume that u(t) is differentiable on t). We write ϕ(t,x0,u) for
the solution of the initial value problem ẋ(t) = f (x(t),u(t)) with x(0) = x0, or just
x(t) if x0 and u are clear from the context, and y(t) = h(x(t)). See [4] for more
on i/o systems. For simplicity of exposition, we make the blanket assumption that
solutions do not blow-up on finite time, so x(t) (and y(t)) are defined for all t ≥ 0.
Given three partial orders on X ,U,Y (we use the same symbol ⪯ for all three orders),
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a monotone I/O system (MIOS), with respect to these partial orders, is a system (1)
such that h is a monotone map (it preserves order) and, for all initial states x1,x2 and
all all inputs u1,u2, the following property holds: if x1 ⪯ x2 and u1 ⪯ u2 (meaning
that u1(t) ⪯ u2(t) for all t ≥ 0), then ϕ(t,x1,u) ⪯ ϕ(t,x2,u2) for all t ≥ 0. Here we
consider partial orders induced by closed proper cones K ⊆��, in the sense that x ⪯ y
iff y−x ∈K. The cones K are assumed to have a nonempty interior and are pointed,
i.e. K⋂−K = {0}.
The most interesting particular case is that in which K is an orthant cone in�n, i.e. a
set Sε of the form {x ∈�n ∣εixi ≥ 0}, where εi = ±1 for each i. Cooperative systems
are by definition systems that are monotone with respect to orthant cones. For such
cones, there is a useful test for monotonicity, which generalizes Kamke’s condition
from ordinary differential equations [3] to i/o systems. Let us denote by σ(x) the
usual sign function: σ(x) = 1,0,−1 if x > 0, = 0, or < 0 respectively. Suppose that

σ � ∂ fi

∂x j
(x,u)� is constant ∀ i ≠ j, ∀x ∈ X , ∀u ∈U (2)

and similarly

σ � ∂hi

∂x j
(x)� is constant ∀ i, j, ∀x ∈ X

(subscripts indicate components) We also assume that X is convex. We then associate
a directed graph G to the given MIOS, with n+m+ p nodes, and edges labeled “+”
or “−” (or ±1), whose labels are determined by the signs of the appropriate partial
derivatives (ignoring diagonal elements of ∂ f /∂x). An undirected loop in G is a
sequence of edges transversed in either direction, and the sign of an undirected loop
is defined by multiplication of signs along the loop. (See e.g. [2] for more details.)
Then, it is easy to show that a system is monotone with respect to some orthant cones
in�n,�m,�p if and only if there are no negative undirected loops in G.

1.2 Monotone responses

Suppose now that our system (1) is monotone with respect to an orthant order, and
with a scalar input (U ⊆� with the usual order). We will prove below that, starting
from a steady state, if an external input is a either non-increasing or non-decreasing
in time (for example, a step function), then the system has the property that the
response of every node is monotonic as well. That is to say, each node must respond
as a non-decreasing function, like the one shown in the left panel of Figure 1, or a
non-increasing function. A biphasic response like the one shown in the right panel
of Figure 1 can never occur, at any of the nodes. In fact, we will show a stronger
result, valid for any monotone system and any input that is non-decreasing in time
with respect to the order structure in U , u(t1) ⪯ u(t2) for all t1 ≤ t2: states then
non-decreasing in time with respect to the order structure in X , x(t1) ⪯ x(t2) for all
t1 ≤ t2. For the special case of orthant orders, this means that each coordinate of
the state will either satisfy xi(t1) ≤ xi(t2) for all t1 ≤ t2 or xi(t1) ≥ xi(t2) for all t1 ≤ t2
(i ∈ {1,2, . . . ,n}). Analogously, if inputs are non-increasing, that is, u(t2) ⪯ u(t1) for
all t1 ≤ t2, then, by reversing the orders in X andU , we obtain a new monotone system
in which now u(t) is non-decreasing, and therefore the same conclusions hold (with
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Figure 1: Monotonic and biphasic responses

reversed orders). Let ϕ(t,x0,v) denote the solution of ẋ = f (x,u) at time t > 0 with
initial condition x(0) = x0 and input signal v = v(t).
Theorem 1. Suppose that (1) is a monotone I/O system. Pick an input v that is non-
decreasing in time with respect to the partial order in U, and an initial state x0 that is
a steady state with respect to v0 = v(0), that is, f (x0,v0) = 0. Then, x(t) =ϕ(t,x0,v) is
non-decreasing with respect to the partial order in X. Also, the output y(t) = h(x(t))
is nondecreasing.

