
Automatica 42 (2006) 1531–1537
www.elsevier.com/locate/automatica

Brief paper

Diagonal stability of a class of cyclic systems and its connection
with the secant criterion�

Murat Arcaka,∗, Eduardo D. Sontagb

aDepartment of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
bDepartment of Mathematics, Rutgers University, New Brunswick, NJ, USA

Received 11 May 2005; received in revised form 15 November 2005; accepted 16 April 2006
Available online 12 June 2006

Abstract

We consider a class of systems with a cyclic interconnection structure that arises, among other examples, in dynamic models for certain
biochemical reactions. We first show that a “secant” criterion for local stability, derived earlier in the literature, is in fact a necessary and
sufficient condition for diagonal stability of the corresponding class of matrices. We then revisit a recent generalization of this criterion to
output strictly passive systems, and recover the same stability condition using our diagonal stability result as a tool for constructing a Lyapunov
function. Using this procedure for Lyapunov construction we exhibit classes of cyclic systems with sector nonlinearities and characterize their
global stability properties.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we study systems characterized by a cyclic
interconnection structure as depicted in Fig. 1. An important
example where this structure arises is a sequence of biochemical
reactions where the end product drives the first reaction as
described by the model

�̇1 = − f1(�1) + gn(�n),

�̇2 = − f2(�2) + g1(�1),
...

�̇n = − fn(�n) + gn−1(�n−1). (1)

Tyson and Othmer (1978) and Thron (1991) addressed the sit-
uation where fi(·), i = 1, . . . , n, and gi(·), i = 1, . . . , n− 1 are
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increasing functions and gn(·) is a decreasing function, which
means that the intermediate products “facilitate” the next re-
action while the end product “inhibits” the rate of the first
reaction. To evaluate local stability properties of such reac-
tions Tyson and Othmer (1978) and Thron (1991) analyzed the
Jacobian linearization at the equilibrium, which is of the form

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−�1 0 · · · 0 −�n

�1 −�2
. . . 0

0 �2 −�3
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 �n−1 −�n

⎤
⎥⎥⎥⎥⎥⎥⎦

, �i > 0, �i > 0 (2)

i = 1, . . . , n, and showed that it is Hurwitz if

�1 . . . �n

�1 . . . �n

< sec(�/n)n. (3)

Unlike a small-gain condition which would restrict the right-
hand side of (3) to be 1, criterion (3) also exploits the phase of
the loop and allows the right-hand side to be 8 when n = 3, 4
when n = 4, 2.8854 when n = 5, etc. Furthermore, when �i’s
are equal, (3) is also necessary for stability.
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Fig. 1. A cyclic feedback interconnection of systems H1, . . . , Hn.

The objective of this paper is to extend this stability crite-
rion to classes of nonlinear systems, including (1), by build-
ing on a passivity interpretation presented recently in Sontag
(2006). We first revisit Sontag (2006), which derived an ana-
log of (3) when the blocks in Fig. 1 are output strictly pas-
sive (Sepulchre, Janković, & Kokotović, 1997; van der Schaft,
2000), and recover the same stability result with a Lyapunov
proof that complements the input–output arguments in Sontag
(2006). Our Lyapunov function consists in a weighted sum of
storage functions for each block, with the weights selected ju-
diciously according to a diagonal stability result proved in this
paper for the class of matrices (2). This construction resem-
bles the method of vector Lyapunov functions in the literature
of large-scale systems (Michel & Miller, 1977; Šiljak, 1978),
where a Lyapunov function is assembled from a weighted sum
of several components.

