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Abstract—We show that strongly monotone systems of ordi- exists a positive first-integral for the system, as shown in
nary differential equations which have a certain translation-  Mierczinski's paper [13]. Our main result may be viewed as
invariance property are so that all solutions converge t0 a 4 qa] of the latter result, and applies to strongly monotone

unique equilibrium. The result may be seen as a dual of a - . . .
well-known theorem of Mierczynski for systems that satisfy a systems which have the property of translation invariance

conservation law. An application to a reaction of interest in With respect to a positive vector. Equilibria of such systems

biochemistry is provided as an illustration. are never unique. The result is roughly as follows. For
Keywords: monotone systems, global stability, chemicabystems evolving on Euclidean spad®s, we will assume
reaction networks that for somev € int(K'), and for all\ € R, the following
is true:
I. INTRODUCTION AND MOTIVATIONS 0 (€ + M) = @i (&) + v (2)

We recall that a dynamical system is said torbenotone oy gl + ¢ R and all¢ € X. Under strong monotonicity, we
whenever its state space is endowed with a partial order ghqy that convergence to equilibria is global for a suitable
»~ and the forward flow preserves the order. In other word$ygiection of the system. We also show that for competitive
for each ordered pair of initial conditiorgs = ¢», solutions  gystems; i.e. systems that are strongly monotone under time-

remain orderedy: (1) = ¢+ (€2) for all ¢ > 0. See [15] for  eyersal, the same result holds. Statements and proofs are in
a discussion and many basic theorems, as well as the receRl-tion |1.

faxcellent exposi_tion [10]._A_special and mosfc _in_teresting_case We were originally motivated by proving a global con-

is when the partial order is induced by a positivity cone, i.€. gergence result for certain chemical reaction systems which
closed subsek’ of a Banach spacB containingX' such that  4re ot necessarily monotone. There has been much interest
K+K C K, K CaKforalla>0,andKU—K ={0}.1n iy yecent years in establishing such global resuits, see for
this case, one defines a p_artial o_rder by the ruleghat & jnstance 5], [17], [12], [6], [16], [1], [3]. In Section IV, we
wheneverg, — ¢, € K. Strict versions of the order are alsoghqy how to associate, to any chemical reaction system, a
possible, and particularly useful wheneverhas non-empty e system of differential equations, evolving on a different
interior: one defineg, - &; if &1 = & and&, # &>, and the  gpace (of “reaction coordinates”) for which our techniques

following even stronger notiorg, > &, if &1 —&; € INt(K).  may sometimes be applied, and we illustrate with a system
A stronglymonotone system is one for which the following st inierest in biochemistry.

holds:

Il. MAIN RESULT
-6 = @) > @u(§2)  VE>0, V&6 € )((1) We consider nonlinear dynamical systems of the following
A key foundational result is Hirsch’'s Generic Convergence i = f(2) 3)
Theorem ([7], [8], [9], [10], [15]), which guarantees that, a

if solutions of such systems are bounded, then, genericallyjth statesz € X C R", for some closed seX which is
they converge to the set of equilibria. Roughly speakinghe closure of its interior, and some locally Lipschitz vector
more complex asymptotic behaviors are possible, but are (ield f : X — R"™. For each initial conditiort € X, we
they exist at all) confined to a zero-measure set of initiadenote byy;(¢) the corresponding solution, and we assume
conditions. that p;(£) is uniquely maximally defined (as an element of
Remarkably, under suitable additional assumptionsy) for ¢t € I, wherel, is an interval inR which contains
generic convergence to equilibria can be made global, & +oc0) inits interior. (In other words, the system is assumed
is the case if, for instance, the equilibrium is unique [15]fo be forward —but not necessarily backward— complete.)
sometimes not requiring strong monotonicity [11], [4], if Furthermore, a closed corl€ C R™ is given, with non-
the system is cooperative and tridiagonal [14] or if, therempty interior, and the corresponding non-strict and strict