The proof is given in Section 3.

1.3 Feedback and feedforward architectures

Theorem 1 can be specialized to the study of responses from a single input of
interest to a single output. The idea is to let only one input monotonically vary,
while other input signals are kept constant at their equilibrium value. This allows
to establish monotonicity of I/O responses beyond the case of cooperative systems
which is studied in Theorem 1. In order to state the result we need the following
graph-theoretic definitions.

Given a directed graph (V,E ⊂ V ×V), we define the accessible subgraph from a node
v ∈ V to be

Acc(v) = (Vv,Ev)
defined as follows:

Vv = {w ∈ V ∶ ∃ directed path from v to w}
while Ev = E ∩Vv×Vv. We define the co-accessible subgraph to a node z ∈ V to be:

coAcc(z) = (Vz,Ez)
where: Vz = {w ∈ V ∶ ∃ directed path from w to z}
and Ez = E ∩Vz×Vz.
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Intuitively, given an input node vi and an output node vo in V , in order to investigate
monotonicity of the input-output response from the associated input signal to the
corresponding output signal, it is enough to consider the graph:

Gi/o ∶= (Vi/o,Ei/o) =Acc(vi)∩coAcc(vo).
The crucial features of this graph that may prevent monotonicity of the response is
existence of two or more directed paths from vi to vo with inconsistent sign. Such
paths can only exist if the graph Gi/o exhibits incoherent feedforward loops (IFFL’s)
and/or negative directed feedback loops. This condition may be verified for two
nodes vi and vo even if the overall system is not monotone. For example, Fig. 2
shows a system that (a) is not monotone yet (b) has no IFFL’s nor negative feedback
loops. However, such a counterexample does not contradict our assertion, since we

vi

vo

Figure 2: The graph of a non-monotone system fulfilling I/O monotonicity conditions.
The dashed edge is negative and all other edges are positive

are interested in knowing how one input (affecting only one node) affects any given
particular output node. Indeed, if all we ask is that input/output question, then the
following is true:

Theorem 2. Suppose that (1) is a monotone I/O system, with scalar inputs and
outputs (U ⊆� and Y ⊆� with the usual orders), and that the parities of any two
directed paths from the input node to the output node are the same. Then, if the system
is initially at some equilibrium, the response to a monotonic input is monotonic.

Observe that “paths” include feedforward loops as well as closed loops in which a
cycle occurs. The simple proof is omitted here; it relies upon the pruning all nodes
that do not lie in any such path, reducing to the monotone case.

1.4 More general systems with sign-definite Jacobians

In this section, we relax the monotonicity assumptions. We assume that (2) holds.
Our goal is to understand, given a certain input with a particular monotone trend, that
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is such that sign(u̇(t)) is constant in time, what are the possible shapes that solutions
x(t,x0,u) can take, and in particular, what sign(ẋ(t)) may look like. Let

V ∶= {−1,0,1}n+m ,

which we regard as the set of all possible sign-patterns of vectors [ẋ′, u̇′]′ ∈�n+m,
and define a matrix J ∈ {−1,0,1}n×(n+m) as follows (σ is applied to each entry):

σ

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 ∂ f1
∂x2

∂ f1
∂x3

. . . ∂ f1
∂xn

∂ f1
∂u1

. . . ∂ f1
∂um

∂ f2
∂x1

0 ∂ f2
∂x3

. . . ∂ f2
∂xn

∂ f2
∂u2

. . . ∂ f2
∂um

...
. . .

...
...

...

...
. . .

...
...

...

