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Abstract— We show that strongly monotone systems of ordi-
nary differential equations which have a certain translation-
invariance property are so that all solutions converge to a
unique equilibrium. The result may be seen as a dual of a
well-known theorem of Mierczynski for systems that satisfy a
conservation law. An application to a reaction of interest in
biochemistry is provided as an illustration.
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I. I NTRODUCTION AND MOTIVATIONS

We recall that a dynamical system is said to bemonotone
whenever its state spaceX is endowed with a partial order
º and the forward flow preserves the order. In other words,
for each ordered pair of initial conditionsξ1 º ξ2, solutions
remain ordered:ϕt(ξ1) º ϕt(ξ2) for all t ≥ 0. See [15] for
a discussion and many basic theorems, as well as the recent
excellent exposition [10]. A special and most interesting case
is when the partial order is induced by a positivity cone, i.e. a
closed subsetK of a Banach spaceB containingX such that
K+K ⊂ K, K ⊂ αK for all α ≥ 0, andK∪−K = {0}. In
this case, one defines a partial order by the rule thatξ1 º ξ2

wheneverξ1 − ξ2 ∈ K. Strict versions of the order are also
possible, and particularly useful wheneverK has non-empty
interior: one definesξ1 Â ξ2 if ξ1 º ξ2 andξ1 6= ξ2, and the
following even stronger notion:ξ1 À ξ2 if ξ1−ξ2 ∈ int(K).
A stronglymonotone system is one for which the following
holds:

ξ1 Â ξ2 ⇒ ϕt(ξ1) À ϕt(ξ2) ∀ t > 0, ∀ ξ1, ξ2 ∈ X.
(1)

A key foundational result is Hirsch’s Generic Convergence
Theorem ([7], [8], [9], [10], [15]), which guarantees that,
if solutions of such systems are bounded, then, generically,
they converge to the set of equilibria. Roughly speaking,
more complex asymptotic behaviors are possible, but are (if
they exist at all) confined to a zero-measure set of initial
conditions.

Remarkably, under suitable additional assumptions,
generic convergence to equilibria can be made global, as
is the case if, for instance, the equilibrium is unique [15],
sometimes not requiring strong monotonicity [11], [4], if
the system is cooperative and tridiagonal [14] or if, there

exists a positive first-integral for the system, as shown in
Mierczinski’s paper [13]. Our main result may be viewed as
a dual of the latter result, and applies to strongly monotone
systems which have the property of translation invariance
with respect to a positive vector. Equilibria of such systems
are never unique. The result is roughly as follows. For
systems evolving on Euclidean spacesRn, we will assume
that for somev ∈ int(K), and for allλ ∈ R, the following
is true:

ϕt(ξ + λv) = ϕt(ξ) + λv (2)

for all t ∈ R and allξ ∈ X. Under strong monotonicity, we
show that convergence to equilibria is global for a suitable
projection of the system. We also show that for competitive
systems, i.e. systems that are strongly monotone under time-
reversal, the same result holds. Statements and proofs are in
Section II.

We were originally motivated by proving a global con-
vergence result for certain chemical reaction systems which
are not necessarily monotone. There has been much interest
in recent years in establishing such global results, see for
instance [5], [17], [12], [6], [16], [1], [3]. In Section IV, we
show how to associate, to any chemical reaction system, a
new system of differential equations, evolving on a different
space (of “reaction coordinates”) for which our techniques
may sometimes be applied, and we illustrate with a system
of interest in biochemistry.

II. M AIN RESULT

We consider nonlinear dynamical systems of the following
form:

ẋ = f(x) (3)

with statesx ∈ X ⊂ Rn, for some closed setX which is
the closure of its interior, and some locally Lipschitz vector
field f : X → Rn. For each initial conditionξ ∈ X, we
denote byϕt(ξ) the corresponding solution, and we assume
that ϕt(ξ) is uniquely maximally defined (as an element of
X) for t ∈ Iξ, whereIξ is an interval inR which contains
[0, +∞) in its interior. (In other words, the system is assumed
to be forward –but not necessarily backward– complete.)

Furthermore, a closed coneK ⊂ Rn is given, with non-
empty interior, and the corresponding non-strict and strict



partial orders are considered:º,Â,À. In particular, we
assume that (3) isstrongly monotoneas in (1) and that
solutions enjoy the translation invariance property (2) for
somev ∈ int(K), which we take, without loss of generality,
to have norm one.

