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Cancer is a highly heterogeneous disease, exhibiting spatial and
temporal variations that pose challenges for designing robust
therapies. Here, we propose the VEPART (Virtual Expansion of
Populations for Analyzing Robustness of Therapies) technique as
a platform that integrates experimental data, mathematical mod-
eling, and statistical analyses for identifying robust optimal treat-
ment protocols. VEPART begins with time course experimental
data for a sample population, and a mathematical model fit to
aggregate data from that sample population. Using nonparamet-
ric statistics, the sample population is amplified and used to cre-
ate a large number of virtual populations. At the final step of
VEPART, robustness is assessed by identifying and analyzing the
optimal therapy (perhaps restricted to a set of clinically realizable
protocols) across each virtual population. As proof of concept, we
have applied the VEPART method to study the robustness of treat-
ment response in a mouse model of melanoma subject to treat-
ment with immunostimulatory oncolytic viruses and dendritic cell
vaccines. Our analysis (i) showed that every scheduling variant of
the experimentally used treatment protocol is fragile (nonrobust)
and (ii) discovered an alternative region of dosing space (lower
oncolytic virus dose, higher dendritic cell dose) for which a robust
optimal protocol exists.

robust therapies | cancer treatment | mathematical modeling |
virotherapy | immunotherapy

H eterogeneity is a defining feature of cancer (1, 2). Inter-
patient heterogeneity manifests clinically in variable dis-
ease progression and treatment response between patients with
the same diagnosis, whereas intrapatient heterogeneity describes
variations that exist between tumor cells in a single patient.
Intrapatient heterogeneity can be broken down further into
intratumor heterogeneity, intrametastatic heterogeneity, inter-
metastatic heterogeneity, and temporal heterogeneity (2, 3).
Intratumor heterogeneity is evident through the presence of mul-
tiple genetic subclones within a primary tumor (2), which have
even been shown to exist in spatially distinct regions of the pri-
mary tumor (4). Intrametastatic heterogeneity is similar to intra-
tumor heterogeneity, but describes heterogeneity within a sin-
gle metastatic lesion instead of within the primary tumor (2).
Intermetastatic heterogeneity, on the other hand, describes vari-
ations in subclones between different metastases in the same
patient (2). Finally, temporal heterogeneity is defined as changes
that take place in the tumor over time, whether they are a
result of genomic instability, natural selection, non-Darwinian
evolution, or selective pressures imposed by treatment (4-6).
Note that, in each case, heterogeneity need not be genetic
but may also be epigenetic, phenotypic, or microenvironmental
(2,7,8).

For decades, cancer patients have been treated using standard
of care, meaning they receive the best known treatment that has
been deemed as efficacious and safe in epidemiological studies
(9). However, in the face of such interpatient and intrapatient
heterogeneity, standard of care fails to induce a strong antitumor
response in some patients, and often loses its efficacy with time
(7, 9). The notion of personalized medicine has emerged as an
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alternative to standard therapy, and holds the promise of improv-
ing clinical care by using patient-specific data to tailor treatment
protocols (5, 7, 9-11). The potential benefits of this approach
are multifaceted, and include the expectation of a strong patient
response with a minimal toxicity profile (5, 9, 10).

As heterogeneity presents challenges for standard of care ther-
apy, it also poses challenges for personalized therapy. If a thera-
peutic protocol is individually tailored based on measurements
from one region of a patient’s tumor at a particular pretreat-
ment time point, it is nontrivial to determine how regions of the
primary tumor distinct from the biopsy region, not to mention
metastatic legions, will respond to that protocol. Given that both
standard of care and personalized cancer treatment protocols
must confront the challenge of high levels of variability between
and within patients, the design of robust therapeutic protocols
is of the utmost importance. A robust treatment should result
in the same qualitative response despite a reasonable level of
uncertainty (12). In other words, it would be expected to exhibit
an antitumor response across a large fraction of patients, and
would be more likely to be effective across the range of spatial
and temporal variations observed within an individual patient. In
this work, we propose to study treatment robustness through a
technique that we call Virtual Expansion of Populations for Ana-
lyzing Robustness of Therapies (VEPART, for short). VEPART
provides a platform for assessing the robustness of treatment
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protocols by coupling experimental data with statistical tech-
niques and mathematical modeling.

As a methodology, VEPART is distinct from important eff-
orts to analyze dynamical system robustness to perturbations,
whether they be perturbations in parameter values, initial con-
ditions, or the functional forms used in the mathematical model
(12). Of these forms of robustness for dynamical systems, the
parameter robustness problem is the most well studied; see,
for instance, refs. 12-16. Parameter robustness in a mathemati-
cal model has important consequences, as it lends support that
conclusions drawn from the model can be trusted in a real-
world setting where noise is inevitable. Although not as well
understood, others have considered the questions of robustness
to change in initial conditions (17, 18), and to change in the
dynamical functions (19-21). These considerations are also of
paramount importance when assessing the reliability of model
predictions.

Comparatively, VEPART is a data-driven approach for study-
ing robustness to an external control, such as a treatment pro-
tocol. The starting ingredients for the VEPART method are
time course data for multiple individuals in a sample popula-
tion, together with a parametric mathematical model that has
been validated by fitting to aggregate data from this population.
VEPART proceeds by amplifying the sample population using
nonparametric statistical techniques, eventually resulting in the
generation of a large number of “virtual populations.” These
virtual populations, each defined by a parameterization of the
mathematical model, can be thought of as statistically plausible
subsets of the full patient population.

Virtual populations have been used by others, particularly in
the field of quantitative systems pharmacology (16, 22-30). Over-
whelmingly (see, for instance, refs. 16, 23, 27, and 28), these vir-
tual populations have been used to tackle the previously men-
tioned challenge of uncertainty in model parameters. From this
perspective, patients in a virtual population can be used to under-
stand how differences in disease manifestation occur, and to
propose mechanisms for variable drug response. As an exam-

Data Collection Step: Collect

ple, virtual populations have been used to demonstrate the clin-
ical importance of accounting for the correlated expression of
different metabolic enzymes (26), and to provide mechanistic
explanations for variations in response to a drug for rheumatoid
arthritis (27).

In some cases, virtual populations have been exploited to make
therapeutic design recommendations. For instance, Wang et al.
(24) describe the use of virtual populations to select a dose for a
phase 2b clinical trial, and Valitalo et al. (30) used virtual popu-
lations to propose a revised dosing guideline for the use of two
antibiotics in neonates. Another particularly relevant example is
the work of Kansal and Trimmer (22), which discusses how vir-
tual populations (designed through weighting of virtual patients)
can be used to optimize a target outcome across virtual popula-
tions. No details on how to practically achieve such a goal are
given in ref. 22, although a case study is mentioned for using vir-
tual populations to select clinical trial endpoints and to optimize
clinical trial design.

These virtual population methods require dozens to thousands
of samples to create virtual populations that are representative
of the target population (23, 26, 28-30). On the other hand,
the VEPART procedure proposed herein works with very small
amounts of data, and “expands” the available data in an effort
to model the heterogeneity expected in the full population. Not
only can VEPART create virtual populations despite limited
amounts of data, it can also handle the situation in which the data
come from different patients and experimental trials. This abil-
ity is in contrast to many existing virtual population approaches
in which all variables measured come from the same set of
individuals.

In this paper, we describe how VEPART also goes beyond
the standard use of virtual populations for studying paramet-
ric uncertainty, and instead utilizes these virtual populations to
assist in designing therapeutic protocols. In particular, we will
systematically detail how the VEPART procedure (summarized
in Fig. 1) moves from a small amount of data to a virtual pop-
ulation pool to a therapeutic robustness analysis. This process
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Fig. 1. Schematic of VEPART method for analyzing the robustness of optimal therapeutic protocols.
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requires the identification of the optimal protocol (possibly
among a list of clinically viable options) for each of the virtual
populations, followed by an analysis of responses to the optimal
protocol(s) across the virtual populations.

Case Study: Immunoenhanced Oncolytic Viruses with
Dendritic Cell Vaccines

As a case study, we have applied this methodology to the experi-
mental data of Huang et al. (31) on a mouse model of melanoma
treated with oncolytic viruses (OVs) and dendritic cell (DC) vac-
cines. OVs are standard viruses genetically engineered to selec-
tively replicate in cancer cells. Upon integration into a tumor cell,
OVs replicate and, as part of their normal life cycle, lyse the cell
(32). Lysis results in the release of more OVs that can infect addi-
tional tumor cells, spreading an infection throughout the tumor
that, in theory, results in tumor regression while sparing normal
cells. These OVs can be further genetically enhanced to act as
a vector for delivering therapeutic genes to the tumor site (32).
In ref. 31, an oncolytic virus, the adenovirus (Ad) in particular, is
engineered to deliver genes that boost the immune system’s ability
to identify, target, and kill cancer cells. The transgenes of interest
in this study are 4-1BB ligand (4-1BBL) and interleukin (IL)-12;
4-1BBL s a costimulatory molecule expressed on antigen present-
ing cells. Binding of 4-1BBL to its receptor, 4-1BB, promotes the
development and expansion of type-1 T helper cells and cytolytic
effector T cells (31). IL-12 is a cytokine that strongly promotes the
differentiation of naive CD4* T cells to type-1 T helper cells (33).