We next study the case where some of the blocks in Fig. 1 are
static sector nonlinearities. When such a nonlinearity is time
invariant and preceded by a linear, first-order, dynamic block
we relax our stability criterion with a special Lyapunov con-
struction that mimics the proof of the Popov criterion (Khalil,
2002). We next apply a similar construction to system (1), and
extend the secant condition (3) to become a criterion for global
asymptotic stability. Our main assumption in this result is that
fi(·)’s and gi(·)’s satisfy a sector property, and that the growth
ratio of gi(·) relative to fi(·) be bounded by a constant that plays
the role of �i/�i in (3). The next result extends this condition
to the case where the state variables are nonnegative quantities
as in biochemical reactions.

The results of this paper previewed above all hinge upon our
key theorem for diagonal stability of (2), presented in Section 2.
Using this theorem, Section 3 studies the cyclic interconnection
in Fig. 1, and gives a procedure for selecting the weights in our
Lyapunov function construction from storage functions. Section
4 derives a Popov-type relaxed stability criterion for static, time-
invariant, sector nonlinearities. Section 5 revisits system (1) and
proves global asymptotic stability. Section 6 extends this result
to systems with nonnegative state variables. An independent
result in Section 7 studies a cascade of output strictly passive
systems, and uses our main theorem on diagonal stability to
prove an input feedforward passivity (IFP) (Sepulchre et al.,
1997) property for the cascade, which quantifies the amount of
feedforward gain required to re-establish passivity.

2. Main theorem for diagonal stability

The key ingredient for all of the results in this paper is The-
orem 1, which states that (3) is a necessary and sufficient con-

dition for diagonal stability of (2). This theorem is of indepen-
dent interest because existing results for diagonal stability of
various classes of matrices, such as those surveyed in Redheffer
(1985) and Kaszkurewicz and Bhaya (2000) do not address the
cyclic structure exhibited by (2). In particular, the sign rever-
sal for �n in (2) rules out the “M-matrix” condition, which is
applicable when all off-diagonal terms are nonnegative.

Theorem 1. The matrix (2) is diagonally stable; that is, it
satisfies

DA + ATD < 0 (4)

for some diagonal matrix D > 0, if and only if (3) holds.

The remaining results of this paper are presented in the form
of corollaries to this theorem. Tyson and Othmer (1978) and
Thron (1991) studied the characteristic polynomial of (2) and
showed that (3) is a sufficient condition for A to be Hurwitz.
They further showed that this condition is also necessary when
�i’s are equal. Theorem 1 proves that (3) is necessary and
sufficient for diagonal stability even when �i’s are not equal.
This means that if A is Hurwitz but (3) fails, then the Lyapunov
inequality ATP + PA < 0 does not admit a diagonal solution.

Proof of Theorem 1. We prove the theorem for the matrix

A0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 · · · 0 −�1

�2 −1
. . . 0

0 �3 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 �n −1

⎤
⎥⎥⎥⎥⎥⎥⎦

(5)

because other matrices of the form (2) can be obtained by
scaling the rows of this A0 by positive constants, which does
not change diagonal stability. Our task is thus to prove necessity
and sufficiency for diagonal stability of the condition

�1 . . . �n < sec(�/n)n, (6)

which is (3) for A0. Necessity follows because the diagonal
entries of A0 are equal, in which case (6) is necessary for A0 to
be Hurwitz (Tyson & Othmer, 1978). To prove that (6) is also
sufficient for diagonal stability, we define

r := (�1...�n)
1/n > 0,

� := diag
{

1, −�2

r
,
�2�3

r2 , . . . , (−1)n+1 �2 . . . �n

rn−1

}
(7)

and note that

−�−1A0� =

⎡
⎢⎢⎢⎢⎢⎣

1 0 · · · 0 (−1)n+1r

r 1
. . . 0

0 r 1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 r 1

⎤
⎥⎥⎥⎥⎥⎦ . (8)

Thus, with the choice

D = �−2 (9)
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we get

DA0 + AT
0 D = �−1(�−1A0� + �AT

0 �−1)�−1, (10)

which means that DA + ATD < 0 holds if the symmetric part
of (8), given by

1
2 (−�−1A0� − �AT

0 �−1), (11)

is positive definite. To show that this is indeed the case, we
note that (8) exhibits a circulant structure (Davis, 1979) when
n is odd, and a skew-circulant structure when n is even. In
particular, it admits the eigenvalue–eigenvector pairs