Because of property (2) it is natural to assume, and we
will do so, that the state space is invariant with respect to
translation byv, namely:

x ∈ X ⇒ x + λv ∈ X ∀λ ∈ R . (4)

In order to state our main result, we require an additional
definition. Given any unit vectorv, we introduce the linear
mapping:

πv : Rn → Rn : x 7→ x− (v′x)v

(prime indicates transpose), which amounts to subtracting
the component along the vectorv, that is, an orthogonal
projection ontov⊥. Since (v′x)v = (vv′)x, we can also
write πvx = (I − vv′)x. Note thatπvv = 0.
Definition Let ξ ∈ X be given and consider the correspond-
ing solutionϕt(ξ). We say thatϕt(ξ) is bounded modulov
if πv(ϕt(ξ)) is bounded as a function oft, for t ≥ 0.

Notice that we are not asking for precompactness ofϕt(ξ)
(which, in examples, will typically fail), but only of its
projection.
Remark Equivalently, the solutionϕt(ξ) is bounded modulo
v if and only if there exists some scalar functionβ(ξ, t) :
X × [0, +∞) → R such thatϕt(ξ) − β(ξ, t)v is bounded
as a function of timet. (Recall thatX is invariant under
translations byv, so this difference is again an element ofX.)
One direction is clear, usingβ(ξ, t) = v′ϕt(ξ). Conversely,
suppose that there is any suchβ. Then: v′(β(ξ, t)v) =
β(ξ, t)v′v = β(ξ, t)|v|2 = β(ξ, t), so πv(β(ξ, t)v) =
β(ξ, t) − (v′(β(ξ, t)v)v = 0, Since X is closed, the as-
sumption is that the closure of{ϕt(ξ) − β(ξ, t)v, t ≥ 0}
is compact. Thus, sinceπv is continuous, the same holds for
πv(ϕt(ξ)) = πv(ϕt(ξ)− β(ξ, t)v).

We are now ready to state our main result.
Theorem 1:Consider a forward complete nonlinear sys-

tem, strongly monotone onX. Let (3) enjoy positive trans-
lation invariance as in (2) with respect to some vector
v ∈ int(K), and so that the state spaceX is closed and
invariant with respect to translation byv as in (4). Then,
every solution which is bounded modulov is such that
πv(ϕt(ξ)) converges to an equilibrium. Moreover, there is
a unique such equilibrium.

III. H INTS OF THEPROOF

Before addressing the technical steps of the proof, it is
useful to provide an infinitesimal characterization of transla-
tion invariance. This is a routine exercise, but we include a
proof for ease of reference.

Lemma 3.1:A system (3) enjoys the translation invariance
property (2) with respect tov ∈ Rn if and only if:

x1, x2 ∈ X, x1 − x2 ∈ span{v} ⇒ f(x1) = f(x2) . (5)

Notice that, for differentiablef , yet another characteriza-
tion is thatv ∈ kerf∗(x) (Jacobian) at all statesx.

Proof: If the system is translation-invariant byv, and
x2 = x1+λv, thenϕt(x2)−ϕt(x1) = λv. Taking(d/dt)|t=0,
we obtainf(x1) = f(x2). We now show the sufficiency of
the condition. More generally, suppose thatL is a linear
subspace ofRn such thatx1 − x2 ∈ L ⇒ f(x1) = f(x2);
we will prove thatϕt(x2)−ϕt(x1) is constant ifx1−x2 ∈ L.

We first change coordinates with a linear mapT in such a
manner thatL gets transformed into the span of the first` =
dimL canonical vectors̃L = {e1, . . . , e`}. The transformed
equations arė̃x = f̃(x̃), wheref̃(x̃) = Tf(T−1x̃) and x̃ =
Tx. We partition the state as̃x = (y′, z′)′, with y of size `,
and write the transformed equations in block form:

ẏ = f̃1(y, z)
ż = f̃2(y, z) .

Suppose that two vectors̃x1 and x̃2 are such thatz1 = z2.
This means that̃x1 − x̃2 ∈ L̃. Then, lettingxi := T−1x̃i,
we have thatx1 − x2 ∈ L, and thereforef(x1) = f(x2) by
assumption. Thus alsõf(x̃1) = Tf(x1) = Tf(x2) = f̃(x̃2).
In other words,f̃ is independent ofy, and the transformed
equations in block form read:

ẏ = f̃1(z)
ż = f̃2(z) .