Huang et al. (31) have demonstrated that oncolytic aden-
oviruses can successfully infect cancer cells, locally deliver ther-
apeutic genes, and cause tumor regression in their mouse model
(Fig. 24). Further, the therapy has been shown to have mini-
mal side effects, as lysis and high expression of therapeutic genes
were restricted to cancer cells (31). The efficacy of this treat-
ment protocol has been shown to be enhanced by the use of DC
vaccines (Fig. 2B). DCs are antigen-presenting cells that stimu-
late naive T cells and generate memory T cells (31). Huang et al.
(31) harvested these DCs from the bone marrow of mice, pulsed
them ex vivo with tumor-associated antigens, and delivered them
intratumorally to melanoma-bearing mice. This treatment exhib-
ited antitumor activity in isolation, and potent antitumor effects
in combination with oncolytic adenoviruses carrying 4-1BBL
and IL-12 (31), which we will refer to as Ad/4-1BBL/IL-12 for
brevity (Fig. 2B).
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Fig. 2.

We have previously developed a mathematical model that
describes well the data from Huang et al. (31) in all experi-
mentally explored situations (Fig. 2): treatment with only OVs,
OVs enhanced with one or more immunostimulatory molecules
(4-1BBL, IL-12, or both), DC vaccines, and DC vaccines coupled
with Ad/4-1BBL/IL-12 (34, 35). In this prior work, we used the
best-fit parameters to address the question of the optimal treat-
ment ordering when administering three doses of Ad/4-1BBL/IL-
12 with three doses of the DC vaccine. We predicted that exactly
one strategy, front loading the cytokine-bearing OVs (OV-OV-
OV-DC-DC-DC), resulted in tumor eradication (35). However,
upon further exploration, we found that the model displayed some
unintuitive responses to altering the dosing order. For instance,
the ordering of the protocols from maximal to minimal tumor
response displayed no discernible pattern (35). A striking exam-
ple of this phenomenon was when the optimal protocol became
the worst-case scenario by simply moving the DC dose on the
last day of treatment to day one (DC-OV-OV-OV-DC-DC).
This extreme sensitivity to dosing order could be explained by our
finding that the doses of Ad/4-1BBL/IL-12 and DCs used in the
experiments of Huang et al. (31) were near a bifurcation point in
our mathematical model. As a result, slightly altering the dose or
sequence drastically changed the efficacy of the protocol (35).

Herein, we aim to gain insight into the unintuitive behav-
ior observed in our single-population optimization study by per-
forming a robustness analysis using VEPART. Specifically, we
generated a large number of bootstrap replicates by sampling
with replacement the experimental data in Huang et al. (31). As
detailed in Computational Methods, pseudorandom sampling of
the posterior distributions for the fit parameters approximated
from these bootstrap replicates was used to generate 1,000 vir-
tual populations. The procedure for finding the optimal dosing
sequence (among a subset of protocols) was repeated for each
virtual population. This process allows us to determine the prob-
ability that different protocols will successfully result in tumor
eradication, and further allows us to compute the likelihood that
a particular sequencing of drugs will be optimal across the vir-
tual populations. We undertook this analysis in three different
regions of dosing space: (i) at the experimentally used dose (31),
(if) at a 50% higher dose of Ad/4-1BBL/IL-12 but a 50% lower
dose of DC than used in ref. 31, and (iii) at a 50% lower dose
of Ad/4-1BBL/IL-12 but a 50% higher dose of DC than used in
ref. 31.
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Experimental data from Huang et al. (31) in which mice with B16-F10 subcutaneous tumors are intratumorally injected with different treatments.

Data points represent mean tumor volume + SE in each group of six to nine mice. All injections occur on days 0, 2, and 4, unless otherwise specified. (A)
Treatments include injection of PBS (control), injection of 10'° OVs, injection of 10" OVs carrying the 4-1BBL transgene, injection of 5 x 10° OVs carrying
the IL-12 transgene, and injection of 5 x 10° OVs carrying both the 4-1BBL and IL-12 transgene. (B) Treatments include injection of PBS, injection of 10¢ DCs
on days 1, 3, and 5, injection of 2.5 x 10° Ad/4-1BBL/IL-12, and injection of 2.5 x 10° Ad/4-1BBL/IL-12 on days 0, 2, and 4 along with 10 DCs on days 1, 3,
and 5. Also shown are the best-fit solution curves from the model presented in Egs. 1-6 using the fitting procedure detailed in this work.
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This robustness analysis uncovered something unexpected:
Every scheduling variant of the experimentally used treat-
ment protocol that involves administering three doses of Ad/4-
1BBL/IL-12 and DCs is fragile (nonrobust). To detail, the pro-
tocol determined to be optimal at the experimentally used dose
(OV-0OV-0OV-DC-DC-DC) only results in tumor eradication in
30% of the virtual populations. All suboptimal protocols are even
less effective. The regime of higher OV and lower DC dose also
proved to be fragile, as the optimal protocol leads to tumor erad-
ication in only 43% of the virtual populations. On the contrary,
a robust optimal protocol exists when treating with higher doses
of DCs and lower doses of OVs than those used by Huang et al.
(31). In this dosing regime, the protocol of front loading the DCs
(DC-DC-DC-0OV-0OV-0V) not only proved to be optimal in all
virtual populations but also resulted in tumor eradication in more
than 84% of those virtual populations. This application serves as
proof of concept that computational robustness studies, under-
pinned by experimental data, can aid in identifying treatment pro-
tocols predicted to have strong antitumor properties despite inter-
patient (and intrapatient) heterogeneity.

Results

The full system of six differential equations described in Egs. 1—-
6 includes 14 parameters. Previously, we found that the value of
7 of the 14 parameter values (viral production rate, infected cell
lysis rate, viral decay rate, naive and cytotoxic T-cell decay rates,
base T-cell killing rate, and T-cell differentiation rate) could be
reasonably approximated from the literature (Table S1), whereas
the other 7 could not. Therefore, it is these 7 parameters that were
fit to give the best-fit solution curves to the experimental data, as
shown in Fig. 2.

The best-fit parameters for the full model (Ad/4-1BBL/IL-
12 + DCs), determined using the hierarchical scheme detailed in
Computational Methods, are found in Table S2 in SI Results. For
reference, Table S2 also compares the best-fit parameters found
herein to those previously found using a different algorithm and a
slightly different metric of fit (35). Finally, Table S2 includes the
95% credible interval for each fit parameter, as calculated from
the approximated posterior distributions (Fig. S1). These 95%
credible intervals are compared to the results of a local sensitivity
analysis, as shown in Figs. S2 and S3 of SI Results.

Robustness at Intermediate OV and DC Dose. Here we focus on
identifying and classifying the response and robustness to 20 treat-
ment protocols (all possible combinations of Ad/4-1BBL/IL-12
with DCs given at three doses a piece, separated by 1 d) at the
experimentally used dose of 2.5 x 10° OVs per dose and 10° DCs
per dose (31); we will refer to this as the “intermediate OV/DC
dose” going forward. Our previous analysis revealed extreme sen-
sitivity to parameters at this dosage (35), so here we expand
upon that observation and undertake an exploration of treatment
robustness using the VEPART approach.

To this end, we generate 1,000 virtual populations by pseudo-
randomly sampling the posterior distributions on the fit parame-
ters (Fig. S1), as described in Computational Methods. These vir-
tual populations are alternative parameterizations to the model
in Eqgs. 1-6 that, when pooled together, in theory capture the
underlying heterogeneity in the full patient population (16). The
20 treatment orderings considered in ref. 35 were administered
to each of these virtual populations, allowing us to determine a
“population-level” response to drug ordering at the intermediate
OV/DC dose (Fig. 3).

Fig. 34 demonstrates the extent to which the virtual popula-
tions respond differently to the same treatment protocol. For a
fixed ordering of the drugs (specified on the z axis), we see the
frequency with which each protocol ranks in positions 1 through
20, with 1 being the optimal treatment ordering and 20 being the
worst. Little consistency is observed in the ranking of the differ-
ent treatment protocols across virtual populations. For instance,
65% of the treatment protocols rank in both the top two and
bottom two positions in some of the virtual populations with
nonzero probability (Fig. 34). That number grows to 90% if we
consider those that can rank in both the top and bottom five
positions (Fig. 34).