partial orders are considered:, >,>. In particular, we Notice that, for differentiablef, yet another characteriza-
assume that (3) istrongly monotoneas in (1) and that tion is thatv € ker f.(z) (Jacobian) at all states.
solutions enjoy the translation invariance property (2) for  Proof: If the system is translation-invariant hy, and
somew € int(K'), which we take, without loss of generality, o = z1+ v, theny,(z2)—p:(z1) = Av. Taking(d/dt)|:=o,
to have norm one. we obtainf(z,) = f(x2). We now show the sufficiency of
Because of property (2) it is natural to assume, and wie condition. More generally, suppose thatis a linear
will do so, that the state space is invariant with respect tsubspace oR™ such thatr; — a2 € L = f(x1) = f(z2);
translation byv, namely: we will prove thaty; (z2) —¢:(x1) is constant ifc; —xo € L.
We first change coordinates with a linear ni&pn such a
manner thatl, gets transformed into the span of the fifst
6gjlmL canonical vectord, = {e1,...,es}. The transformed
equations are: = f(z), where f(z) = Tf(T~'#) andz =
Tz. We partition the state as = (y', 2’)’, with y of size/,

reX = x+weX VAIeR. 4)

In order to state our main result, we require an addition
definition. Given any unit vecton, we introduce the linear

mapping: . ; /
and write the transformed equations in block form:
T R =R :x—z— (Vo) ) -
y = fiy=2)
(prime indicates transpose), which amounts to subtracting 3 = f2(y 2).

the component along the vector that is, an orthogonal

projection ontov. Since (v'z)v = (vv')x, we can also Suppose that two vectors, and 7, are such that; = 2.

write m,z = (I — vv’)z. Note thatr,v = 0. This means thaf; — #, € L. Then, lettingz; := T-'%;,

Definition Let £ € X be given and consider the correspondwe have thatr; — 22 € L, and thereforef (x1) = f(z2) by

ing solutiony,(£). We say thatp,(¢) is bounded module  assumption. Thus als(z1) = T f(z1) = T'f(x2) = f(Z2).

if m,(¢:(£)) is bounded as a function of for ¢t > 0. In other words,f is independent of, and the transformed
Notice that we are not asking for precompactnesg§¢) equations in block form read:

(which, in examples, will typically fail), but only of its ) -

projection. vy = {1(2)

Remark Equivalently, the solutiorp, (¢) is bounded modulo z = fa(2).

v if and only if there exists some scalar functig¢,t) :

X x [0, +00) — R such thate,(€) — A(¢, t)v is bounded Now pick anyzq,z2 € X such thatr; — 22 € L. Then,

as a function of timet. (Recall thatX is invariant under *1 — %2 € L, ie.,z = z. Lety,(t) andz(t) denote the

translations by, so this difference is again an elementof) comppnent_s of the S_OIUt_'O_n_ of the_t_ragsfgrmed differential

One direction is clear, using(¢,t) = v’ (€). Conversely, equation with respective initial conditioris, : = 1,2. Then,

sunnose that there is anv such Then: v/ ) = z1(t) = 2o(t) for aII_t >0 (san_1e ipitia! conditions for the
ﬂ(zpt)vlv = B(E, D)) :y ﬂ(?]t), S0 WU((g((ét))v)) _second block of variables), which implies thatt) = ¢2(t)

_ - - for all t. Therefore alsar; (t) = Z»(t) for all ¢, and back
B(E,t) — (v (B(&,t)v)v = 0, Since X is closed, the as- . - =L
sumption is that the closure dfy:(¢) — 5(&,t)v,t > 0} in the original coordinates we have that/dt)(yp;(x2) —

is compact. Thus, since, is continuous, the same holds for@tl( ))di Ot as desiretdth ¢ first d the foll u
_ n order to carry out the proof we first need the following
T (p1(€)) = mo (e (§) — B(E, t)v). Lemma.

We are now ready to state our main result.

Theorem 1:Consider a forward complete nonlinear sys-
tem, strongly monotone oX . Let (3) enjoy positive trans-
lation invariance as in (2) with respect to some vector V(z):=infla e R: 2 < av}
v € int(K), and so that the state space is closed and -
invariant with respect to translation by as in (4). Then, is well defined and Lipschitz for € R”.