∂ fn
∂x1

∂ fn
∂x2

. . . ∂ fn
∂xn−1 0 ∂ fn

∂u1
. . . ∂ fn

∂um

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Let

V2
0 ∶= �(v1,v2) ∈ V2 s.t.

n�
i=1 ∣v1i−v2i∣ = 1�

(in other words, pairs of elements v1 and v2 which differ in exactly one position,
located among their first n coordinates, and this difference is between 0 and 1, or
between −1 and 0). For such pairs, we denote by iv1,v2 ∈ {1,2, . . . ,n} the uniquely
defined integer for which v1i ≠ v2i. Regarding V as a set of vertices in a directed
graph, we denote by E ⊂ V2

0 the set of edges for which

∃k ∈ {1, . . . ,n+m} s.t. Jiv1 ,v2 kv1k(v2iv1 ,v2
−v1iv1 ,v2

) = 1. (3)

Intuitively, in equation (3) we allow a directed edge pointing from node v1 to node v2
only if the nodes differ by a single entry, the i-th one, and if among the input/states
variables that affect ẋi (with the exception of xi itself), at least one has an influence
on ẋi which is equal in sign to that of the jump v2i−v1i ).

In Section 3, we prove the following result:

Theorem 3. Let I1 < I2 be disjoint non-empty intervals of the real line such that
I = I1∪ I2 is also an interval. Let x(t) ∶ I → X be a solution of (1) corresponding to
the C1 input u of constant sign pattern σ(u̇(t)). Assume that there exists v1 and v2 inV such that σ([ẋ(t)′, u̇(t)′]) = v1 for all t ∈ I1 and σ([ẋ(t)′, u̇(t)′]) = v2 for all t ∈ I2
and ∣v1−v2∣ = 1. Then (v1,v2) ∈ E .

Note that we are allowing either interval to consist of only one point. Theorem 3
can be used to infer the potential shapes of solutions of nonlinear systems with sign-
definite Jacobians, subject to piecewise monotone inputs. It generalizes Theorem 1, in
the following sense. Suppose that our system is monotone with respect to the standard
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order, i.e. with respect to the cone K = Sε , where ε = (1,1, . . . ,1). Then (Kamke
conditions) the sign Jacobian matrix J has all its elements non-negative. In that case,
Theorem 3 clearly implies that the two subsets of nodes {0,1}n+m and {0,−1}n+m

are forward-invariant in the graph with edges E . This implies, in particular: (1) if
the input is non-decreasing and if we start from a steady state (first n coordinates
of edges are zero), then all reachable nodes have non-negative coordinates (that is
to say, the solutions of the system are non-decreasing), and (2) if the input is non-
increasing, then nodes are non-positive (solutions of the system are non-increasing),
thus recovering the conclusions of Theorem 1.

1.5 A toy example

To illustrate the applicability of Theorem 3 we consider the bidimensional nonlinear
system:

ẋ1 = ux1−k1x1x2
ẋ2 = −k2x2+k3x1x2

(4)

with state space X = (0,+∞)2 and input taking values in (0,+∞) and k1,k2,k3 being
arbitrary positive coefficients. Notice that this can be interpreted as a model of
predator-prey interactions with the reproduction rate of preys being an exogenous
input u. Obviously the system is not cooperative due to the presence of a negative
feedback loop. The J matrix in this case is given by:

J = � 0 −1 1
1 0 0 � .

Next we build the graph (V,E) with nodes:
V = {−1,0,1}3.

Let us focus on increasing inputs. This means we restrict our attention to nodes of the
type {−1,0,1}2×{1} and for the sake of simplicity we may drop the u̇ label in Fig.
3. This represents all the edges allowed by Theorem 3. Notice that commutations in
the sign of ẋ2(t) (the predators) are only allowed in order to match the sign of ẋ1(t).
This restricts the possible sign-patterns of ẋ(t) which are compatible with a model
of this kind even without assuming any knowledge of the specific values of the kis
(provided their sign is known a priori).

The previous example also suggests the possibility of introducing a reduced graph,
which we define by considering a reduced set of nodes and a new set of edges. In
particular, we may let: Gred = (Vred ,Ered), where Vred = {1,−1}n+m, Ered = {(v1,v2) ∈V2

red ∶ ∃ path of length 2 in G from v1 to v2}. This graph represents, for a given and
fixed sign pattern of the input variable, the set of all possible transitions between sets{x ∶ f (x,u) ∈ O}, where O denotes an arbitrary closed orthant and edges are only
allowed between neighboring orthants (that is orthants sharing a face of maximal di-
mension). In particular, the orthant {x ∶ f (x,u) ∈O} whereO = diag(v)[0,+∞)n, and
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(1, 1) (1, 0) (1,−1)

(0, 1) (0, 0) (0,−1)

(−1, 1) (−1, 0) (−1,−1)

Figure 3: Graph of allowed transitions for increasing inputs

v is an arbitrary element of {1,−1}n is associated to the node v. It is straightforward
to see that

Ered = {(v1,v2) ∈ V2
red ∶ ∃k ∈ {1, . . . ,n+m} s.t.