Another indication of the nonrobust (fragile) response across
virtual populations at this dose is that, on average, each of the
20 treatment protocols achieve over 17 different rankings. As
an example, the previously found optimal protocol of OV-OV-
OV-DC-DC-DC achieves every rank between 1 and 20, with the
exception of rank 13 (Fig. 34). This protocol is most likely to rank
in the top position, as it ranks in position 1 for 72.2% of the vir-
tual populations (Fig. 34). However, the next most likely ranking
for this protocol is in the last position, as it ranks in position 20
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Fig. 3. VEPART output at intermediate OV and DC doses. The x axis indicates the treatment protocol, with “V" representing Ad/4-1BBL/IL-12 treatment
and “D" representing DC treatment on a given day. (A) For each of the 20 treatment protocols, we see the frequency at which it ranks in positions 1 to
20. Observe that there is little consistency across the virtual populations: On average, each of the treatment protocols can achieve over 17 different ranks.
(B) The frequency of virtual populations for which the specified treatment protocol leads to tumor eradication (blue) or tumor escape (yellow).
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for 13.8% of the virtual populations (Fig. 34). The fact that the
same protocol is the best case for some virtual populations and yet
is the worst case for others strongly suggests the originally identi-
fied optimal protocol is not robust.

Because there was minimal support for a given treatment proto-
col to achieve a consistent ranking across the virtual populations,
we then sought to address a simpler question: Do certain protocols
result in tumor eradication in a large fraction of the virtual pop-
ulations, independent of where they appear on the rank-ordered
list of schedules? Consistent with the lack of a robust response
at this dose, we found no protocols that lead to eradication in a
majority of the virtual populations. Instead, we observed that the
treatment that ranked as the top protocol most frequently (OV-
OV-0OV-DC-DC-DC) only results in tumor eradication in 30%
of the virtual populations (Fig. 3B). All other protocols have a
lower likelihood of tumor eradication, lending further evidence
to the claim that the tumor eradication response in this dosing
regime is fragile.

Digging more deeply into the binary classification of treatment
protocols, we found that treatment response is more closely tied to
the virtual population under consideration than to the treatment
protocol itself (order in which the doses are given). By sorting our
data by virtual population (instead of treatment protocol, as done
in Fig. 3), we find that just over 76% of the virtual populations have
the same binary response (tumor eradication or tumor escape) to
all 20 treatment protocols tested. In particular, our simulations
reveal that tumor escape will occur independent of the treatment
protocol used in just over 66% of the virtual populations. Further,
tumor eradication will occur independent of the treatment proto-
colin 10% of the virtual populations. Because the majority of vir-
tual populations have a binary response (eradication or escape)
independent of the dosing order, we learn that the parameters
in the virtual population, and not the treatment order itself, are
really driving the predictions in the intermediate OV/DC region
of dosing space.

To conclude, in this region of dosing space treatment response
can vary significantly across virtual populations. None of the
treatment protocols, including the optimal one of front loading
the OVs, robustly result in tumor eradication across the virtual
populations. The situation only gets messier when we consider
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the frequency with which each protocol achieves different rank-
ings (from top protocol to worst protocol). Finally, the obser-
vation that treatment response is driven by the parameters that
describe a virtual population, rather than the dosing order itself,
further suggests that optimality predictions at this dosage may
be of limited value. Because the population-level eradication
response is fragile, we conclude that the combination of giving
three doses of 2.5 x 10° Ad/4-1BBL/IL-12 and three doses of 10°
DCs is not the ideal drug dosage to administer in this experi-
mental system.

Robustness at Higher OV and Lower DC Dose. Because the inter-
mediate OV/DC dose was found to be fragile, we next sought to
analyze the robustness of the 20 protocols at a 50% higher OV
dose (3.75 x 10° versus 2.5 x 10° OVs per dose) and a 50% lower
DCdose (0.5 x 10° versus 10° DCs per dose). Like before, robust-
ness of a protocol is assessed by measuring treatment efficacy
across all virtual populations generated by pseudorandomly sam-
pling the approximated posterior distributions for the fit param-
eters, as detailed in Computational Methods.

Similar to what was observed in the intermediate OV/DC dose,
no treatment protocols result in a robust eradication response
across the virtual populations (Fig. 44). Although the protocol
of front loading OVs consistently ranks as the top treatment
across all virtual populations (Fig. 4B), the likelihood of tumor
eradication using this protocol is only 43%. This outperforms
the same protocol (which was also optimal) in the intermedi-
ate OV/DC dosing regime by 13%), but it still leaves over half of
the virtual populations unsuccessfully treated. Further, all other
protocols have a lower likelihood of eradication (with OV-OV-
DC-OV-DC-DC being the only other one to cross the 33%
threshold), suggesting that the tumor eradication response in this
dosing regime is fragile.

That said, some responses in this dosing regime are robust,
just not when it comes to the desired outcome of tumor eradica-
tion. Sixty percent of the protocols result in tumor escape in more
than 90% of the virtual populations, and front loading the DCs
results in treatment failure in 100% of the virtual populations (Fig.
4A4). Further, unlike in the intermediate OV/DC regime, there is
little variation in the rank each treatment protocol can achieve
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VEPART output at high OV/low DC doses. The x axis indicates the treatment protocol. (A) The frequency of virtual populations for which the

specified treatment protocol leads to tumor eradication (blue) or tumor escape (yellow). (B) For each of the 20 treatment protocols, we see the frequency at
which it ranks in positions 1 to 20. Observe that there is strong consistency across the virtual populations, with each protocol achieving a dominant ranking

and other rankings only near that dominant one.
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across the virtual populations (Fig. 4B). This robust ranking can be
explained by the fact that tumor response at this dosage is driven
by the protocol itself, and not by the particular parameters in a
virtual population. So, although several robust treatment proto-
cols have been identified in this dosing regime, it is the undesir-
able tumor escape response that is robust. Therefore, in the high
OV/low DC case, we predict that no treatment protocol will have
robust antitumor activity in the face of interpatitent and intrapa-
tient heterogeneity.

Robustness at Lower OV and Higher DC Dose. We next sought
to explore whether a robust tumor eradication response exists
for any of the 20 protocols when treating at a 50% lower OV
dose (1.25 x 10° versus 2.5 x 10° OVs per dose) and a 50%
higher DC dose (1.5 x 10° versus 10° DCs per dose). As done
in the two other regions of dosing space, robustness of a proto-
col is assessed by measuring treatment efficacy across all virtual
populations.

We began by exploring whether any dosing protocols result in
the eradication of a large fraction of the virtual populations. We
find that 30% of the treatment protocols lead to tumor eradication
in at least half of the virtual populations (Fig. 54). This finding
stands in stark contrast to both the intermediate OV/DC dose and
the low OV/high DC dose. In those cases, not one protocol could
result in tumor eradication in half of the virtual populations (Figs.
3B and 44).

As our intention is to find protocols that result in a robust
eradication response across virtual populations, we next nar-
rowed our focus to protocols that cause tumor eradication in
70% or more of the virtual populations. Three protocols were
found that satisfy this criterion, and they share one common fea-
ture: The first two doses are always DCs, meaning the proto-
col is of the form DC-DC-X-X-X-X. Further, the earlier the
third DC dose was given in the treatment protocol, the bet-
ter the protocol performed across the virtual populations. Front
loading with DCs in the DC-DC-DC-OV-OV-0OV protocol
led to tumor eradication in 84.2% of the virtual populations
(Fig. 54). Moving the third DC dose to later in the schedule
decreases the likelihood of tumor eradication by the protocol:
A DC dose at day 4 results in 76.9% eradication, one at day 5

results in 70.2% eradication, and one at day 6 results in 61.9%
eradication.

Not only do we see a robust eradication response for protocols
of the form DC-DC-X-X-X-X in this dosing regime, we also
find that the ranking of the protocols across the virtual popula-
tions is shockingly preserved (Fig. 5B). The most striking exam-
ple is that the schedule of front loading with DCs ranks as the
top protocol in all of the virtual populations. As can be calculated
from the data in Fig. 5B, each treatment protocol, on average, will
only rank in 4 of the 20 positions, and, overwhelmingly, the achiev-
able ranks are consecutive (e.g., DC-DC-OV-OV-DC-OV most
commonly ranks at position 3 but can also rank at positions 2 and
4). This finding is in stark contrast to the intermediate OV/DC
dosing regime, in which each protocol ranks in 17 of 20 positions,
on average. The lack of variation in the rank a treatment proto-
col can achieve across the virtual populations in the case of low
OV/high DC further supports our claim that treatment protocols
of the form DC-DC-X-X-X-X have a robust tumor eradication
response in this dosing regime.