Now pick any x1, x2 ∈ X such thatx1 − x2 ∈ L. Then,
x̃1 − x̃2 ∈ L̃, i.e., z1 = z2. Let yi(t) and zi(t) denote the
components of the solution of the transformed differential
equation with respective initial conditions̃xi, i = 1, 2. Then,
z1(t) = z2(t) for all t ≥ 0 (same initial conditions for the
second block of variables), which implies thatẏ1(t) = ẏ2(t)
for all t. Therefore also˙̃x1(t) = ˙̃x2(t) for all t, and back
in the original coordinates we have that(d/dt)(ϕt(x2) −
ϕt(x1)) = 0, as desired.

In order to carry out the proof we first need the following
Lemma.

Lemma 3.2:Let v ∈ int(K) be given, such that|v| = 1.
Then, the function:

V (x) := inf{α ∈ R : x ¹ αv}
is well defined and Lipschitz forx ∈ Rn.

Proof: We show first that for allx there existsα such
that αv º x. We may equivalently check thatv º x/α for
someα 6= 0. Sincex/α → 0 asα → +∞, we may conclude
that this is the case, since, as is well known,(−v, v) :=
{x : v À x À −v} is an open neighborhood of the origin,
for all v À 0 (in other words the topology induced by a
positivity cone with non-empty interior is equivalent to the
standard topology inRn). On the other hand,αv ≺ x for
all sufficiently smallα (as α → −∞, (−x)/(−α) → 0, so
(−x)/(−α) ≺ v, that is,−x ≺ −αv). Therefore,V (x) is
well defined. Moreover, sinceK is closed and the feasible set
of α’s is bounded from below, the infimum is achieved and is
actually a minimum, which implies thatV (x) is a continuous



function. We can prove, moreover, thatV is Lipschitz, as
follows.

We first pick anε > 0 such thatεz ≺ v for all unit vectors
z. (Such anε exists, becauseεz → 0 uniformly on the unit
sphere, and(−v, v) is a neighborhood of zero.) Therefore,
for each two vectorsx 6= y, applying this observation to
z = 1

|x−y| (x − y), we have thatx − y ¹ k|x − y|v, where
k := 1/ε, and the same holds ifx = y. Now, given any two
x, y, we write

x = x−y+y ¹ k|x−y|v+V (y)v = (k|x−y|+V (y))v

which means thatV (x) ≤ k|x − y| + V (y), and therefore
V (x)− V (y) ≤ k|x− y|. Sincex andy were arbitrary, this
proves thatV is Lipschitz with constantk.

The next Lemma is crucial for proving our main result.
Lemma 3.3:Let ξ1 and ξ2 in X be arbitrary, andV be

defined according to the previous Lemma 3.2. Then, for all
t > 0 it holds that:

V (ϕt(ξ1)− ϕt(ξ2)) ≤ V (ξ1 − ξ2) , (6)

and the inequality is strict wheneverξ1 − ξ2 /∈ span{v}.
Proof: Let ξ1 andξ2 be arbitrary. By definition ofV , we

have:ξ1 ¹ ξ2 + V (ξ1 − ξ2)v. By translation invariance and
monotonicity then:ϕt(ξ1) ¹ ϕt(ξ2+V (ξ1, ξ2)v) = ϕt(ξ2)+
V (ξ1, ξ2)v. It follows thatV (ϕt(ξ1)−ϕt(ξ2)) ≤ V (ξ1−ξ2),
as claimed. In particular, wheneverξ1 − ξ2 /∈ span{v} we
haveξ1 ≺ ξ2 + V (ξ1− ξ2)v and therefore, exploiting strong
monotonicity:ϕt(ξ1) ¿ ϕt(ξ2 + V (ξ1 − ξ2)v) = ϕt(ξ2) +
V (ξ1−ξ2)v. In particular, thenV (ϕt(ξ1)−ϕt(ξ2)) < V (ξ1−
ξ2).

Notice that, by the semigroup property for flows,
Lemma 3.3 implies that the functiont 7→ V (ϕt(ξ1)−ϕt(ξ2))
is nondecreasing.

We also prove a result for systems that are strongly
monotone in reversed time, meaning that for every pairξ1, ξ2

and every timet < 0 such thatϕt(ξ1) andϕt(ξ2) are well-
defined the following implication holds:

ξ1 Â ξ2 ⇒ ϕt(ξ1) À ϕt(ξ2).