Lemma 3.2:Let v € int(K) be given, such tha| = 1.
Then, the function:

every solution which is bounded module is such that Proof: We show first that for all: there existsx such
T, (¢:(£)) converges to an equilibrium. Moreover, there ishat av > . We may equivalently check that > z/a for
a unique such equilibrium. somea # 0. Sincexr/a — 0 asa — +oo, We may conclude

that this is the case, since, as is well knowrw,v) =
{z :v> x> —v} is an open neighborhood of the origin,
Before addressing the technical steps of the proof, it i®r all v > 0 (in other words the topology induced by a
useful to provide an infinitesimal characterization of translapositivity cone with non-empty interior is equivalent to the
tion invariance. This is a routine exercise, but we include atandard topology ifiR™). On the other handgv < z for

Il. HINTS OF THEPROOF

proof for ease of reference. all sufficiently smalla (asa — —oo, (—2)/(—a) — 0, so
Lemma 3.1:A system (3) enjoys the translation invariance(—z)/(—a) < v, that is, —z < —awv). Therefore,V (z) is
property (2) with respect to € R” if and only if: well defined. Moreover, sincK is closed and the feasible set

of a’s is bounded from below, the infimum is achieved and is
x1,22 € X, 11 — 32 € spafv} = f(z1) = f(z2). (5) actually a minimum, which implies thaf(z) is a continuous



function. We can prove, moreover, thet is Lipschitz, as o1 :3X € R: % + \v € X}, viz. the projection along of

follows. X onto the vector-space’, and we will denote byp; the
We first pick ane > 0 such thatz < v for all unit vectors corresponding flow. Notice that, ©; and @, are related in

z. (Such are exists, becausez — 0 uniformly on the unit the following sense:

sphere, and—wv,v) is a neighborhood of zero.) Therefore, }

for each two vectors: # y, applying this observation to TOYy = Prom.

z= ﬁ(z —y), we have thatr — y < k|z — y|v, where

k :=1/e, and the same holds if = y. Now, given any two

x,y, We write

Moreover, by translation invariance of, we haveX =
X Novt andX = X @ spar{v}.

By the above considerations, it makes sense to speak
r =z—y+y = klz—ylv+V(y)v = (klz—y|+V(y))v about thew-limit set w(#) of solutions of (8), which by
the boundedness assumption, will be a compact, non-empty
invariant set We would like to show that(z) is a single
equilibrium. We remark that, by application of Lemma 3.3,
it follows that (8) has at most one equilibrium. Arguing
by contradiction, in fact, existence of two distinct equilibria
aﬁl and z, for (8) gives thatf(z), f(Z2) both belong to
spafv}, and thereforep;(Z;) = &; + tf(&;) (for i = 1,2)
as it follows by virtue of translation invariance (just take
V(ee(&1) — e(&2)) < V(& — &), (6) derivatives with respect of time and;(z;) = f(&;) =
f(ee(Z:)) ) . Hence, for allt > 0:

which means tha’'(z) < k|x — y| + V(y), and therefore
V(z) - V(y) < klz —y|. Sincez andy were arbitrary, this
proves thatl is Lipschitz with constant:.

The next Lemma is crucial for proving our main result.
Lemma 3.3:Let &; and&,; in X be arbitrary, and/ be
defined according to the previous Lemma 3.2. Then, for

t > 0 it holds that:

and the inequality is strict whenever — & ¢ spafv}.
Proof: Let £, andé, be arbitrary. By <.jefn.1|t|on. of/, we V(i —&2) > V(ee(#1) — oi(i2))

have:¢&; < & + V(& — &)v. By translation invariance and ViE — - = 18) (9

monotonicity thenip: (&1) < ¢ (§2+V (§1,82)v) = @i (€2)+ (71 =22+ [f(20) = f(72)]t) )

V(&1 &2)v. Itfollows thatV (e (§1) — ¢ (€2)) < V(& —€2), By a symmetric argument, however,

as claimed. In particular, whenever — & ¢ spafv} we

have¢; < & + V(& — & )v and therefore, exploiting strong V(Zg —&1) > V(T2 — &1 + [f(Z2) — f(Z1)]t) (10)

monotonicity: ¢ (1) < (&2 + V(§1 — &2)v) = ¢i(&2) + _ _ , ,

V(€1—&)v. In particular, ther/ (¢, (€1)—¢:(€)) < V(&,—  which should hold again for all > 0. It is straightforward,
&). m from definition of V(x), that the function be increasing
Notice that, by the semigroup property for flowsWith respect to (positive) translations alomg Hence, the