Jiv1 ,v2 kv1k(v2iv1 ,v2
−v1iv1 ,v2

) = 2},
where with a slight abuse of notation iv1,v2 denotes the unique index i such that∣v1i−v2i∣ = 2.
2 Identification of signed interactions

In the following we exploit the results of previous Sections, and in particular The-
orem 3, in order to formulate and discuss an algorithm for identification of signed
interactions based on available measured data. This is a systematic tool for hypothesis
generation. The method assumes sign definite interactions between variables and
allows, under such qualitative constraints, to find the family of minimal signed graphs
which are compatible with given measured data. Our discussion in this section will
be done very informally. A future paper will provide more precise formulations.

For the sake of simplicity all variables are assumed to be measured continuously so
that no issue arises of what has been the intersample behaviour of individual variables
and whether or not the adopted sampling time is sufficiently small to unambiguously
detect changes of sign in the derivatives of the considered set of variables. Also we
assume that at most one variable can switch at any given time (this assumption is
reasonable only when there are no conservation laws involving exactly two variables).

The algorithm is particularly flexible as it allows to generate several plausible scenar-
ios compatible with an initial hypothesisH0 which gathers all the apriori information
available, namely all the interactions between variables which have been validated
and invalidated by other means. In its basic formulation it assumes that all variables
are known and available for measurement.
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The following definitions are useful in order to precisely formulate the algorithm.
Notice that we will identify a graphical object which is different from the graphs
previously described.

Definition 4. A signed graph G is a triple {V,E+,E−}, in which V is a finite set
of nodes (corresponding to the variables of the system), E+ ⊂ V ×V�{(v,v) ∶ v ∈ V}
is the set of positive edges, each corresponding to directed excitatory influence of
one variable to another, and E− ⊂ V ×V�{(v,v) ∶ v ∈ V} is the set of negative edges,
corresponding to directed inhibitory influences.

Notice that variables may be states and inputs. In this respect it is convenient to
partition V as Vs ∪Vi, with Vs ∩Vi = ∅ denoting the set of nodes corresponding to
state variables and input variables respectively. The assumption of signed interactions
means that E+∩E− = ∅. Notice also that we do not consider self-loops in our graphs
(and, consequently, no assumption of signed self-interaction is made). We say that
a graph is compatible with the observed data if all sign-switches of derivatives in
the data are allowed by the sign-pattern of the adjacency matrix of G according to
Theorem 3. Moreover, we say that a signed graph G̃ = {V, Ẽ+, Ẽ−} is an edge-subgraph
of G if Ẽ+ ⊂ E+ and Ẽ− ⊂ E−. If at least one inclusion is strict we say that it is a proper
edge-subgraph. We also say that G is an edge-supergraph of G̃. An apriori hypothesisH is a signed graph with 2 types of signed edges {V,Eh+,Eh−,Fh+,Fh−} where Eh+ andEh− are respectively positive and negative edges which have already been validated
(and are therefore known to exist in the graph of the system being identified), whileFh+ and Fh− are forbidden positive and negative edges respectively.
Notice that Eh+∩Eh− = ∅, while the same is not necessarily true for Fh+ and Fh−. For
instance, if a certain variable is known to be an input of the system, then all its
incoming edges, both positive and negative should be listed as forbidden.