Corollary 3.4: Let ξ1 and ξ2 in X be arbitrary, andV
be defined according to the previous Lemma 3.2. Assume
that system (3) be forward-complete, strongly monotone in
reversed time overX, and translation invariant with respect
to somev ∈ int(K); then, for allt > 0 it holds that:

V (ϕt(ξ1)− ϕt(ξ2)) ≥ V (ξ1 − ξ2) , (7)

and the inequality is strict wheneverξ1 − ξ2 /∈ span{v}. ¤
We are now ready to prove the main result.
Proof of Main Result
Let ξ ∈ X be such thatϕt(ξ) is bounded modulov.

That is, x̃(t) := πv(ϕt(ξ)) = (I − vv′)ϕt(ξ) is a bounded
function oft. Notice thatx̃ satisfies the following differential
equation:

˙̃x = (I − vv′)f(ϕt(ξ)) = (I − vv′)f(x̃) (8)

where the last equality follows by translation invariance. This
is a new dynamical system, with state spaceX̃ := {x̃ ∈

v⊥ : ∃λ ∈ R : x̃ + λv ∈ X}, viz. the projection alongv of
X onto the vector-spacev⊥, and we will denote bỹϕt the
corresponding flow. Notice thatπ, ϕt and ϕ̃t are related in
the following sense:

π ◦ ϕt = ϕ̃t ◦ π .

Moreover, by translation invariance ofX, we haveX̃ =
X ∩ v⊥ andX = X̃ ⊕ span{v}.

By the above considerations, it makes sense to speak
about theω-limit set ω(x̃) of solutions of (8), which by
the boundedness assumption, will be a compact, non-empty
invariant set We would like to show thatω(x̃) is a single
equilibrium. We remark that, by application of Lemma 3.3,
it follows that (8) has at most one equilibrium. Arguing
by contradiction, in fact, existence of two distinct equilibria
x̃1 and x̃2 for (8) gives thatf(x̃1), f(x̃2) both belong to
span{v}, and thereforeϕt(x̃i) = x̃i + tf(x̃i) (for i = 1, 2)
as it follows by virtue of translation invariance (just take
derivatives with respect of time anḋϕt(x̃i) = f(x̃i) =
f(ϕt(x̃i)) ) . Hence, for allt > 0:

V (x̃1 − x̃2) > V (ϕt(x̃1)− ϕt(x̃2))
= V

(
x̃1 − x̃2 + [f(x̃1)− f(x̃2)]t

)
(9)

By a symmetric argument, however,

V (x̃2 − x̃1) > V
(
x̃2 − x̃1 + [f(x̃2)− f(x̃1)]t

)
(10)

which should hold again for allt > 0. It is straightforward,
from definition of V (x), that the function be increasing
with respect to (positive) translations alongv. Hence, the
inequality in (9) impliesf(x̃1) − f(x̃2) ≺ 0, while, the
second inequality givesf(x̃1)−f(x̃2) Â 0. But this is clearly
a contradiction.

Let τ > 0 be arbitrary; consider the solutions of (3)
corresponding toξ and ϕτ (ξ). We claim thatϕt(ϕτ (ξ)) −
ϕt(ξ) is bounded. In fact, denoting bỹϕt the corresponding
projections ontoX̃ and exploiting Lemma 3.1, we obtain:

ϕt(ϕτ (ξ))− ϕt(ξ) = ϕτ (ϕt(ξ))− ϕt(ξ)
=

∫ t+τ

t
f(ϕs(ξ)) ds =

∫ t+τ

t
f(ϕ̃s(π(ξ))) ds

(11)

and so|ϕt(ϕτ (ξ)) − ϕt(ξ)| ≤ τM . whereM is an upper
bound on the magnitude of the vector fieldf on a compact
set that contains the trajectoryπv(ϕt(ξ)).

Hence,V (ϕt(ϕτ (ξ)) − ϕt(ξ)) is lower-bounded, and, by
virtue of Lemma 3.3, is decreasing. Therefore, it admits a
limit V̄ > −∞ as t → +∞. We claim that

ϕt(ϕτ (ξ))− ϕt(ξ) → span{v} . (12)

Suppose that this claim is false. Then, since, as we just
proved, ϕt(ϕτ (ξ)) − ϕt(ξ) is bounded, there will be a
sequence of timestn → ∞ and anδ0 6∈ span{v} such that
ϕtn(ϕτ (ξ)) − ϕtn(ξ) → δ0. Moreover, by precompactness
of π ◦ϕt(ξ), we can pick a subsequence of{tn}, which we
denote without loss of generality in the same way, such that
π ◦ ϕtn(ξ) → x̃0, for some vector̃x0.