Lemma 3.3 implies that the functidn— V (p;(&1) — @i (€2))  inequality in (9) impliesf(z1) — f(22) < 0, while, the

is nondecreasing. second inequality gives(z1)— f(Z2) > 0. But this is clearly
We also prove a result for systems that are strongl§ contradiction.

monotone in reversed time, meaning that for every gai¢. Let 7 > 0 be arbitrary; consider the solutions of (3)

and every timet < 0 such thaty;(¢£1) and o, (&) are well- — corresponding t& and ¢, (&). We claim thate; (- (£)) —

defined the following implication holds: () is bounded. In fact, denoting by, the corresponding

fr6 = wiE)> o). projections ontaX and exploiting Lemma 3.1, we obtain:
Corollary 3.4: Let & and &, in X be arbitrary, and/ %(@;(75_)) — 8 = %(ﬁﬁ(g))f i (6) (11)

be defined according to the previous Lemma 3.2. Assume  ~ J¢ f(es(€))ds = [ f(@s(n(€))) ds

that system (3) be forward-complete, strongly monotone i

reversed time oveKX, and translation invariant with respect

to somew € int(K); then, for all¢ > 0 it holds that:

And so|ot(r (&) — v ()] < 7M. where M is an upper
bound on the magnitude of the vector fiefdon a compact
set that contains the trajectony, (p:(£)).

V(pe(€1) — ¢e(&2)) > V(& — &), ) Hence,V (i (- (£)) — ¢u(£)) is lower-bounded, and, by
virtue of Lemma 3.3, is decreasing. Therefore, it admits a

and the inequality is strict whenever — & ¢ spafv}. O limit V > —oo ast — +oo. We claim that

We are now ready to prove the main result.
Proat of Main Result | e(ip-(€)) — u() — spar(v}. (12)
Let ¢ € X be such thaty,(¢) is bounded modula.
That is, Z(t) := m,(:(§)) = (I —vv')p(€) is a bounded  Suppose that this claim is false. Then, since, as we just
function of¢. Notice thatz satisfies the following differential proved, ¢:(p-(£)) — »:(€) is bounded, there will be a
equation: sequence of times, — oo and andy ¢ spafv} such that
s r oy N o, (0r(€)) — w1, (§) — Jo. Moreover, by precompactness
T == v)f{@u(9) = (I =) (@) ®) of 7o p:(€), we can pick a subsequence {df, }, which we
where the last equality follows by translation invariance. Thiglenote without loss of generality in the same way, such that
is a new dynamical system, with state spafe:= {Z € o (§) — Iy, for some vectori,.



So the pair[Zy, do] belongs to the following set:

Q= {[z,6:3t, > +oo:moy, (§) —
and ey, (97 (€)) = ¢4, (§) — 6}
We show next that() satisfies the following invariance
property:
V([z,0] € Q, Vt >0,

(13)

[6¢(Z), o1 (T + 0) — ¢e(T)] € .
(14)
Pick any [z,0] € Q and some sequencét,} as in
the definition of 2, as well as any fixed > 0. From
Z = lim, 1o 7o ¢, (§) and continuity of the flow, we
have:

Pu(@) = lim @i(mopy, (€)= lim mopri, (€)- (15)
Moreover,
6 = lm o, (¢r(€) = e, ()
= nEToo or (1, (§)) — 91, (§)

lim o, (@tn (m(&)) + [V, (f)]v)

n——+o0o
—&1, (m(&)) = [v'er,, ()]

where the last equality follows from, (7 (£)) = m(¢:(§)) =
vt (&) — [ (E)]v applied tot t,. Finally, from the

equality o, (¢ +Av) = ¢- () + v applied to¢ = 3, (7(£))
and A = V¢, (£), this last expression gives that

5 = lim o (¢, (7€) = 60, (7€) = wr(&) -,
(16)
that is,z + 0 = ¢, (). Therefore:
0i(T +0) — (@) = @i(p7(T)) — pe(T)
= limy—t o0 P14+ (T 0 91, (§)) — pe(m o 1, (€)) -
Now, by translation invariance, we have that:
Ot (m(p1,(€))) = Prar(r,(§) — [V, (€)]v)
= r+r(p1,(§)) — [V, (§)]v
and similarly:
or(m(p, () = wi(pr, (§) — [Vpr, (§)]v)
= ¢i(pr, () — Wer, (v

so that:

Pttr(m(pr, (£)))

(17)

ei(m (1, (£)))
Pt (1, (€)) — (e, (£))

S0, substituting into (17), we have:
©t(T 4 6) — i (T)
= limy— 40 P14+ (01, (£)) — @it (§))
= limy o0 Pt4t, (0 (8)) — Pr+,(§) -

(18)

©1(2)) V, independently oft. Hence, application of
Lemma 3.3 givesy € spar{v} for any [z,0] € Q. This
contradicts the assumption tha§ ¢ sparfv}. Therefore,
(12) is true.

Projecting (12) onto theX space shows:

Jim (@7 (m(€))) — @7 (€)) = 0.

We next claim that every element af(z) is an equilib-
rium. Indeed, suppose that (w(¢)) — p; then, for any
T

:(p) = @r (limy, — 400 P1,, (7(£)))
= lim¢, 400 @7 (P1,, (7()))
= limy, 400 @1, (7(§)) = p.

Hence, the result follows by uniqueness of the equilibrium
for the projected system = (I — vv') f(Z).

IV. AN APPLICATION TO CHEMICAL REACTIONS

In this section, we show how our result may be applied
to conclude global convergence to steady states, for certain
chemical reactions. A standard form for representing (well-
mixed and isothermal) chemical reactions by ordinary dif-
ferential equations is:

S = TR(S), (19)

evolving on the nonnegative orthaRt.,, wheresS is ann-
vector specifying the concentrations efchemical species,
I' € R**™ is the stoichiometry matrixand R : RZ, — R™
is a function which provides the vector of reaction rates for
any given vector of concentrations. We assume tRais
locally Lipschitz, so uniqueness of solutions holds, and that
the positive orthanR%, is invariant, and that it is forward
complete: every solution is defined for alb> 0.

To each system of the form (19) and each fixed vector
o € R%,, we associate the following system:

& = fo(x) R(oc +Tx)

evolving on the state-space

(20)

X, = {zeR™|oc+Tz>0}.

The ith componentz; of the vectorz is sometimes called
the “extent” of theith reaction. We will derive conclusions
about (19) from the study of (20).

Note that X, is a closed set which is the closure of
its interior (it is, in fact, a polytope), and also thaf,
is invariant with respect to translatioby any v € kerT,
becauser € X, means that + I'z > 0, and therefore also
x+ M € X, for all A € R, becausesr + I'(x + \v)
o+ Tz >0.

As an illustrative example, consider the following set of

Hence, (14) follows combining (15) and (18) (using the neviénemical reactions:

sequencet + t, }).

Recall thatV (p:(p-(£)) — ¢:(€)) decreases to its limit
V ast — oo. On the other hand, for anfi, ] € €, by
definition of & we have thaty,, (¢-(£)) — ¢, (§) — 6
asn — oo. Because of continuity of/, this implies that
V(8) = V. Moreover, by invariance of), V(p(i + &) —

F+P—C—-FE+Q
F+Q—D—F+ P,

which may be thought of as a model of the activation of a
protein substraté® by an enzymel’; C is an intermediate
complex, which dissociates either back into the original

(21)



components or into a product (activated protgihand the prove the first statement of the lemma. To prove the claim,
enzyme. The second reaction transfogback intoP, and  we first introduce the new vector function
is catalyzed by another enzyme (a phosphatase denoted by P(t) = o+ Ta(t)
F). A system of reactions of this type is sometimes called ' ' ]
a “futile cycle”, and reactions of this type are ubiquitousDifferentiating with respect to time we obtain th&(t) =
in cell biology. The mass-action kinetics model is obtained'z(t) = I'(R(S(t))) = S(¢) for all t > 0. Therefore,P — S
as follows. Denoting concentrations with the same lettelis constant. Sincé’(0) = o + I'zg = S(0), it follows that
(P, etc) as the species themselves, we introduce the speciés= S. In other words,S satisfiesS(t) = o + I'z(t). Thus,
vector: z(t) = R(S(t)) = R(o +Tz(t)) = f-(x(t)), as claimed.