�k = 1 + rei(2�/n)kvk

= 1

n
[1e−i(2�/n)ke−i2(2�/n)k . . . e−i(n−1)(2�/n)k]T

k = 1, . . ., n when n is odd; and

�k = 1 + rei(�/n+(2�/n)k),

vk=
1

n
[1e−i(�/n+(2�/n)k)e−i2(�/n+(2�/n)k). . . e−i(n−1)(�/n+(2�/n)k)]T

when n is even. Since, in either case, (8) is diagonalizable
with the unitary matrix V = [v1 . . . vn], the eigenvalues of the
symmetric part (11) coincide with the real parts of �k’s above.
Finally, because

min
k=1,...,n

Re{1 + rei(2�/n)k} = min
k=1,...,n

Re{1 + rei(�/n+(2�/n)k)}
= 1 − r cos(�/n), (12)

we conclude that if (6) holds, that is r < sec(�/n), then all
eigenvalues of (11) are positive and, hence, (11) is positive
definite and (10) is negative definite. �

3. Application to output strictly passive systems

The linear stability criterion (3) has been extended in Sontag
(2006) to the feedback interconnection of Fig. 1 where Hi’s
are characterized by the output strict passivity (OSP) property
(van der Schaft, 2000; Sepulchre et al., 1997):

−�i � − ‖yi‖2 + �i〈ui, yi〉, (13)

where ‖ · ‖ and 〈·, ·〉 denote, respectively, the norm and inner
product in the extended L2 space, and �i �0 represents a bias
due to initial conditions. Using this property, Sontag (2006)
proves stability under the secant condition (6).

Unlike the input–output proof given in Sontag (2006), we
now assume that a storage function Vi is available for each
block in Fig. 1, and show that a weighted sum of these Vi’s,

V =
n∑

i=1

diVi , (14)

where di > 0 are chosen following the procedure below, is a
Lyapunov function for the closed-loop system. Indeed, a storage
function verifying the OSP property (13) satisfies

V̇i � − y2
i + �iuiyi , (15)

which when substituted in (14) along with the interconnection
conditions

u1 = −yn, ui = yi−1, i = 2, . . . n,

results in

V̇ �yTDA0y = 1
2 yT(AT

0 D + DA0)y, (16)

where A0 is as in (5) and D is a diagonal matrix comprising
the coefficients di in (14). It then follows from Theorem 1 that
if (6) holds then positive di’s that render the right-hand side of
(16) negative definite indeed exist:

Corollary 1. Consider the feedback interconnection in Fig. 1
and let ui , xi and yi denote the input, state vector, and output
of each block Hi . Suppose, further, there exist C1 storage func-
tions Vi(xi), satisfying (15) with �i > 0 along the state trajec-
tories of each block. Under these conditions, if (6) holds then
there exist di > 0, i =1, . . . , n, such that the Lyapunov function
(14) satisfies

V̇ =
n∑

i=1

diV̇i � − 	|y|2 (17)

for some 	 > 0.

In this corollary we showed how to construct a Lyapunov
function for the interconnection in Fig. 1 from storage func-
tions for the individual blocks. We do not discuss the various
stability properties that can be established with the resulting
Lyapunov function. Numerous results are available in the liter-
ature, including the zero state detectability notion for the state
xi from the output yi (see e.g. Sepulchre et al., 1997) which
allows one to establish asymptotic stability from (17) when the
right-hand side is only semidefinite.