So the pair[x̃0, δ0] belongs to the following set:

Ω =
{
[x̃, δ] : ∃ tn → +∞ : π ◦ ϕtn(ξ) → x̃
andϕtn

(ϕτ (ξ))− ϕtn
(ξ) → δ

}
.

(13)

We show next thatΩ satisfies the following invariance
property:

∀ [x̃, δ] ∈ Ω, ∀ t ≥ 0, [ϕ̃t(x̃), ϕt(x̃ + δ)− ϕt(x̃)] ∈ Ω.
(14)

Pick any [x̃, δ] ∈ Ω and some sequence{tn} as in
the definition of Ω, as well as any fixedt > 0. From
x̃ = limn→+∞ π ◦ ϕtn

(ξ) and continuity of the flow, we
have:

ϕ̃t(x̃) = lim
n→+∞

ϕ̃t(π◦ϕtn
(ξ)) = lim

n→+∞
π◦ϕt+tn

(ξ). (15)

Moreover,

δ = lim
n→+∞

ϕtn
(ϕτ (ξ))− ϕtn

(ξ)

= lim
n→+∞

ϕτ (ϕtn(ξ))− ϕtn(ξ)

= lim
n→+∞

ϕτ

(
ϕ̃tn(π(ξ)) + [v′ϕtn(ξ)]v

)

−ϕ̃tn(π(ξ))− [v′ϕtn(ξ)]v

where the last equality follows from̃ϕt(π(ξ)) = π(ϕt(ξ)) =
ϕt(ξ) − [v′ϕt(ξ)]v applied to t = tn. Finally, from the
equalityϕτ (ζ +λv) = ϕτ (ζ)+λv applied toζ = ϕ̃tn(π(ξ))
andλ = v′ϕtn(ξ), this last expression gives that

δ = lim
n→+∞

ϕτ

(
ϕ̃tn(π(ξ))

)− ϕ̃tn(π(ξ)) = ϕτ (x̃)− x̃ ,

(16)
that is, x̃ + δ = ϕτ (x̃). Therefore:

ϕt(x̃ + δ)− ϕt(x̃) = ϕt(ϕτ (x̃))− ϕt(x̃)
= limn→+∞ ϕt+τ (π ◦ ϕtn(ξ))− ϕt(π ◦ ϕtn(ξ)) .

(17)

Now, by translation invariance, we have that:

ϕt+τ (π(ϕtn(ξ))) = ϕt+τ (ϕtn(ξ)− [v′ϕtn(ξ)]v)
= ϕt+τ (ϕtn(ξ))− [v′ϕtn(ξ)]v

and similarly:

ϕt(π(ϕtn(ξ))) = ϕt(ϕtn(ξ)− [v′ϕtn(ξ)]v)
= ϕt(ϕtn(ξ))− [v′ϕtn(ξ)]v

so that:

ϕt+τ (π(ϕtn(ξ))) − ϕt(π(ϕtn(ξ)))
= ϕt+τ (ϕtn(ξ))− ϕt(ϕtn(ξ))

so, substituting into (17), we have:

ϕt(x̃ + δ)− ϕt(x̃)
= limn→+∞ ϕt+τ (ϕtn(ξ))− ϕt(ϕtn(ξ))
= limn→+∞ ϕt+tn(ϕτ (ξ))− ϕt+tn(ξ) .

(18)

Hence, (14) follows combining (15) and (18) (using the new
sequence{t + tn}).

Recall thatV (ϕt(ϕτ (ξ)) − ϕt(ξ)) decreases to its limit
V̄ as t → ∞. On the other hand, for any[x̃, δ] ∈ Ω, by
definition of Ω we have thatϕtn(ϕτ (ξ)) − ϕtn(ξ) → δ
as n → ∞. Because of continuity ofV , this implies that
V (δ) = V̄ . Moreover, by invariance ofΩ, V (ϕt(x̃ + δ) −

ϕt(x̃)) = V̄ , independently oft. Hence, application of
Lemma 3.3 givesδ ∈ span{v} for any [x̃, δ] ∈ Ω. This
contradicts the assumption thatδ0 6∈ span{v}. Therefore,
(12) is true.