Although of less interest, a pattern also emerges among those
protocols that administer Ad/4-1BBL/IL-12 on day 1. All of these
protocols result in a robust escape response, with escape occur-
ring in two thirds or more of the virtual populations (Fig. 54).
We observe that protocols that give OVs on the first 2 d per-
form very poorly, resulting in tumor eradication in less than 14%
of the virtual populations (Fig. 54). Further, with the excep-
tion of one protocol (OV-DC-DC-DC-OV-0V), all proto-
cols that administer an OV on day 1 have a lower probability
of tumor eradication than protocols that administer a DCon day 1.
To understand why this response occurs, note that, in this regime,
the dose of OV is 50% below the dose deemed to have a strong
tumor-killing effect with a reasonable toxicity profile in the experi-
mental system. Starting a treatment protocol with a relatively inef-
fective dose of OV increases the likelihood of tumor escape. On
the other hand, the optimal protocol administers high doses of
DC:s early in treatment, and these high doses can compensate for
the relatively low dose of OV administered. Although protocols
that front-load OVs would be avoided due to limited antitumor
efficacy, this finding further illustrates the robust behavior of sev-
eral of the treatment protocols in this region of dosing space.
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VEPART output at low OV/high DC doses. The x axis indicates the treatment protocol. (A) The frequency of virtual populations for which the

specified treatment protocol leads to tumor eradication (blue) or tumor escape (yellow). (B) For each of the 20 treatment protocols, we see the frequency at
which it ranks in positions 1 to 20. Observe that there is strong consistency across the virtual populations, with each protocol achieving a dominant ranking

and other rankings only near that dominant one.
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Discussion

In this work, we introduced the VEPART platform for assessing
the robustness of treatment protocols. VEPART implementation
begins with an experimental dataset describing the temporal evo-
lution of some variable (for instance, tumor volume) in response
to treatment in a sample population. A mathematical model (for
instance, a system of differential equations) is then developed
and fit to the experimental data. Once a reasonable mathemat-
ical model is attained, nonparametric statistical techniques are
used to amplify the sample population and generate a large num-
ber of virtual populations. One benefit of this approach is that
a large sample size, which can be difficult to attain experimen-
tally, is not required to create these virtual populations. At this
point, treatment optimization can be performed for each virtual
population.

Although optimization is restricted to a set of clinically real-
izable protocols in this work, once the virtual populations have
been created, classical tools from optimal control theory could
alsobe applied (36, 37). An excellent overview of applying optimal
control theory to cancer chemotherapy planning can be found in
ref. 38. The use of optimal control in the context of the VEPART
method would allow a more general optimal protocol to be identi-
fied, where “optimal” could be defined in many ways; for instance,
one could seek to minimize tumor volume at an endpoint, mini-
mize tumor volume over a time horizon, minimize drug concen-
tration, minimize toxicity, minimize some weighted average the
above, etc. (37-45). Further, this optimization can be performed
subject to various types of constraints; for instance, toxicity could
be introduced as a constraint on the amount of drug that can be
administered (37, 46). These approaches can be used to find the
optimal schedule for a single therapeutic agent, or for a mixture
of drugs as done in refs. 43 and 47. Further, from any such opti-
mal control problem, one could perform a sensitivity or elasticity
analysis (similar to the one performed herein; see SI Results) to
quantify how parametric changes influence the quality of an opti-
mal treatment protocol, as in ref. 48.

A variety of solution methods exist for solving these optimal
control problems (38). Analytical expressions for the optimal con-
trol can be obtained for simple models (see, e.g., ref. 49), and,
when the model is too complex to obtain an analytic expres-
sion, approximation techniques can be used (see, for instance,
ref. 43). When the optimal solution is computationally intractable,
heuristic optimization algorithms, including genetic algorithm
and simulated annealing can be used, as done in refs. 42, 47,
and 50. Independent of how the optimization is carried out, an
analysis of the optimal protocols across virtual populations using
the VEPART method allows for the quantification of protocol
robustness.

Related Work: Robust Cancer Therapies. In the cancer literature,
examples of analogous efforts for designing robust treatment pro-
tocols can be found in radiotherapy (51-54). The challenges in
designing a robust radiation treatment protocol can largely be
attributed to geometric uncertainty and interpatient variability
(54). Several studies have addressed the challenges posed by geo-
metric uncertainty, including factors such as organ motion, vari-
ations in treatment setup, patient positioning errors, and fluc-
tuations in machine output (54). For instance, Liu et al. (52)
used “worst-case robust optimization” to identify intensity mod-
ulated proton therapy (IMPT) plans that are robust to uncer-
tainties in the beamlet range and equipment setup. For the same
beam arrangement, they computed a different dose distribution
accounting for these uncertainties and compared this to the opti-
mal dose distribution. They applied this approach to the lung,
skull base and prostate and found that compared with IMPT plans
optimized using conventional (nonrobust) methods, their method
resulted in radiotherapy plans that are less sensitive to beamlet
range and setup uncertainties (52). In a series of papers, robust
optimization was used for planning intensity modulated radia-
tion therapy for lung cancer in the face of uncertainty caused by
breathing (51, 55, 56). This work introduces a data-driven model
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of uncertainty to describe variations in breathing motion and
allows the authors to determine the trade-off between ensuring
the tumor receives sufficient radiation and minimizing the dose
to normal tissue (51, 55, 56).

On the other hand, the work by Leder and colleagues (54)
was the first to consider the challenge that interpatient variability
poses to designing a robust radiotherapeutic protocol. They were
particularly concerned about the potential risk that the optimal
protocol (determined using the linear—quadratic model) may be
weakly efficacious for some individuals, or may cause high toxi-
city to at-risk organs for others. To address this robustness con-
cern, the authors used a stochastic optimization scheme in which
the unknown parameters are assumed to be random variables with
known distributions. The goal is to choose a dosing schedule (total
dose, number of fractions, dose per fraction, and treatment dura-
tion) for which the objective function attains a high level with a
given probability, and that the imposed constraints are also satis-
fied with a given probability. The authors found some important
differences in the optimal schedule that accounts for parameter
uncertainty compared with the optimal schedule found using the
nominal parameter values in the absence of uncertainty (54). Our
work is motivated by a similar robustness question to that consid-
ered by Leder and colleagues in ref. 54, although not restricted to
radiotherapy.

Case Study: Inmunoenhanced OVs with DC Vaccines. As a proof
of concept, we applied VEPART to explore the robustness of
treatment protocols that combine three doses of immunostimula-
tory OVswith three DC injections; to accomplish this, we worked
with the experimental data from Huang et al. (31). The nature of
this dataset previously led us to use a hierarchical method for fit-
ting the parameter values (Computational Methods), which posed
a challenge for directly fitting parameters for each of the virtual
populations. To overcome this challenge, we began by bootstrap-
ping the experimental data and using the best-fit parameters in
each bootstrap replicate to approximate the posterior probability
distribution for the parameters in our mathematical model (Eqs.
1-6). Pseudorandom sampling of these distributions, as detailed
in Computational Methods, allowed for the creation of our 1,000
virtual populations.

In this case study, 20 treatment protocols (all possible combina-
tions of Ad/4-1BBL/IL-12 with DCs given at three doses a piece,
separated by 1 d) were ranked across the virtual populations in
three regions of dosing space: (i) intermediate and experimentally
used OV/DC dose, (i) high OV/low DC, and (iii) high DC/low
OV. VEPART revealed that the first two dosing regimes we con-
sidered are fragile. To detail, the protocol of administering Ad/4-
1BBL/IL-12 on the first 3 d, and following up with a sequence of
DCs, was optimal for both the intermediate dose of OVs and DCs
and the high OV/low DC dose. However, in neither case did this
protocol cause a robust eradication response: The protocol only
causes tumor eradication in 30% of the virtual populations at the
intermediate dose, and in 43% of the virtual populations at the
high OV/low DC dose. As a consequence of VEPART’s nonro-
bust prediction, it is not expected that any ordering of three OVs
and three DCs at these two doses will exhibit a strong antitumor re-
sponse in the face of interpatient and intrapatient heterogeneity.

On the other hand, in the high DC/low OV region of dosing
space, a robust optimal protocol was identified. This protocol
administers DCs on the first 3 d, and follows up with a sequence of
Ad/4-1BBL/IL-12 on the last 3 d. Not only did this protocol rank
as optimal in all virtual populations, it also resulted in tumor erad-
ication in 84% of those virtual populations. Therefore, VEPART
predicts that, in the high DC/low OV region of dosing space, the
treatment that front-loads DCs will be effective across different
individuals in a population, and will be more robust to spatial and
temporal variations within an individual.

In future work, the use of approximate optimal control tech-
niques or heuristic optimization algorithms (38, 42) can extend the
current implementation of VEPART. In particular, we can opti-
mize over a wider range of protocols (for instance, considering

PNAS | Published online July 17,2017 | E6283

APPLIED
MATHEMATICS

SYSTEMS BIOLOGY




avariable number of OV and DC doses, and/or allowing variable
spacing between doses), and over a more complete range of dos-
ing space. This extended analysis of our system could result in find-
ing robust protocols beyond treating with DC-DC-DC-OV-OV-
OV in the high DC/low OV region of dosing space.