Corollary 1 still holds when some of the blocks are static
nonlinearities satisfying the sector condition

0� − y2
i + �iuiyi, �i > 0, (18)

rather than the dynamic property (15). To see this we let I
denote the subset of indices i which correspond to dynamic
blocks Hi satisfying (15), and employ the Lyapunov function

V =
∑
i∈I

diVi . (19)

For the static blocks, that is Hi , i /∈I, we note from (18) that
the sum∑
i /∈I

di(−y2
i + �iuiyi), di > 0 (20)

is nonnegative and, hence,

V̇ �
∑
i∈I

diV̇i +
∑
i /∈I

di(−y2
i + �iuiyi)�

n∑
i=1

di(−y2
i + �iuiyi)

= yT(DA0 + AT
0 D)y. (21)

Then, as in Corollary 1, condition (6) insures existence of a
D > 0 such that V̇ � − 	|y|2 for some 	 > 0.
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4. A Popov criterion

A special case of interest is the feedback interconnection in
Fig. 2, where Hi , i = 1, . . . , n, are dynamic blocks as in (15),
and the feedback nonlinearity 
(·) satisfies the sector property:

0�yn
(yn)��y2
n , (22)

rewritten here as

0� − 
(yn)
2 + �
(yn)yn. (23)

If we treat the feedback nonlinearity as a new block yn+1 =

(yn), and note from (23) that it satisfies (18) with �n+1=�, we
obtain from Corollary 1 and the ensuing discussion the stability
condition:

��1 . . . �n < sec(�/(n + 1))(n+1). (24)

This condition, however, may be conservative because it does
not exploit the static nature of the feedback nonlinearity. Indeed,
using the Popov criterion, Tyson and Othmer (1978) obtained a
relaxed condition in which n + 1 in the right-hand side of (24)
is reduced to n when Hi’s are first-order linear blocks Hi(s) =
�i/(s + �i ) and the feedback nonlinearity is time invariant.

To extend this result to the case where Hi’s are OSP as in
(15), we recall that the main premise of the Popov criterion is
that a time-invariant sector nonlinearity, when cascaded with
a first-order, stable, linear block preserves its passivity proper-
ties. This means that, by only restricting Hn to be linear, and
combining it with the feedback nonlinearity as in Fig. 3, the re-
laxed sector condition of Tyson and Othmer (1978) holds even
if H1, . . . , Hn−1 are nonlinear:

Corollary 2. Consider the feedback interconnection in Fig.
2 where Hi, i = 1, . . . , n − 1, satisfy (15) with C1 storage
functions Vi and �i > 0, Hn is a linear block with transfer
function

Hn(s) = �n

s + �n

, �n > 0, �n > 0, �n := �n

�n

, (25)

the feedback nonlinearity 
(·) is time invariant, satisfies the
sector property (22), and


(y) = 0 ⇒ y = 0. (26)

Under these assumptions, if

��1 . . . �n < sec(�/n)n, (27)

then there exists a Lyapunov function of the form

V =
n−1∑
i=1

diVi+dn

∫ yn

0

(�) d�, di > 0, i=1, . . . ,n, (28)

satisfying

V̇ � − 	|(y1, . . . , yn−1, 
(�nyn))|2

for some 	 > 0.

Fig. 2. The feedback interconnection for Corollary 2.

Fig. 3. An equivalent representation of the feedback system in Fig. 2. When
Hn is a linear block Hn(s)=�n/(s + �n), its series interconnection with the
[0,�] sector nonlinearity 
(·) constitutes a dynamic block H̃n which satisfies
the OSP property (15) with �̃n = �(�n/�n).