Projecting (12) onto thẽX space shows:

lim
t→+∞

ϕ̃t(ϕ̃τ (π(ξ)))− ϕ̃t(π(ξ)) = 0 .

We next claim that every element ofω(x̃) is an equilib-
rium. Indeed, suppose that̃ϕtn

(π(ξ)) → p; then, for any
τ :

ϕ̃τ (p) = ϕ̃τ (limtn→+∞ ϕ̃tn
(π(ξ)))

= limtn→+∞ ϕ̃τ (ϕ̃tn
(π(ξ)))

= limtn→+∞ ϕ̃tn(π(ξ)) = p .

Hence, the result follows by uniqueness of the equilibrium
for the projected system̃̇x = (I − vv′)f(x̃).

IV. A N APPLICATION TO CHEMICAL REACTIONS

In this section, we show how our result may be applied
to conclude global convergence to steady states, for certain
chemical reactions. A standard form for representing (well-
mixed and isothermal) chemical reactions by ordinary dif-
ferential equations is:

Ṡ = ΓR(S), (19)

evolving on the nonnegative orthantRn
≥0, whereS is ann-

vector specifying the concentrations ofn chemical species,
Γ ∈ Rn×m is thestoichiometry matrix, andR : Rn

≥0 → Rm

is a function which provides the vector of reaction rates for
any given vector of concentrations. We assume thatR is
locally Lipschitz, so uniqueness of solutions holds, and that
the positive orthantRn

≥0 is invariant, and that it is forward
complete: every solution is defined for allt ≥ 0.

To each system of the form (19) and each fixed vector
σ ∈ Rn

≥0, we associate the following system:

ẋ = fσ(x) = R(σ + Γx) (20)

evolving on the state-space

Xσ = {x ∈ Rm |σ + Γx ≥ 0} .

The ith componentxi of the vectorx is sometimes called
the “extent” of theith reaction. We will derive conclusions
about (19) from the study of (20).

Note that Xσ is a closed set which is the closure of
its interior (it is, in fact, a polytope), and also thatXσ

is invariant with respect to translationby any v ∈ kerΓ,
becausex ∈ Xσ means thatσ + Γx ≥ 0, and therefore also
x + λv ∈ Xσ for all λ ∈ R, becauseσ + Γ(x + λv) =
σ + Γx ≥ 0.

As an illustrative example, consider the following set of
chemical reactions:

E + P ↔ C → E + Q
F + Q ↔ D → F + P,

(21)

which may be thought of as a model of the activation of a
protein substrateP by an enzymeE; C is an intermediate
complex, which dissociates either back into the original



components or into a product (activated protein)Q and the
enzyme. The second reaction transformsQ back intoP , and
is catalyzed by another enzyme (a phosphatase denoted by
F ). A system of reactions of this type is sometimes called
a “futile cycle”, and reactions of this type are ubiquitous
in cell biology. The mass-action kinetics model is obtained
as follows. Denoting concentrations with the same letters
(P , etc) as the species themselves, we introduce the species
vector:

S = (P, Q,E, F,C, D)′

and these stoichiometry matrixΓ and vector of reaction rates
R(S):

Γ =




−1 0 0 1
0 1 −1 0

−1 1 0 0
0 0 −1 1
1 −1 0 0
0 0 1 −1




R(S) =




k1EP − k−1C
k2C

k3FQ− k−3D
k4D


 .

The reaction constantski, with i = −1, 1, 2, 3,−3, 4, are
arbitrary positive real numbers, and they quantify the speed
of the different reactions. This gives a system (19). Note that,
along all solutions, one has that

P (t) + Q(t) + C(t) + D(t) ≡ constant

because(1, 1, 0, 0, 1, 1)Γ = 0. Since the components are
nonnegative, this means that, for any solution, each ofP (t),
Q(t), C(t), and D(t) are upper bounded by the constant
P (0) + Q(0) + C(0) + D(0). Similarly, we have two more
independent conservation laws:

E(t) + C(t) and F (t) + D(t)

are also constant along trajectories, so alsoE andF remain
bounded. Therefore, all solutions are bounded, and hence,
in particular, are defined for allt ≥ 0. The system of
equations (19) in this example is not monotone, at least
with respect to any orthant order. (See [2] for more on this
example, as well as an alternative way to study it.) We will
prove, as a corollary of our main theorem, that every solution
that starts withE(0) + C(0) 6= 0 and F (0) + D(0) 6= 0
converges to a steady state, which is unique with respect to
the conservation relations.