This case study is intended to illustrate how the VEPART
method can be used to assess therapeutic robustness. By combin-
ing experimental data with mathematical modeling and statistical
analyses, the VEPART approach can contribute to tackling a sig-
nificant problem clinicians face when treating cancer using stan-
dard of care or an individualized treatment protocol: high levels
of interpatient and intrapatient variability.

Computational Methods

In this section, we introduce our mathematical model that
includes immunostimulated OVs and DC vaccines. Although this
model has been successfully fit to the experimental data of Yun
and colleagues (31, 35), we introduce an alternative approach
to fitting the data that results in small but significant improve-
ments in the model fits. To further study the relationship between
the model and its parameters, in this section, we also describe
two key steps of our proposed VEPART approach: (i) We detail
the bootstrapping procedure that produces posterior distributions
and credible intervals for each of the fit parameters, and (ii) we
explain how these posterior distributions are used to generate vir-
tual populations that provide the foundation of our robustness
analysis.

Mathematical Model. In this study, the data-validated model from
Wares et al. (35) was used. The model is represented by the fol-
lowing initial value problem:

dU uv ur
i rU — BT — (ko + Ckill])T U(0) = U, [11
dl uv IT
5257—511—(%+0k¢111)ﬁ I1(0) =0, [2]
% — w8+ adi I -5y V. V(0)=0, 3]
dT
E = CT[+XAA+XDD_5TT T(O):O, [4]
A _ T —6aA A®D) =0, [5]
dt
% —up(t)—dpD  D(0) =0, (61

where U is the number of uninfected tumor cells (the only variable
with a nonzero initial condition that gets fit at each step of the hier-
archical fitting process), I is the number of tumor cells infected by
the OV, V is the number of free virions (oncolytic adenoviruses),
T is the number of tumor-targeted T cells, A is the number of
naive T cells, D is the number of injected DCs (note that endoge-
nous DCs are not directly modeled), and NV is the total number
of cells (tumor cells and T cells) at the tumor site. The individual
terms that contribute to the rate of change of each population are
explained in more detail in S Computational Methods.

This model was hierarchically developed to fit the increasingly
complex data in Fig. 2. Although more details are provided in ST
Computational Methods, here we briefly note the different hierar-
chical stages of the model:

i) Model 0 is a model of untreated tumor growth in the absence
of any virions, T cells, or DCs.

ii) Model 1 is a model of tumor growth and treatment with
oncolytic virotherapy that does not carry any immunostimu-
latory transgenes. T cells and DCs are still not considered.

iii) Model 2a is a model of tumor growth and treatment with the
immunostimulatory oncolytic virotherapeutic Ad/4-1BBL.
The immunostimulation results in the inclusion of tumor-
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targeted T cells, but naive T cells and DCs are still not
considered.

iv) Model 2b is a model of tumor growth and treatment with
the immunostimulatory oncolytic virotherapeutic Ad/IL-12.
The immunostimulation results in the inclusion of tumor-
targeted T cells, including the naive T cells, but DCs are still
not considered.

v) Model 3 is a model of tumor growth and treatment with the
immunostimulatory oncolytic virotherapeutic Ad/4-1BBL/IL-
12. The immunostimulation results in the inclusion of tumor-
targeted T cells, including the naive T cells, but DCs are still
not considered.

vi) Model 4 is a model of tumor growth and treatment with
Ad/4-1BBL/IL-12 and DC vaccines. At this point, the model
includes all equations and all terms within each equation,
including the tumor-targeted T cells, the naive T cells, and the
DCs. A subcase of model 4 in which all virus-related parame-
ters are set to zero gives us the case of treating with only the
DC vaccine.

Fitting Model to Experimental Data. Just as the structure of the
model was hierarchically developed, the parameter fitting scheme
was also hierarchical in nature (34, 35). As illustrated in Fig. S4,
parameters that could not be well-estimated from the literature
were fit at each hierarchical model stage, and some subset of the
fit parameters are inherited to the subsequent models in the hier-
archical scheme. Details of this hierarchical fitting scheme can be
found in ST Computational Methods. The initial condition for the
number of uninfected tumor cells was always refit at each model
stage, as each model was fit to a different data set. All other initial
conditions are identically zero, as the administration of treatment
is captured through the time-varying terms [uv (¢) and up(¢)] in
Egs. 1-6.

The parameters in models 1 through 4 were previously fit
using the Levenberg-Marquadt algorithm as implemented by
MATLAB’s Isqnonlin command (35). Like most parameter fit-
ting schemes, the Levenberg-Marquadt algorithm can get stuck at
local minimum, and the algorithm’s performance deteriorates as a
function of the dimension of parameter space. To have more con-
trol over parameter fitting, and to attempt to avoid getting trapped
at local minimum, here we instead use simulated annealing for
model fitting.

Goodness of model fit to the experimental data is sought by
minimizing the objective function S, as defined by

(,Umadel 2

t - Uz)
S ; Ut O't2 5 [7]
where v; is the average experimental tumor volume at day ¢, v°%¢!
is the tumor volume at day ¢ predicted by Eqs. 1-6, and o7 is the
variance in the experimental tumor volume at day ¢. Within Eq. 7,
the fractional term is a dimensionless measure of the error: The
numerator gives the sum of the square errors between the model
predictions and the (average) experimental data, and the denom-
inator is the variance in the experimental data. By dividing the
sum of the square errors by the variance, we impose the condition
that, at time points where the variance is small, we want a better fit
to the average volume than is required at time points where the
variance is large, in accordance with the principle of maximum
likelihood estimation (57).

Because volume measurements made using calipers are impre-
cise for smaller tumor sizes [instrumentation error in measuring
length and width is independent of tumor volume (58, 59)], the
dimensionless term in Eq. 7 is weighted by the average tumor
volume at day ¢. Our weighting has the additional advantage of
leading to a better-posed numerical optimization problem, as this
objective function does not artificially bias the algorithm to fit
well at small tumor sizes (when the variance is very small) at the
expense of fitting well over a majority of the data points. Details
on the simulated annealing algorithm being used to minimize Eq.
7 can be found in S Computational Methods and Table S3 therein.
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Analyzing Best-Fit Parameters. For each dataset (control, Ad
only, etc.) consisting of N mice (N was between six and nine,
depending on the dataset), 1,000 bootstrap replicates have been
created. Each bootstrap replicate was created by sampling N mice
from the original dataset with replacement (36) using the pro-
graming language R. The simulated annealing protocol was run
on each bootstrap replicate, and the best-fit parameter values for
each bootstrap replicate were binned in a histogram. This pro-
cess provides a visualization of the estimated posterior marginal
distribution on each fit parameter. Given the distributions were
empirical and asymmetric, we defined the 95% credible interval
for that parameter (the interval for which we can be 95% confident
that the true value of the parameter occurs in) as the range that
excluded 2.5% of the values on each end of the distribution. Boot-
strapping has been used by others to explore parameter sensitivity
in mathematical biology models with implications for cancer; see,
for instance, refs. 60-62.

A local sensitivity analysis was also performed to give an alter-
native mechanism for analyzing the fit parameters. Details on this
are found in SI Computational Methods.

Ranking and Robustness of Treatment Protocols. Previous work
determined the optimal protocol among the 20 possible orderings
of three OV injections and three DC injections at the experimen-
tally used dose of 2.5 x 10° OVs and 10° DCs (35). To rank these
6-d-long protocols, tumor growth was tracked over 1 mo, and the
volume predicted by the model after this period was recorded.
That analysis revealed that the only ordering of the drugs that led
to tumor eradication (defined as tumor volume dropping below
the assumed volume of one cell, 10~° mm?®) was the one that front-
loads the OV (that is, OV-OV-OV-DC-DC-DC) (35). How-
ever, further analysis revealed that the dose used in the exper-
imental work was near a bifurcation point in the system, and
small changes in the drug dose could result in a different optimal
solution (35).

This finding motivated us to extend our analysis to investigate
treatment robustness, as such an analysis gives more information
about therapeutic efficacy than a single-population optimization
study. To explore robustness, the data obtained from the boot-
strap replicates were used to construct virtual populations, similar
to the nonparametric approach described in ref. 29. In particular,
herein, 1,000 virtual populations were created by pseudorandomly
picking the six fit parameters (r, 3, ca, cr, ¢k, and x p ) from their
posterior distributions approximated using the bootstrap repli-
cates and the hierarchical fitting process. Two constraints were
imposed when creating these virtual populations. First, to main-
tain the covariance structure between the parameters, those that
were fit together were selected together to create a new virtual
population. This criterion impacted the selection of parameters
from model 3, and we implemented this parameter selection by
randomly choosing a value of c4 from its approximated posterior
distribution, and subsequently setting the values for ¢ and ci
to the best-fit value in the same bootstrap replicate that gave that
value of cj.