Proof. Rather than treat Hn and 
(·) as separate blocks, we
combine them as in Fig. 3:

H̃n :
{

ẏn = −�nyn + yn−1,

ỹn = 
(�nyn),
(29)

and define

Vn = �

�n

∫ �nyn

0

(�) d�, (30)

which is positive definite from (22) and (26), and satisfies

V̇n = −��nyn
(�nyn) + ��n
(�nyn)yn−1. (31)

Because −��nyn
(�nyn)�−
(�nyn)
2 from (23), we conclude

V̇n � − 
(�nyn)
2 + ��n
(�nyn)yn−1

= − ỹ2
n + ��nỹnyn−1, (32)

which shows that H̃n is OSP as in (15), with �̃n = �n�. The
result then follows from Corollary 1. �

Corollary 2 can be further generalized to the situation where
other nonlinearities exist in between the blocks Hi , i=1, . . . , n,
in Fig. 2. If such a nonlinearity is preceded by a first-order
linear block then the two can be treated as a single block, thus
reducing n in the right-hand side of (6).
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5. A class of nonlinear cyclic systems

We now study the system

ẋ1 = −a1(x1) − bn(xn),

ẋ2 = −a2(x2) + b1(x1),
...

ẋn = −an(xn) + bn−1(xn−1), (33)

which encompasses the linear system (2) where ai(xi) = �ixi

and bi(xi) = �ixi . Using the stability criterion of Corollary
1 and the construction of storage functions as in Corollary 2
from integrals of nonlinear interconnection terms, we obtain
the following result:

Corollary 3. Consider system (33) where ai(·) and bi(·) are
continuous functions satisfying

xiai(xi) > 0, xibi(xi) > 0 ∀xi �= 0, (34)

and suppose there exist constants �i > 0 such that

bi(xi)

ai(xi)
��i ∀xi �= 0. (35)

If these �i’s satisfy (6) then the equilibrium x = 0 is asymptot-
ically stable. If, further, the functions bi(·) are such that

lim|xi |→∞

∫ xi

0
bi(�) d� = ∞, (36)

then x = 0 is globally asymptotically stable.

In this corollary we only assumed continuity for ai(·)
and bi(·), which does not guarantee uniqueness of solutions.
Uniqueness, however, is not essential for asymptotic stability
because we construct a Lyapunov function in the proof, from
which we can obtain stability and convergence estimates that
apply uniformly to all solutions.

Proof of Corollary 3. We view system (33) as the feedback
interconnection of Fig. 1 where the ith block is now given by

Hi :
{

ẋi = −ai(xi) + ui,

yi = bi(xi).
(37)

To show that this Hi is OSP as in (15) we let

Vi(xi) = �i

∫ xi

0
bi(�) d�, (38)

and note that it yields

V̇i = −�ibi(xi)ai(xi) + �ibi(xi)ui . (39)

We next multiply both sides of (35) by bi(xi)ai(xi) which is
nonnegative from (34), and obtain the inequality

−�ibi(xi)ai(xi)� − bi(xi)
2 (40)

which, when substituted in (39), results in the OSP estimate
(15). Asymptotic stability then follows from Corollary 1 with
the Lyapunov function

V =
n∑

i=1

diVi =
n∑

i=1

di�i

∫ xi

0
bi(�) d�. (41)

If (36) holds then this Lyapunov function is proper and, thus,
proves global asymptotic stability. �

6. Extension to systems with nonnegative state variables

The motivation for the earlier studies (Tyson & Othmer,
1978; Thron, 1991) is a sequence of biochemical reactions in
which the end product inhibits the first reaction, thus yielding
the cyclic structure studied in this paper. In such reaction mod-
els the state variables represent concentrations of substances,
which are nonnegative quantities. We now extend the result
of the previous section to system (1) where the state vector �
evolves in the positive orthant Rn

�0, and fi(·) and gi(·) are
continuous functions satisfying the following assumptions:

(A1) For all i = 1, . . . , n, fi(0) = 0 and

fi(�i )�0, gi(�i )�0 ∀�i �0. (42)

(A2) There exists a unique equilibrium �∗ with �∗
i �0, and

∀�i �= �∗
i

(�i − �∗
i )(fi(�i ) − fi(�

∗
i )) > 0, i = 1, . . . , n, (43)

(�i − �∗
i )(gi(�i ) − gi(�

∗
i )) > 0, i = 1, . . . , n − 1, (44)