Lemma 4.1:The system (20) is forward complete: every
solution is defined for allt ≥ 0 and remains inXσ. Further-
more, if it holds that every solution of (19) is bounded, then,
for every solutionx(t) of (20), Γx(t) is bounded.

Proof: Pick anyx0 ∈ Xσ, and letS0 := σ+Γx0 ∈ Rn
≥0.

Consider the solution ofS(t) of the initial value problem
Ṡ = ΓR(S), S(0) = S0, which is well-defined and satisfies
S(t) ≥ 0 for all t ≥ 0. Let, for t ≥ 0:

x(t) := x0 +
∫ t

0

R(S(τ)) dτ . (22)

Note that ẋ(t) = R(S(t)) for all t. We claim thatx is a
solution ofẋ = fσ(x). Sincex(0) = x0 andx is defined for
all t, uniqueness of solutions (fσ is locally Lipschitz) will

prove the first statement of the lemma. To prove the claim,
we first introduce the new vector function

P (t) := σ + Γx(t) .

Differentiating with respect to time we obtain thatṖ (t) =
Γẋ(t) = Γ(R(S(t))) = Ṡ(t) for all t ≥ 0. Therefore,P −S
is constant. SinceP (0) = σ + Γx0 = S(0), it follows that
P ≡ S. In other words,S satisfiesS(t) = σ + Γx(t). Thus,
ẋ(t) = R(S(t)) = R(σ + Γx(t)) = fσ(x(t)), as claimed.

To prove the second statement, we simply remark that,
as already proved, for every solutionx of (20), there is a
solution S of (19) such thatS(t) = σ + Γx(t). Therefore,
Γx(t) = S(t)− σ is bounded ifS(t) is.

Note that the futile cycle example discussed earlier sat-
isfies the assumptions of this Lemma. We now specialize
further, imposing additional conditions also satisfied by the
example.

Lemma 4.2:Suppose that the matrixΓ has rank exactly
n−1, its kernel spanned by some positive unit vectorv. Let
x(t) be a solution of (20). Then,Γx(t) is bounded if and
only if πvx(t) is bounded.

Proof: Since Γπvx = Γ(x − (v′x)v) = Γx, one
implication is clear. LetM be the restriction ofΓ to the
spacev⊥ orthogonal to the vectorv, i.e. the image ofπv.
As Γπvx = Γx, the images ofΓ andM are the same. The
map M is one-to-one: suppose thatx ∈ v⊥ is so that if
Mx = 0. Then,Γx = 0, sox is in the kernel ofΓ, i.e., it is
also in the span ofv. Thus,x = 0. Let M−1 be the inverse
of M , mapping the image ofΓ into v⊥. Thus, if a trajectory
is such thatΓx(t) is bounded, then also

M−1Γx(t) = M−1Γπvx(t) = M−1Mπvx(t) = πvx(t)

is bounded.
Observe that the spacesXσ are translation invariant with

respect to anyv as in the statement of this Lemma.
Corollary 4.3: Suppose that:
1) the matrixΓ has rankn − 1, with kernel spanned by

some positive unit vector;
2) every solution of (19) is bounded;
3) σ ∈ Rn

≥0 is so that the systeṁx = fσ(x) is strongly
monotone.

Then, there is aζ = ζσ ∈ Rn
≥0 with the following property:

for eachρ ∈ Rn
≥0 such thatρ− σ ∈ Image(G), the solution

S of (19) with S(0) = ρ satisfiesS(t) → ζ as t →∞.
Proof: We let the kernel ofΓ be spanned by the positive

unit vectorv. By Lemmas 4.1 and 4.2,πvx(t) is bounded,
for every solution of (20). By Theorem 1, there is a unique
equilibrium ξ of the projected systeṁ̃x = (I − vv′)f(x̃)
so that every solutionx of ẋ = R(σ + Γx) is such that
πv(x(t)) → ξ as t → ∞. We next show thatζ = σ + Γξ
satisfies the requirements.

Pick ρ ∈ Rn
≥0 so thatρ− σ = Γa, a ∈ Rm, and letS be

the solution ofṠ = ΓR(S) with initial condition S(0) = ρ.
Arguing as in the proof of Lemma 4.1, we have thatS(t) =
ρ + Γx(t), whereẋ = R(ρ + Γx), x(0) = 0.