S = (P,Q,E,F,C,D) To prove the second statement, we simply remark that,

as already proved, for every solutianof (20), there is a
and these stoichiometry matrixand vector of reaction rates solution S of (19) such thatS(t) = o + I'z(t). Therefore,

R(S): I'z(t) = S(t) — o is bounded ifS(t) is. [ |
1 o o0 1 Note that the futile cycle example discussed earlier sat-
0 1 -1 0 kiEP —k_1C isfies the assumptions of this Lemma. We now specialize
r—| -t 1 0 0 R(S) = ko€ ~ further, imposing additional conditions also satisfied by the
0 0 -1 1 ksFQ — k_sD example
(1J _(1) (1) _(1) kD) Lemma 4.2:Suppose that the matrik has rank exactly
n — 1, its kernel spanned by some positive unit veatok et
The reaction constants;, with : = —1,1,2,3,-3,4, are  z(¢) be a solution of (20). Therz(¢) is bounded if and
arbitrary positive real numbers, and they quantify the speeshly if r,z(t) is bounded.
of the different reactions. This gives a system (19). Note that, Proof: Since I'r,2 = TI'(z — (v'z)v) = Tz, one
along all solutions, one has that implication is clear. LetM be the restriction of" to the

spacev’ orthogonal to the vector, i.e. the image ofr,.
As I'm,x = 'z, the images of” and M are the same. The

because(1,1,0,0,1,1)T' = 0. Since the components areMaP M is one-to-one: suppose that v is so that if
nonnegative, this means that, for any solution, eack@j, /¢ =0.Then 'z =0, soz isin the ker:el off, i.e., itis
Q(t), C(t), and D(t) are upper bounded by the constan@lso in the span of;._ Thus,z = 0. L(it M bg the inverse
P(0) + Q(0) + C(0) + D(0). Similarly, we have two more of M, mapping the image df into v—. Thus, if a trajectory

P(t) + Q(t) + C(t) + D(t) = constant

independent conservation laws: is such thaf"z(t) is bounded, then also
M™'Ta(t) = M~ ' Tmya(t) = M~ Mr,a(t) = m,2(t
E(t)+C(t) and F(t)+ D(t) (t) Toz(t) Tox(t) = mpx(t)
is bounded. -

are also constant along trajectories, so dlsand F' remain Observe that the spacé§, are translation invariant with
bounded. Therefore, all solutions are bounded, and henggspect to any as in the statement of this Lemma.

in particular, are defined for alt > 0. The system of Corollary 4.3: Suppose that:

equations (19) in this example is not monotone, at least 1) the matrixI' has rankn — 1, with kernel spanned by

with respect to any orthant order. (See [2] for more on this  gome positive unit vector;

example, as well as an alternative way to study it.) We will 2) every solution of (19) is bounded:;

prove, as a corollary of our main theorem, that every solution 3y , ¢ R™, is so that the system = f,(z) is strongly

that starts with£(0) + C(0) # 0 and F(0) + D(0) # 0 monotone.

converges to a steady state, which is unique with respectﬁen' there is & = ¢, € RZ, with the following property:

the conservation relations. _ for eachp € R%, such thatp — o € ImageG), the solution
Lemma 4.1:The system (20) is forward complete: everyg ¢ (19) with S(0) = p satisfiesS(t) — ¢ ast — oco.

solution is defined for alt > 0 and remains inX,.. Further- Proof: We let the kernel of” be spanned by the positive

more, if it holds that every solution of (19) is bounded, thenynit vector . By Lemmas 4.1 and 4.2;,z(t) is bounded,

for every solutionz(t) of (20), I'z(t) is bounded. for every solution of (20). By Theorem 1, there is a unique

Proof: Pick anyzo € X, and letSo := o+I'zg € R%,.  equilibrium ¢ of the projected systert = (I — vv')f(%)
Consider the solution of(t) of the initial value problem so that every solution: of # = R(c + I'z) is such that

S(t) = 0 forall t > 0. Let, fort > 0: satisfies the requirements.
t Pick p € R%, so thatp — o =T'a, a € R™, and letS be
z(t) = zo + / R(S(r))dr. (22)  the solution ofS = I'R(S) with initial condition S(0) = p.
0