(�n − �∗
n)(gn(�n) − gn(�

∗
n)) < 0. (45)

(A3) There exist constants �i > 0 such that ∀�i �= �∗
i

gi(�i ) − gi(�∗
i )

fi(�i ) − fi(�∗
i )

��i , i �= n, (46)

− gn(�n) − gn(�∗
n)

fn(�n) − fn(�∗
n)

��n. (47)

Assumption (A1) insures invariance of the positive orthant
Rn

�0. To extend Corollary 3 to this system we note that the
change of variables

xi := �i − �∗
i (48)

brings (1) into the form (33), where

ai(xi) := fi(�i ) − fi(�
∗
i ), i = 1, . . . , n, (49)

bi(xi) := gi(�i ) − gi(�
∗
i ), i = 1, . . . , n − 1, (50)

bn(xi) := −gn(�n) + gn(�
∗
n) (51)

satisfy (34) and (35) from assumptions (A2) and (A3), respec-
tively. Combining the Lyapunov arguments of Corollary 3 with
the invariance of the positive orthant we obtain the following
result:
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Corollary 4. Consider system (1) and suppose assumptions
(A1)–(A3) hold. If the �i’s in (A3) satisfy (6) then the equilib-
rium � = �∗ is asymptotically stable. If, further, the functions
gi(·) are such that

lim
�i→∞

∫ �i

�∗
i

gi(�) d� = ∞, (52)

then � = �∗ is asymptotically stable with region of attraction
Rn

�0.

A sufficient condition for (49)–(51) in (A2) to hold is that
the functions fi(·), i = 1, . . . , n, and gi(·), i = 1, . . . , n − 1,
be strictly increasing and gn(·) be strictly decreasing. Under
this assumption, the sector properties (49)–(51) hold regardless
of the value of �∗ and, thus, knowledge of the equilibrium is
not needed to verify (49)–(51). Furthermore, this assumption
also guarantees that an equilibrium, when it exists, is unique as
stipulated in (A2). To see this, consider (1) with gn(�n) in the
first equation replaced by an arbitrary input u. Then, since the
remaining fi(·)’s and gi(·)’s are strictly increasing, there exist a
subset of the input space and a map defined on this subset from
u to � that annihilates the right-hand side of (1). Because this
map defines an increasing function from u to �n, and because
the feedback u=gn(�n) is decreasing, their graphs can intersect
at most one point and, hence, the closed-loop equilibrium must
be unique.

Similarly, it is not difficult to show that assumption (A3)
holds if fi’s and gi’s are continuously differentiable and, satisfy
for all �i �0 the infinitesimal inequalities

�gi(�i )

��i

�0,
�fi(�i )

��i

�0, i �= n, (53)

�gn(�n)

��n

�0, (54)

�gi(�i )

��i

��i

�fi(�i )

��i

, i �= n, (55)

−�gn(�n)

��n

��n

�fn(�n)

��n

. (56)

Example. The reaction sequence

S0 → S1 → S2 → · · · → Sn →
in which the concentration of S0 is kept constant, and the rate
of formation of S1 from S0 is inhibited by Sn, gives rise to a
dynamic model of the form (1) where �i denotes the concen-
tration of Si , and the functions fi(·) and gi(·) satisfy (A1) and
(53)–(54). In particular, gn(�n) implicitly depends on the con-
stant �0, and is a decreasing function of �n because it represents
the formation rate of S1 from S0, which is inhibited by Sn.