Definition 5. A graph G is said to be a minimal graph compatible with data and with
hypothesisH if no proper edge-subgraph of G exists that is both compatible with the
data and an edge-supergraph ofH with Fh+∩E+ = ∅ and Fh−∩E− = ∅.
The first algorithm we discuss below allows to generate all minimal signed graphs
compatible with the measured data and the given apriori hypothesisH, (which could
be empty, namely H = {V,∅,∅,∅,∅} ). As more than one such graph may exist,
depending on the data available, the algorithm creates a number of plausible scenarios
by storing them in a tree, starting from the root nodeH. The parent of each node is a
proper edge-subgraph of all of its children. Measured data is scanned from initial
to final time. Each time a sign switch is detected all leaves of the current tree are
checked to see whether the switch is compatible with the graphs they represent. If so,
nothing is done; otherwise, a single edge is added in order to restore compatibility
of data with the graph. If more than one edge may be capable of restoring such
compatibility multiple children are created for the considered parent node. If no such
edge exists, (namely because the constraint E+∩E− = ∅ does not allow it), then that
node is labeled as Invalidated.
In the following we denote by L(T ) the set of leaves of a tree T . Notice that, for the
sake of simplicity, we assume that at each time t at most one variable may switch the
sign of its derivative.
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1. LetH = (V,Eh+,Eh−) be the root of the tree T ;

2. Let t1,t2, . . .tN denote the time instants at which sign switches in state variable
derivatives are detected;

3. For i = 1 . . .N
4. ForH ∈L(T )
5. IfH is labeled ‘Invalidated’ or ‘Redundant’ do nothing, else:

6. If variable v ∈ Vs switches its derivative from positive to negative [from negative
to positive] at time ti then:

• Check if there exists an edge in E+ from a node w with negative [positive]
derivative (at ti) to v or if there exists an edge in E− from a node w with
positive [negative] derivative (at ti) to v;

• If the check succeeds then do nothing. If the check fails then for all nodes
u with positive derivative, such that (u,v) does not belong to E+∪Fh−, add
the edge (u,v) to E− and attach as a son toH the newly created graph;

• Similarly, if the check fails, for all nodes u with negative derivative, such
that (u,v) does not belong to E− ∪Fh+, add the edge (u,v) to E+ and
attach as a son toH the newly created graph;

• If no such nodes as in the previous two items exist, then label H as
‘Invalidated’;

7. End ForH ;

8. Label all leaves of T that are proper edge-subgraph of other leaves as ‘Redun-
dant’;

9. label as ‘Redundant’ all leaves except one of those which are equal to one
another;

10. End For i;

The algorithm terminates with the set of non invalidated and non redundant leaves
representing all minimal sign-definite graphs which are compatible with the initial
hypothesis.
To illustrate the algorithms we apply it to synthetic data generated by numerically
integrating the following differential equation:

ẋ1 = −x1+x1x2
ẋ2 = x2x3−x1x2
ẋ3 = x3−1.2x2x3.

(5)

This can be seen as a toy model of an ecosystem comprising 3 interacting species:
Predators, Vegetarians and Vegetables, (x1,x2 and x3 respectively). Clearly the
algorithm does not assume knowledge of the ‘nature’ of the variable being measured
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Figure 4: Simulated species data. Blue plot (largest value at t = 0) denotes predators,
red vegetables, and green (smallest value at t = 0) vegetarians.
and in fact the goal of the identification is precisely to find out the sign of interactions
between such species, that is the role of each species in the ecosystem. The measured
data is shown in Fig. 4, using 3 different colors for the 3 variables.
Notice that 7 sign switches of derivatives are detected in the finite time window
considered and these are highlighted by vertical lines in the picture so as to emphasize
the order in which variables switch their monotonicity. We start with the empty
hypothesis comprising 3 nodes (labeled in the graph given in Figure 4 by colors: blue
(bottom left node) = predators, green (right node) = vegetarians, and red (top node) =
vegetables), and no validated nor invalidated edges. The execution of the algorithm is
shown in Fig. 5 Notice that the algorithm generates two minimal graphs compatible
with the measured data. Two edges appear in both graphs and are therefore validated
and should be present in any set of differential equations generating such monotonicity
patterns. The remaining edge can be picked from any of the two scenarios. In fact
the model used to generate the data is a supergraph of both scenarios and is given by
their union. This, of course, need not always be the case. Extra data and experiments
would be needed in order to refine the model. In fact, the outcome of the algorithm
may be used in order to design further experiments targeting specific edges of the
graph.

3 Proofs
Proof of Theorem 1

Since v(t) is non-decreasing, we have that v(t) ⪰ v(0) (coordinate-wise), so that, by
comparison with the input that is identically equal to v(0), we know that

ϕ(h,x0,v) ⪰ ϕ(h,x0,v0)
where by abuse of notation v0 is the function that has the constant value v0. We
used the comparison theorem with respect to inputs, with the same initial state.
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Figure 5: Generation of minimal graphs compatible with available data. Dashed
arrows indicate negative edges.