Note that an implicit assumption in creating virtual populations
in this way is that parameters fit at different stages of the hierar-
chical fitting process are minimally correlated. This assumption is
grounded in our fitting methodology, in which parameters fit at
each step of the hierarchy are treated as independent biological
phenomenon. For instance, the fitting of the tumor growth rate r
at the first step of the hierarchy isolates the behavior of the tumor
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without treatment, and the fitting of the viral infectivity parameter
B at the next step of the hierarchy is meant to isolate the behav-
ior of the OV. In effect, this setup establishes a regime of tumor
growth and viral activity that the system responds to. Therefore,
by independently sampling from the distribution for r and S to
create a virtual population, we are trying to select a reasonable
tumor growth rate and a reasonable viral infectivity rate, as seen
in the experimental data. Others have given consideration to fur-
ther preserve the covariance structure among all variables; see,
for instance, refs. 16, 23, 25, 26, 29, and 30. The second constraint
imposed is that only virtual populations whose parameter values
are all within their respective 95% credible intervals were con-
sidered; this can be thought of as an “inclusion—exclusion” cri-
terion that refines the virtual population pool to be statistically
similar to the experimental population (29), including mirroring
its heterogeneity. That said, this approach does constrain the vir-
tual populations to statistically resemble the experimental data,
which, because of the small sample size in our experiments, runs
the risk of not resembling the population data (29). However, the
experimental data considered herein inject genetically identical
mice with the same number of cells from the same cancer cell line.
Therefore, at least for these data, it is reasonable that the small
sample can be expanded to result in virtual populations that accu-
rately reflect the true heterogeneity in the population.

Therapeutic robustness was assessed by ranking the 20 pro-
tocols of interest for each of the virtual populations that were
generated. Within a virtual population, a treatment was ranked
using a two-component criterion. First, for tumors that were erad-
icated within 30 d (volume drops below 107° mm?), the time
until eradication is used to measure the effectiveness of the pro-
tocol, with faster eradication times considered superior to slower
ones. Second, for tumors that were not eradicated within 30 d,
the volume after 30 d was used to measure the effectiveness of
the treatment, with smaller volumes considered superior to larger
ones. By analyzing the response to the 20 protocols across the
1,000 virtual populations, the robustness of each protocol can be
studied.

Given that our previous work suggested that the experimentally
used dose does not have a robust optimal solution, we performed
this robustness study in three different regions of dosing space: (i)
at the experimentally used dose (OV dose of 2.5 x 10°, DC dose
of 10°), (ii) at a 50% higher dose of OV but a 50% lower dose of
DC (OV dose of 3.75 x 10%, DC dose of 0.5 x 10°), and (jii) at a
50% lower dose of OV but a 50% higher dose of DC (OV dose of

1.25 x 10°,DCdose of 1.5 x 10°). These two other regions of dos-
ing space were chosen because they are sufficiently distinct from
the experimental dose such that we could expect different opti-
mal protocols and a different robustness profile. Further, both of
these regions of dosing space involve increasing the dose of one
drug and decreasing the dose of the other by the same relative
amount; this was done in an attempt to preserve the toxicity pro-
file across the three dosing regimes.
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Sl Results

Analysis of Best-Fit Parameters: 95% Credible Intervals. To better
assess parameter variability across the full population, in the first
step of VEPART, we use bootstrapping (63) to form 1,000 new
samples (“bootstrap replicates”) that are of the same size as the
original sample population. The aggregate data in each of these
bootstrap replicates is fit to the mathematical model in Egs. 1-6,
giving a parametric description of each simulated cohort. Note
that this process was repeated for each data set in Fig. 2, allow-
ing us to approximate the posterior distributions on the parame-
ters (Fig. S1) while fitting to a minimal subset of the parameters.
From these posterior distributions (Fig. S1), we then calculate
the 95% credible interval for each of the fit parameters (Table
S2). For the parameter values that were fit in multiple models
(ca, criu, and c7), the credible intervals presented were calcu-
lated from model 3, because model 3 is the one that gets inher-
ited into the full model involving treatment with both OVs and
DCs (model 4).

We find that the fit parameters can be divided into two classes.
In the first class, we have the parameter values with relatively
tight 95% credible intervals, meaning points in that interval do
not vary by even an order of magnitude from the best-fit param-
eter value determined by fitting to the original dataset. The sec-
ond case includes those parameters for which the 95% credible
interval contains points that vary by orders of magnitude in com-
parison with the best-fit parameter value.

The fit parameters with tight credible interval are the net
tumor growth rate (), the virus infectivity rate (3), and the rate
of T-cell stimulation by DCs (i p). We find that values of r within
the 95% credible interval can vary by, at most, 14% from the
best-fit value. For 3, variations can be no greater than 6.1%, and,
for x p, they can be no greater than 81% (Table S2).

The other class of parameters can be classified as not having
a tight credible interval. These parameters include the 4-1BBL-
induced T-cell recruitment rate cp, IL-12-induced naive T-cell
recruitment rate ca, and the enhanced T-cell cytotoxicity term
criu- We find that values of ¢ and c4 within the 95% credible
interval can vary by three orders of magnitude from the best-fit
value, whereas ci; values can vary by four orders of magnitude
(Table S2).

A possible interpretation of these results is that, for parame-
ters with a tight credible interval (those that are tightly regulated
in the population), the model is sensitive to the value of these
parameters. Similarly, we could expect that the model is less
sensitive to parameters with nontight credible intervals. These
hypotheses have been confirmed through a local sensitivity anal-
ysis, as detailed below.

Analyzing Best-Fit Parameters: Local Sensitivity Analysis. To
explore the hypothesis that model fit to the data is sensitive to
the parameters with tight credible intervals, we performed a local
sensitivity analysis on the corresponding model to identify all
points within parameter space that give a fit within 10% of the
optimal. The results for the parameters with tight credible inter-
vals are shown in Fig. S2. This analysis confirms our hypotheses:
Model fit is quite sensitive to parameters with tight credible inter-
vals. 5 can vary by, at most, 0.7% and still give a fit within 10%
of optimal (Fig. S2B), r can vary by, at most, 3% (Fig. S24), and
X p can only vary by 7% (maximum variation observed in Fig. S2
C and D).

Taken together, the 95% credible intervals and the sensitiv-
ity analysis imply that we can have high confidence in our opti-
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mal values of r, 3, and xp. The posterior distributions deter-
mined via bootstrapping reveal that minimal variation from the
predicted optimal would be found in the population (Table S2).
The sensitivity analysis shows that, if these parameters are varied
slightly from their optimal values, the model is no longer a good
fit to the data.

As we did with the parameters with a tight credible interval,
we also performed a local sensitivity analysis on the parame-
ters without a tight credible interval. These three parameters
happen to be simultaneously fit in the Ad/4-1BBL/IL-12 model
(model 3). Therefore, this analysis will allow us to determine not
only sensitivity to each of these parameters but also correlations
between the parameters (Fig. S3). Correlations between these
parameters would not be surprising, as each of them impacts
the killing of cancer cells by cytotoxic T cells. Further, corre-
lations between the parameters could partially explain why the
95% credible interval is so large for these parameters, as one
parameter could compensate for another and still give a good fit
to the data.

We find that the model is least sensitive to the c4 parame-
ter, as it can vary by over 17,300% and still attain a goodness of
fit value (S) within 10% of that attained by the optimal param-
eters (Fig. S34). Conversely, cr can only vary by 47.2%, and
¢k can only vary by 46.3% (Fig. S3), although these variations
are much larger than those observed for the parameters with
tight credible intervals. The 3D sensitivity plot shown in Fig. S3,
along with the three 2D cross-sections, also visualizes the cor-
relations between the parameters. Pairwise correlation analysis
reveals a high degree of dependency between these parameters,
and further emphasizes why the parameters fit to model 3 must
be selected together when designing the virtual populations. The
cr and ¢y are the most highly correlated parameters, having a
correlation coefficient of pe;. ¢, = —0.9876. The other param-
eters are also highly correlated, with c4 and ¢ having a cor-
relation coefficient of pc,,c,,, =—0.8376, and cr and ca hav-
ing a correlation coefficient of p. ., = —0.7869. These data can
be exploited in the future to ensure we have developed a min-
imally parameterized model with the minimal number of vari-
ables required to describe the data.

S| Computational Methods

Hierarchical Model Development. The hierarchical nature of the
experimental data (increasing from simple to more complex)
allowed the mathematical model presented in Egs. 1-6 to be
developed hierarchically (34, 35). Therefore, it is ideal to explain
the model terms, and the parameter fitting, from the perspective
of how each piece of the model builds off the simpler pieces.