If there are no losses of the intermediate substances, that
is if fi(�i ) ≡ gi(�i ), i = 1, . . . , n − 1, then (55) holds with
�1 =· · ·= �n−1 =1. This means that, if (56) holds for all �n �0
with

�n < sec(�/n)n, (57)

and if an equilibrium exists then, from Corollary 4, it is asymp-
totically stable with region of attraction Rn

�0.
As an illustration, we apply this global stability criterion to

the following model studied in Thron (1991):

�̇1 = p1�0

p2 + �3
− p3�1, (58)

�̇2 = p3�1 − p4�2, (59)

�̇3 = p4�2 − p5�3

p6 + �3
, (60)

where p1, . . . , p6 are positive constants. Using

g3(�3) = p1�0

p2 + �3
and f3(�3) = p5�3

p6 + �3
(61)

to obtain a �3 as in (55), and applying (57) with n = 3 we get
the stability condition

�3 = p1�0

p5p6
max

{
1,

(
p6

p2

)2
}

< 8. (62)

This condition is tight because simulations reported in Thron
(1991, p. 390) with p1 =p2 =p5 =p6 =1, �0 =9 (which result
in �3 = 9 in (62) above) show unstable oscillations. Unlike the
local study in Thron (1991), our condition (62) ensures global
asymptotic stability and, furthermore, it is unchanged if the
linear reaction rates p3�1 and p4�2 in (58)–(60) are replaced
with arbitrary increasing functions f1(�1)=g1(�1) and f2(�2)=
g2(�2), respectively.

7. The shortage of passivity in a cascade of OSP systems

In this section we present a result of independent interest that
concerns the cascade interconnection of OSP systems. When
the blocks H1, . . . , Hn each satisfy the OSP property (15),
their cascade interconnection in Fig. 4 inherits the sum of their
phases and loses passivity. The following corollary to Theorem
1 quantifies the “shortage” of passivity in such a cascade:

Corollary 5. Consider the cascade interconnection in Fig. 4.
If each block Hi satisfies (15) with a C1 storage function Vi

and �i > 0, then for any


 > �1 . . . �n cos(�/(n + 1))(n+1), (63)

the cascade admits a storage function of the form (14) satisfying

V̇ � − 	|y|2 + 
u2 + uyn (64)

for some 	 > 0.

Inequality (64) is an IFP property (Sepulchre et al., 1997)
where the number 
 represents the gain with which a feedfor-
ward path, if added from u to yn in Fig. 4, would achieve pas-
sivity. Corollary 5 thus shows that the cascade of OSP systems

Fig. 4. The cascade interconnection for Corollary 5.
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(15) in which �i > 0 represents an “excess” of passivity, satis-
fies the IFP property (64) with a “shortage” characterized by
(63).

Proof of Corollary 5. Using (14), (15), and substituting ui =
yi−1, i = 2, . . . , n, we rewrite (64) as

d1(−y2
1+�1y1u)+

n∑
i=2

di(−y2
i +�iyiyi−1)+


(
−u2 − 1



uyn

)

� − 	|y|2. (65)

To show that di > 0, i = 1, . . . , n, satisfying (65) indeed exist,
we define

Ã =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 · · · 0 −1




�1 −1
. . . 0

0 �2 −1
. . .

...
...

. . .
. . .

. . . 0
0 · · · 0 �n −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(66)

and note that the left-hand side of (65) is

[u yT]D̃Ã

[
u

y

]
, (67)

where D̃ := diag{
, d1, . . . , dn}. Because Ã is of the form (2)
with dimension (n+1), an application of Theorem 1 shows that
a diagonal D̃ rendering (67) negative definite exists if and only
if (�1 . . . �n(1/
)) < sec(�/(n+1))(n+1). Because this condition
is satisfied when 
 is as in (63), we conclude that such a D̃ > 0
exists and, thus, (64) holds. �

8. Conclusions

The secant condition (3) exploits gain and phase information
simultaneously, and proves stability in situations where small-
gain and passivity theorems are not applicable. In this paper we
gave several extensions of this condition to classes of nonlinear
systems. The key result was a diagonal stability proof, which
was used in the rest of the paper as a tool for constructing
Lyapunov functions. Further attempts to bridge the gap between
passivity and small-gain theorems would be of great interest in
nonlinear systems research.
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