Introduce the functionz(t) = x(t)+a. Then,ż = ẋ+0 =
R(ρ+Γx) = R(σ +Γz), with z(0) = a. Sinceσ +Γz(0) =



σ + Γa = ρ ≥ 0, it follows that z(0) ∈ Xσ, and therefore
z(t) is a solution ofẋ = R(σ + Γx) on Xσ. Therefore,
πvz(t) → ξ. As x(t) = z(t)− a, this means thatπvx(t) →
ξ − πva. Since for every vectorx it holds thatΓπvx = Γx,
applyingΓ to the above gives

Γx(t) = Γπvx(t) → Γξ − Γa .

Therefore,S(t) = ρ + Γx(t) → ρ + Γξ − Γa = σ + Γξ = ζ
as t →∞.

In the futile cycle example, we may takev =
(1/4, 1/4, 1/4, 1/4)′, and consider the following set:

Σ = {(P, Q, E, F,C, D) ∈ Rn
≥0 | E + C > 0, F + D > 0} .

The systemẋ = fσ(x) is strongly monotone forσ ∈ Σ.
To see this, we compute the Jacobian ofR(σ + Γx(t)) with
respect tox: 


∗ ∗ 0 k1E
∗ ∗ 0 0
0 k3F ∗ ∗
0 0 ∗ ∗




where the stars represent strictly positive elements when
in the off-diagonals (and strictly negative when on the
diagonals), and whereE, F are theE and F coordinates
of σ + Γx, or, more explicitly:



∗ ∗ 0 k1(σ3 + (x2 − x1))
∗ ∗ 0 0
0 k3(σ4 + (x4 − x3)) ∗ ∗
0 0 ∗ ∗


 .

Thus, the system is cooperative (i.e., monotone with respect
to the main orthant). It is strongly monotone if this ma-
trix is irreducible almost everywhere along trajectories (see
e.g. [10], Section 3.2), which amounts, becausefσ is a real-
analytic function, to asking thatσ3 + x2 − x1 6≡ 0 and
σ4 + x4− x3 6≡ 0 along any solution. Let us prove now that
this is the case, assuming thatσ ∈ Σ, that is, thatσ3+σ5 6= 0
and σ4 + σ6 6= 0. Suppose thatσ3 + x2 − x1 ≡ 0, so that
ẋ1 − ẋ2 ≡ 0 and x1 − x2 ≡ σ3. The equations for (20)
give: ẋ1 − ẋ2 = k1(σ3 + x2 − x1)(σ1 + x4 − x1)− (k−1 +
k2)(σ5x1 − x2) , so:

0 ≡ −(k−1 + k2)(σ3 + σ5)

which contradictsσ3+σ5 6= 0. Similarly for σ4+x4−x3 ≡ 0.
So the system is indeed strongly monotone.

We conclude that every solution of our example with an
initial condition in the setΣ converges to an equilibrium.
Moreover, there is a unique such equilibrium in each stoi-
chiometry classσ + Image(Γ).

When initial conditions do not belong toΣ, one has
a standard enzymatic Michaelis-Menten type of reaction,
and the same conclusion holds. This is very easy to show.
(Indeed, take for instance the case whenE(0) = C(0) = 0.
As Ṗ = k4D, P (t) is nondecreasing, so (since it is upper
bounded) we know thatP converges. Consider the function
y = Q+D. SinceP +y is constant,y converges, too. Since
ẏ has a bounded derivative (it can be expressed in terms of
bounded variables), and its integral is convergent, it follows

(“Barbalat’s lemma”) thatẏ = −k4D converges to zero, so
D must converge and therefore, again using thatP +Q+D
is constant,Q converges as well. Finally, sinceD + F is
constant,F converges, too.)

V. CONCLUSIONS

We presented a new global convergence result for the
class of strongly monotone systems with positive translation
invariance and we illustrated its applicability through an
example in chemical kinetics. Similar equations arise for
more general classes of chemical reaction networks and
further work needs to be done in the direction of exploring
when we can expect a chemical reaction network to satisfy
the assumptions of our Main Result, just on the basis of
topological and structural properties of the network. The
contribution can also be seen as the dual to previously known
results proved by Mierczynski and Jiang JiFa which dealt
with the case of monotone systems endowed with positive
first integrals. Such results hold also in the case of nonlinear
conservation laws; in this respect, it is likely an extension
of our main result to the case of more general (namely
nonlinear) shift invariance notions.
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