The assumption that the system starts at a steady state gives that ϕ(h,x0,v0) = x0.
Therefore:

x(h) ⪰ x(0) for all h ≥ 0 . (6)

Next, we consider any two times t ≤ t + h. We wish to show that x(t) ⪯ x(t + h).
Using (6) and the comparison theorem with respect to initial states, with the same
input, we have that:

x(t +h) = ϕ(t,x(h),vh) ⪰ ϕ(t,x(0),vh) ,
where vh is the “tail” of v, defined by: vh(s) = v(s+h). On the other hand, since
the function v is non-decreasing, it holds that vh ⪰ v, in the sense that the inputs
are ordered: vh(t) ⪰ v(t) for all t ≥ 0. Therefore, using once again the comparison
theorem with respect to inputs and with the same initial state, we have that

ϕ(t,x(0),vh) ≥ ϕ(t,x(0),v) = x(t)
and thus we proved that x(t + h) ≥ x(t). So x is a non-decreasing function. The
conclusion for outputs y(t) = h(x(t)) follows by monotonicity of h.
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Proof of Theorem 3

Consider the function
z(t) ∶= ẋi(t) = f (x(t),u(t)) .

Differentiating with respect to time we have by the chain rule:

ż(t) = ∂ f
∂x

(x(t),u(t))ẋ(t)+ ∂ f
∂u

(x(t),u(t))u̇(t)
Looking at the equation for the i-th component of z yields:

żi(t) =�
j

∂ fi

∂x j
(x(t),u(t))z j(t)+ m�

j=1
∂ fi

∂u j
(x(t),u(t))u̇ j(t)

= a(t)zi(t)+b(t)
provided we define:

a(t) = ∂ fi

∂xi
(x(t),u(t))

and:

b(t) =�
j≠i

∂ fi

∂x j
(x(t),u(t))z j(t)+ m�

j=1
∂ fi

∂u j
(x(t),u(t))u̇ j(t).

Let v1 and v2 be as in the statement of the theorem, and let i = iv1,v2 . There are four
cases to consider:

1. v1i = 0 and v2i = 1
2. v1i = 0 and v2i = −1
3. v1i = −1 and v2i = 0
4. v1i = 1 and v2i = 0.

Case 1. We have zi(t) = 0 for all t ∈ I1 and zi(t) > 0 for all t ∈ I2. It follows that I2
cannot be a one-point interval. Let t2 ∶= infI2, and note that zi(t2) = 0. From the
variation of parameters formula for the solution of żi(t) = a(t)zi(t)+bi(t), it follows
that if zi(t2) = 0 and zi(t) > 0 for an open interval [0,t2 + ε), then there must exist
some τ ∈ I2 such that b(τ) > 0. Thus, at least one of the terms in the definition of
b(τ) must be positive, which means that

Jiv1 ,v2 kv2k = 1 .
Note that this k is by definition not equal to i, so v2k = v1k (because v1 and v2 differ
only on their ith entry). Thus Jiv1 ,v2 kv1k = 1. Moreover, in this case v2i−v1i = 1−0 = 1,
so it follows that Jiv1 ,v2 kv1k(v2iv1 ,v2

−v1iv1 ,v2
) = 1, as claimed.

Case 2. An analogous argument gives that there is some k such that Jiv1 ,v2 kv1k =
Jiv1 ,v2 kv2k =−1, but now v2i−v1i =−1−0 =−1, so again Jiv1 ,v2 kv1k(v2iv1 ,v2

−v1iv1 ,v2
) = 1.

Case 3. Now we argue with the final-time problem żi(t) = a(t)zi(t)+bi(t), zi(t1) = 0,
where t1 = supI1. We conclude that there is some k such that Jiv1 ,v2 kv1k = 1, and since
v2i−v1i = 0−(−1) = 1, we have Jiv1 ,v2 kv1k(v2iv1 ,v2

−v1iv1 ,v2
) = 1.

Case 4. Analogously, Jiv1 ,v2 kv1k = −1, v2i − v1i = 0− 1 = −1, so Jiv1 ,v2 kv1k(v2iv1 ,v2
−

v1iv1 ,v2
) = 1.
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