Model 0: Untreated tumor growth. In the absence of any treat-
ment, the model reduces to a single population of uninfected
tumor cells, U. As shown in Eq. 1, it is assumed that these cells
grow exponentially at rate r, an assumption supported by the
control data set on the time scales of these experiments (Fig. 2.4
and B, black and white diamond curves). All other parameters in
Eq. 1 are set to zero in the absence of treatment, making model
0 a simple exponential growth model for uninfected tumor cells.
Model 1: Ad only. In the absence of immunostimulation, the
oncolytic adenovirus is capable of infecting uninfected cells,
eventually resulting in infected cell lysis and the release of free
virions into the tissue space. To expand the untreated tumor
growth model to include the action of the OVs, we include the
free virion population (V') and the infected cell population (7).
Free virions are injected into the system, and this is modeled
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through the u,(¢) term in Eq. 3. These virions infect uninfected
cells at a rate of 3, and infection is modeled using a frequency-
dependent term. By dividing the infectivity rate 8 by the total
population size (N), the model indirectly accounts for spatial
effects. In particular, the rate of movement from the uninfected
to infected pool is larger when U /N is large (as it is easier for the
free virions to find the uninfected cells), and the rate of move-
ment is smaller when U /N is small (as it is harder for the free
virions to encounter uninfected cells). As shown in Eq. 2, it is
assumed that the infected cells lyse at rate d;, and, when a cell
lyses, « virions are released into the tumor environment (Eq. 3).
It is assumed that virions decay exponentially at rate §v (Eq. 3).
Therefore, model 1 includes only Egs. 1-3, without the terms that
consider the T-cell population; this is because we assume there
are no T cells in the tumor tissue in the absence of immunos-
timulation, an observation supported by the experimental data
in Huang et al. (31). Model 1 has been developed to describe the
red square data shown in Fig. 24.

Model 2a: Ad/4-1BBL. In model 2a, we expand upon model 1
to include the impact that the 4-1BBL transgene has on tumor
killing. Experiments demonstrate that 4-1BBL increases T-cell
infiltration at the tumor site, and increases the cytotoxicity of the
T cells (31), and therefore we aim to include these phenomena in
model 2a. However, instead of directly modeling the immunos-
timulatory effects of 4-1BBL, we use the fact that this gene is
transcribed and translated inside of infected cells, and therefore
the infected cell population can be used as a proxy for modeling
the actions of 4-1BBL (34, 35). We thus model 4-1BBL-induced
T-cell production as proportional to the infected cell population
with production/recruitment rate cr, as shown in the one new
equation that gets introduced as we move from model 1 to model
2a: Eq. 4. T cells are assumed to kill tumor cells independent of
their infected status (that is, the T cells recognize tumor antigens
and not viral antigens) using a frequency-dependent term with
rate of killing given by ko + ¢ . This rate of T-cell-induced
killing accounts for the fact that T cells have some baseline activ-
ity against the tumor cells (ko), and that the cytotoxicity of the
T cells increases in the presence of 4-1BBL (modeled indirectly
through the ¢, [ term), an assumption supported by experimen-
tal data (31). The only other dynamics the T cells have in model
2a is their natural decay. Therefore, model 2a includes all of Eqgs.
1-3, along with the T-cell source term and decay term in Eq. 4.
Model 2a has been developed to describe the green triangle data
shown in Fig. 24.

Model 2b: Ad/IL-12. Model 2b also builds upon model 1 (note
that it does not build upon model 2a), to include the impact that
the IL-12 transgene has on tumor killing. Experiments demon-
strate that, like 4-1BBL, IL-12 increases T-cell infiltration at the
tumor site, while also increasing the cytotoxicity of those T cells
(31). However, from what is known about the mechanism of IL-
12 action, this increased infiltration of the cytotoxic T cells is
indirectly driven by IL-12 through the naive T-cell population.
As with 4-1BBL, IL-12 will not be modeled directly, but will be
assumed to be proportional to the infected cell population.

To model the effects of IL-12 through the naive T-cell popula-
tion, model 1 is expanded upon to include two new equations.
First, the naive T-cell population is introduced in Eq. 5, and
it is assumed that IL-12 (through the infected cell population)
recruits naive T cells at rate c4. These naive T cells are assumed
to divide asymmetrically (64), meaning that at the same time a
naive T cell is lost, a new one is gained; the result is that there
is no net change in the naive T-cell population due to asymmet-
ric division. However, at the same time, a cytotoxic T cell is also
produced at rate y 4, and this is represented in the second pop-
ulation that gets introduced as we go from model 1 to model 2b:
the cytotoxic T-cell population. Note that the timing and mecha-
nisms underlying the division and differentiation of naive T cells
is still being actively studied (65). As our experimental data only
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describe temporal changes in tumor volume, and give us no infor-
mation about the differentiation pattern of T cells, we assumed
asymmetric division, as it is consistent with some experimental
observations (64, 66, 67). As an added benefit, this assumption
minimizes the number of parameters we need to model naive
T-cell division. Others have considered modeling the division of
naive T cells in more detail; see, for instance, ref. 68.

Just as in model 2a, the cytotoxic T cells can indiscriminately
kill tumor cells, and a frequency-dependent kill term with rate
ko + craul is used. As before, ko represents the baseline kill rate
of the T cells. However, in this case, ¢z represents the enhanced
cytotoxicity of the T cells due to the presence of IL-12, not
4-1BBL. The only other dynamics the naive and cytotoxic T cells
have in model 2b is their natural decay. Therefore, model 2b
includes all of Egs. 1-5, with the exception that Eq. 4 does not
include the first term (no direct recruitment of cytotoxic T cells
by infected cells) or the last term (no DCs D are injected). Model
2b has been developed to describe the blue diamond data shown
in Fig. 24.

Model 3: Ad/4-1BBL/IL-12. No new terms were introduced to
model treatment with Ads expressing 4-1BBL and IL-12. Instead,
model 3 is simply the union of models 2a and 2b, and therefore
consists of all of Egs. 1-5, with the exception that Eq. 4 does not
include the second-to-last term, as there are no DCs used dur-
ing this treatment protocol. It is of note that, in model 3, the
criu parameter now represents the enhanced cytotoxicity of the
T cells due to the effects of both 4-1BBL and IL-12. Model 3 has
been developed to describe the black circle data shown in Fig.
24, and the red square data shown in Fig. 2B.

Model 4: Ad/4-1BBL/IL-12 and DCs. Model 4 introduces the
injected DC population. These DC vaccines are developed by
harvesting DCs from the bone marrow of tumor-bearing mice
and allowing them to be pulsed ex vivo with tumor associated
antigens for 8 d until maturation (31). These tumor-primed DCs
are then injected directly into the tumor site. It is these DCs that
we seek to model. Although we recognize that there may be some
endogenous DCs at the tumor site, we work under the assump-
tion that the effect of such DCs is wrapped up in the tumor
growth rate term r in the absence of any treatment. We are par-
ticularly interested in modeling the impact of the treatment pro-
tocol, and hence only focus on the injected DCs. Again aiming to
keep the model simple, only one new equation is introduced, and
it is the equation for the injected DC population. As shown in Eq.
6, there is a source term for injected DCs, and the DCs natural
decay rate is modeled. The DCs stimulate/recruit tumor-targeted
cytotoxic T cells at a rate of x p, which is the only other new term
as we expand from model 3 to model 4 (it accounts for the xp D
term in Eq. 4). Model 4 has been developed to describe the blue
triangle data shown in Fig. 2B. Note that a subcase of model 4
in which all virus-related parameters are set to zero gives us the
case of treating with only the DC vaccine; this describes the green
circle data shown in Fig. 2B.

Hierarchical Model Fitting to Experimental Data. Fig. S4 summa-
rizes the hierarchical nature of the parameter fitting process. Fit-
ting begins with model 0 (no treatment), in which the intrinsic
tumor growth rate r was fit to the aggregate experimental data.
Unless otherwise stated, for the purposes of this study,  was kept
at the value determined previously in ref. 35. The hierarchical
nature of parameter fitting implies that this value of r is not only
used in model 0 but is used in all of the models that build off of
model 0 (models 1 through 4).

Model 1 (Ad only) introduced four new parameters values,
three of which (the infected cell lysis rate, number of virions
released by a lysed cell, and virion decay rate) can be readily esti-
mated from experiments (35). As the r parameter value is inher-
ited from model 0, this leaves only two parameters to fit in model
1: the viral infectivity term $ and the initial tumor size Up. The
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initial conditions for all other variables are set to zero, meaning
we assume there is no naive or cytotoxic T-cell infiltration at the
tumor site before treatment, a claim supported by the data (31).
As Uy is a function of the dataset and not the model itself, natu-
rally, this parameter must be refit to each dataset, and therefore
never gets inherited from one model to the next.

Focusing on 3, the other undetermined parameter value in
model 1, the best-fit value is attained using simulated anneal-
ing, and this value gets inherited into all subsequent models. The
parameter inheritance scheme falls apart between models 2 and
3. In model 2a (Ad/4-1BBL), the noninitial condition parame-
ters that are fit to the data are the enhanced cytotoxicity of T
cells due to immuostimulation by 4-1BBL, ¢, and the activa-
tion rate of T cells by 4-1BBL, cr. The ¢y parameter cannot
be inherited into model 2b, as, in model 2b, it represents the
enhanced cytotoxicity due to IL-12 (not 4-1BBL), and it also can-
not be inherited into model 3, as, in model 3, we need to consider
how 4-1BBL and IL-12 work together to enhance the T-cell cyto-
toxicity. The ¢ parameter also cannot be inherited into model 3,
as different viral doses were used in the experiments giving Ad/4-
1BBL compared with experiments giving Ad/4-1BBL/IL-12 (31).