Arguing as in the proof of Lemma 4.1, we have ti$dt) =
Note thati(t) = R(S(t)) for all t. We claim thatz is a p—+ T'z(¢), wherez = R(p + I'z), z(0) = 0.
solution ofi: = f,(z). Sincex(0) = z, andx is defined for Introduce the functiorx(t) = z(t)+a. Then,z2 = +0 =
all ¢, uniqueness of solutionsf{ is locally Lipschitz) will R(p+Tz) = R(c+Tz), with z(0) = a. Sinces +T'z(0) =



o+ Ta=p >0, it follows that z(0) € X,, and therefore
z(t) is a solution oft = R(c + I'z) on X,. Therefore,
m2(t) — & As x(t) = z(t) — a, this means that,z(t) —
¢ — m,a. Since for every vectog it holds thatl'r,x = T'x,
applyingI" to the above gives

Fz(t) =Tmya(t) > T¢ —Ta.

Therefore,S(t) = p+Tx(t) = p+TE—Ta=0+T¢ =

ast — oo. |
In the futile cycle example, we may take =

(1/4,1/4,1/4,1/4)’, and consider the following set:

> ={(P,Q,E,F,C,D)€R% | E+C >0,F +D > 0}.

The systemi = f,(z) is strongly monotone for € 3.

(“Barbalat’s lemma”) thaty = —k4D converges to zero, so
D must converge and therefore, again using fRat Q + D
is constant,Q converges as well. Finally, sincB + F' is
constant,F’ converges, t00.)

V. CONCLUSIONS

We presented a new global convergence result for the
class of strongly monotone systems with positive translation
invariance and we illustrated its applicability through an
example in chemical kinetics. Similar equations arise for
more general classes of chemical reaction networks and
further work needs to be done in the direction of exploring
when we can expect a chemical reaction network to satisfy
the assumptions of our Main Result, just on the basis of

To see this, we compute the Jacobian/ib + I'z(t)) with
respect taz:

where the stars represent strictly positive elements when
in the off-diagonals (and strictly negative when on the
diagonals), and wheré& F' are the E and F' coordinates

of o + I'z, or, more explicitly: 1]

* * 0 k1(0’3+($2—.731))

* * 0 0

0 k3(0’4 + (£E4 - xg)) * * [2]
0 0 * *

3]
Thus, the system is cooperative (i.e., monotone with respect
to the main orthant). It is strongly monotone if this ma- ,
trix is irreducible almost everywhere along trajectories (see
e.g. [10], Section 3.2), which amounts, becaiisés a real-  [5]
analytic function, to asking thats + x5 — 27 # 0 and
o4+ x4 —x3 #Z 0 along any solution. Let us prove now that [6]
this is the case, assuming that X, that is, thats+o05 # 0
and oy + 06 # 0. Suppose thats + 22 — x; = 0, so that
1 — 29 = 0 and z; — xo o3. The equations for (20)
give: Tl — T = k1<0'3 + X2 — .1'1)(0'1 + Ty — .171) - (k‘,l +
]432)(0’5$1 — .1‘2), SO:

[71

(8]

(9]
[10]

0= *(k_l + kg)(O’g + 05)

which contradictgrs+o5 # 0. Similarly foroy+x4—23 = 0.
So the system is indeed strongly monotone.

We conclude that every solution of our example with a1l
initial condition in the set: converges to an equilibrium. [12]
Moreover, there is a unique such equilibrium in each stoi-
chiometry classr + ImageT).

When initial conditions do not belong t&., one has
a standard enzymatic Michaelis-Menten type of reactiom4]
and the same conclusion holds. This is very easy to show.
(Indeed, take for instance the case whgf)) = C'(0) = 0. [l
As P = k4D, P(t) is nondecreasing, so (since it is upper
bounded) we know thaP converges. Consider the function [16]
y = Q+ D. SinceP +y is constanty converges, too. Since [17
¢ has a bounded derivative (it can be expressed in terms of
bounded variables), and its integral is convergent, it follows

[13]

topological and structural properties of the network. The
contribution can also be seen as the dual to previously known

¥ x 0 kFE results proved by Mierczynski and Jiang JiFa which dealt
« x 0 0 with the case of monotone systems endowed with positive
0 ksF % first integrals. Such results hold also in the case of nonlinear
0 0 x* =x conservation laws; in this respect, it is likely an extension

of our main result to the case of more general (hamely
nonlinear) shift invariance notions.
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