In model 2b (Ad/IL-12), the noninitial condition parameters
that are fit to the data are c;;; and the naive T-cell recruitment
rate, c4. Similar to what occurs with model 2a, the best-fit param-
eters are not inherited from model 2b to model 3. The reason
criu cannot be inherited is the same as above. The ¢4 parameter
cannot be inherited into model 3 because IL-12 expression was
found to differ from the Ad/IL-12 case to the Ad/4-1BBL/IL-12
case (31).

In model 3 (Ad/4-1BBL/IL-12), two datasets (for two viral
doses) are simultaneously fit to determine the following non-
initial condition parameters: ciu, cr, and ca. Because these
best-fit parameters values are properties of the virus with both
4-1BBL and IL-12, these parameters are also subsequently inher-
ited into model 4 (Ad/4-1BBL/IL-12 + DCs). The aggregate
data with DCs only and the data set for Ad/4-1BBL/IL-12 with
DC:s are finally simultaneously fit to the one noninitial condition
parameter: the rate at which DCs stimulate the production of
T cells, xp.

Details on Fitting Scheme: Simulated Annealing. Simulated an-
nealing is a stochastic optimization scheme where parameters are
changed through random perturbations until, ideally, the glob-
ally optimal parameters are found. For this application, the algo-
rithm seeks to minimize the objective function S, as defined in
Eq.7.

The simulated annealing algorithm starts with an initial set of
parameters, determines the value of S at those parameters, and
then randomly perturbs those parameters (see A, in Table
S3) to generate a temporary set of new parameters. Looking at
an arbitrary iteration of simulated annealing, the value of the
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objective function is compared across two parameter sets (the
last accepted set of parameters, and the new “temporary” set of
parameters that is a random perturbation of the current set) to
compute the change in the objective function, AS. Whether the
new parameter set gets accepted or rejected is probabilistically
determined using the Metropolis acceptance rule (50),

1, AS <0
p= {exp (—M) , AS >0, (s

T

where T is a fictitious “temperature.”

Eq. S1 says that, if the new parameter set fits better than the
prior one (AS < 0), the new parameter set is accepted (as being
closer to the best-fit parameters). If the new parameter set does
not fit as well as the prior one (AS > 0), there is a nonzero prob-
ability of accepting this new parameter set (en route to finding
the best fit parameters). Accepting “uphill” parameter changes
in this way is essential for simulated annealing to avoid get-
ting trapped at local minimum. 7 is chosen to be a monotoni-
cally decreasing function that approaches zero as the number of
annealing steps k increases (Table S3). In this way, the likelihood
of accepting parameters that give a worse fit to the data decreases
as simulated annealing progresses.

For each dataset in Fig. 2 (control, Ad only, etc.), the appropri-
ate model was fit to the data using simulated annealing. Through
experimentation with the data, we arrived at the following suffi-
cient stopping criterion for the algorithm: The best-fit parame-
ters have been found when K., new parameter sets, generated
from random perturbations of a previously accepted parameter
set, in a row have been rejected (Kstop = 8,000, as detailed in
Table S3). However, using this stopping criterion, the optimal
solution arrived at through simulated annealing could potentially
depend on the chosen initial conditions. To avoid this issue, sim-
ulated annealing was run five times per data set (Ngm =5 in
Table S3), with each run of simulated annealing starting with a
different set of initial conditions. In particular, the initial condi-
tions were selected by randomly perturbing the initial parameter
values shown in Table S3 by, at most, AIC =50%. The best-fit
parameter set was selected as the one among the five runs that
gave the absolute minimum value of the objective function.

Analyzing Best-Fit Parameters: Local Sensitivity Analysis. For
each of the models, we also performed a local sensitivity anal-
ysis to complement the results of the credibility interval analysis.
This analysis allows us to study correlations between parameters,
and how much parameter values can vary from the best-fit values
and still give a reasonable fit to the average data. In particular,
we performed an exhaustive search in parameter space about the
best-fit values to the aggregate data for each model; this allows us
to identify all parameter sets that give a fit within 10% of optimal
to the original data (as measured by the value of the objective
function, S).
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Fig. S1. Posterior distributions for fit parameters in Table S2. Note that r was fit using model 0; 3 was fit using model 1; ca, cr and ¢, were fit using model
3; and xp was fit using model 4.
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Fig. S2. Local sensitivity analysis about optimal parameters. Note that the values of the parameters shown on each axis are scaled by the optimal value
(indicated with a bar). (A) Sensitivity in r-Up space, as determined from model 0. (B) Sensitivity in 3-U, space, as determined from model 1. (C and D) Sensitivity
in xp—Up space, as determined from model 4. In C, U, is the initial condition for the DC only data, and the U, for the Ad/4-1BBL/IL-12 + DC data is fixed at the
optimal value. In D, Uy is the initial condition for the Ad/4-1BBL/IL-12 + DC data, and the U, for the DC only data is fixed at the optimal value.
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Local sensitivity analysis about optimal parameters in model 3, fixing Uy at its optimal value. Note that the values of the parameters shown on each

axis are scaled by the optimal value (indicated with a bar). (A) Sensitivity in cr—ca—cyy space. (B) Sensitivity in cr—c;; space, with ca fixed at its optimal value.
(C) Sensitivity in ca—cyjy space, with cr fixed at its optimal value. (D) Sensitivity in ca—cr space, with ¢, fixed at its optimal value.
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Fig. S4. Summary of hierarchical noninitial condition parameter fitting.
Table S1. Parameter values set based on literature estimates
before the fitting process
Parameter Description Value Ref.
«a Viral production 3,000 virions 69
o Infected lysis rate 1477 70
Sy Viral decay rate 23d7! 71
o1 (64) T-cell (naive) decay rate 0.35d" 72
ko Base T-cell killing rate 24! 35,73
XA T-cell differentiation rate 1d-7 35
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Table S2. Best-fit parameters using the original fitting algorithm (Orig) and the fitting algorithm described herein (Curr)

Parameter Description Best fit (Curr) Best fit (Orig) 95% credible interval Model
r Net tumor growth rate, d ' N/A r=0.3198 [0.928r, 1.135r] 0
B Infection rate d—' B =0.00100854 0.00100843 [0.9393, 1.0503] 1
Ca Naive T-cell recruitment rate, d—' Ca =0.000517 0* [0.542¢,4, 3321¢,] 3
cr T-cell recruitment rate, d ' ¢r =1.6984 1.1707°F [0.005¢r, 2.445¢] 3
Cuill Enhanced T-cell cytotoxicity, per cell per day iy = 5.954 x 1077 5.1x 1077 [1.7 x 10~ *Ciy, 1.895¢] 3
XD Rate of T-cell simulation by DCs, d-! xp =4.6754 5.5388 [0.856xp, 1.803%p] 4

Also shown is the 95% credible interval for each parameter, as determined by the bootstrapping analysis. The model in which the parameters were fit and
bootstrapping was performed is shown in the last column.
*These parameters were not fit with high resolution: To handle the numerical limitations of fitting too many parameters using the original fitting routine,
these parameters were optimized by confining the parameter to be within a fixed interval, and looking at discrete values (over a fixed step size) within that
interval.
TThis parameter was simultaneously fit under the constraints imposed on the * parameters. On the other hand, no constraints were imposed when fitting
using the routine described in this work.

%
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=

Table S3. Simulated annealing parameters

Parameter Definition Value
Amax Maximum random perturbation that Amax = 0.1
can be made to a parameter
T "Cooling” schedule/temperature T = 43(0.96), k is annealing step
Kistop Number of rejected random perturbation Kstop = 8,000
(annealing steps) until convergence
is declared
Ngim Number of times simulated annealing Ngim =5
procedure is repeated per dataset
B Baseline initial parameter guess B9 =01
for  for fitting model 1
c(TO) Baseline initial parameter guess for cr Model 2a: c(To) =0.01
Model 3: c(To) =1
cf(% Baseline initial parameter guess for ¢, Model 2a: c(k‘l’.,), =0.03
Model 2b: c9 = 0.1
Model 3: ¢, = 0.45
cﬁ” Baseline initial parameter guess for c4 Model 2b: cf) =1
Model 3: cf) =2
X9 Baseline initial parameter guess X9 =5
for xp in model 4
v Baseline initial parameter guess for Uy Model 1: U? = 60

Model 2a: U = 62.4
Model 2b: UQ = 55
Model 3 (Fig. 14): UY =59.3
Model 3 (Fig. 1B): UQ = 30
Model 4 (for both protocols): U = 60
Ajc Maximum percent variation of initial Aic =50%
simulated annealing parameters
from baseline
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