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Dynamic Realizations of
Sufficient Sequences

BRADLEY W. DICKINSON, SENIOR MEMBER, 1EEE, AND EDUARDO D. SONTAG

Abstract—Let (U, U, - - - ) be a sequence of observed random variables
and (T (U)), Th(U;. Uy), -+ - ) be a corresponding sequence of sufficient
statistics (a sufficient sequence). Under certain regularity conditions, the
sufficient sequence defines the input /output map of a time-varying,
discrete-time nonlinear system. This system provides a recursive way of
updating the sufficient statistic as new observations are made. Conditions
are provided assuring that such a system evolves in a state space of minimal
dimension. Several examples are provided to illustrate how this notion of
dimensional minimality is related to other properties of sufficient se-
quences. The results can be used to verify the form of the minimum
dimension (discrete-time) nonlinear filter associated with the autoregres-
sive parameter estimation problem.

I. INTRODUCTION

ARIOUS inference problems in time series analysis

(i-e., discrete-time signal processing) involve growing
subsequences of an infinite sequence of random variables,
say (U, Uy, - -, Uy, - - - ). The theory of sufficient statistics
has been applied to this sort of situation in the following
way. Let 29, k > 1 be the sample space for the first k
random variables, (U, U,,---,U,), and let F'®) designate
the Borel sigma field on 2X). We suppose that P%) is a
family of probability measures on (2%, F¥)) and that for
each k > 1 the family P¥) admits a sufficient statistic, say
T.(U,U,---,U,). The sequence (T}, T, -+, Ty, ") is
called a sufficient sequence. T, summarizes all of the infor-
mation contained in the first k observations in the sense
that statistical inferences concerning P based on
(Ui, - -, U,) can be no better than ones based on T;.

In the applications that provide the motivation for this
work certain simplifying assumptions may be added to this
general framework. We assume that each random variable
U, takes its values in R™ and that the sufficient sequence
(T, T,, - - - ) obeys the following regularity conditions.

Condition 1: T, takes values in R? for some fixed d,
independent of k.

Condition 2: The functions T,: R*" — R? are continu-
ously differentiable.

A final assumption concerns the sequential structure of
the sufficient sequence. We are concerned with statistical
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models where recursive inference techniques may be ex-
ploited, so we introduce a dynamic realizability assumption
to be made precise later. Informally, we assume that the
sufficient sequence may be generated as the output of a
discrete-time system whose input is the sequence of ob-
served random variables. If its state vector is finite dimen-
sional, such a system provides a practical means of com-
puting the sufficient statistic from the observations,
eliminating the need to store a growing observation se-
quence by exploiting a recursive implementation. The pur-
pose of this paper is to present a suitable formulation of
realizability and then to characterize minimal dimension
systems associated with realizable sufficient sequences. The
tools employed are those of mathematical system theory.
The results will be illustrated by examples, and the notion
of realizability will be related to a property of sequences of
statistics known as transitivity, introduced by Bahadur [1].
We will also describe a connection with nonlinear filtering.

II. A MOTIVATING EXAMPLE

Before presenting out technical results, we will introduce
an example that led to our study. We consider the problem
of parameter estimation for a pth-order autoregressive
process. Let (U, U,, - -+ ) be successive random variables
from the stationary, zero-mean, Gaussian process that
satisfies the stochastic difference equation

U+aU_,+ - +al_,=W, teZ, (1)

where {W,} is a sequence of independent, identically dis-
tributed Gaussian random variables with mean 0 and
variance o?. The parameters & = (a,, a,," - -,ap,oz) be-
long to the open set ©® C R?*! defined by 62 > 0 and the
requirement that the polynomial 1 + a;A + --- +a,A? has
all of its zeros outside the unit circle in the complex
A-plane.

The joint density function for (Ui,- - -, U,) may be writ-
ten, for k > 2 p, in the form [2]

pluy, -, u,|8) =c () exp(—A4S,4*/20?),

TRl

(2)

where the superscript indicates transposition, ¢, (%) is

a normalizing constant, independent of (u,,---,u,), 4 =

(1,a,,---,a,), and the (p + 1) by (p + 1) matrix S, has

elements (S,), ;, 0 </, j < p, given by
k—i—j

(Sk)i,j= E Upp iUy (3)
t=1
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It follows from the Fisher-Neyman factorization theo-
rem {1}, [3] that the statistic composed of the (p + 2)
(p + 1)/2 distinct elements of the symmetric matrix S, is
sufficient. This statistic is also necessary in the sense of
Dynkin [4], as noted by Arato [5]; hence it is a minimal
sufficient statistic, meaning that it is a function of every
other sufficient statistic. (We refer the reader to Zacks [6]
and Lehmann [7] for a discussion of these concepts.)

The structure of the matrix S, may be exploited to
simplify this statistic [5), [8], {9]. From (3) we have

(Sk)l.j=(Sk)l—1.j‘l_ (4)

for 1 <i, j < p. Thus the statistic composed of the first
row of S, together with the (p + 1) p/2 quantities (U +
Ues1-Ukv1-;), 1 <, j < p, is also (minimal) sufficient.
For later use, we give this statistic explicitly:

T, = ((Sk)O,()""i(Sk)O,p3
U+ UL UU, + UU,_,,- -,

uluj - uk+l*luk+171’

X QU + UU,,_,, Uf + U2,
LU+ U Uy yy-es o

L}

U+ UL, _,). (5)

However, it is also clear that the statistic composed of the
first row of S, and the end segments of the observation
sequence,

Tk, = ((Sk)(),[)’. : 'V(Sk)O,;nU]s“ -’Up’Uk" ‘ .’U/(*p+l)’
(6)

1s also sufficient. Notice that T/ is not minimal; for
example, it is not a function of 7,.

The importance of the statistic 7, arises from its use in
constructing a system whose output is the sufficient se-
quence (7}, 7,,---) when its input is the sequence
(U, Uy, - -+ ). (T, and T are defined in the following way
fork <2p. For p+1 <k <2p,(3),(5), and (6) are used
directly. For 1 < k < p, (5) and (6) are used with the
understanding that variables with subscripts outside the
range of 1 to k are set equal to zero, and (3) is used with
the understanding that sums whose upper limits are non-
positive are equated to zero.) The desired system is easily
constructed by choosing a state vector x, = T/ | and

using (3) and (5) to obtain recursive equations of the form
Xpv1 =P, Uy), k>1,x, =0 (7a)
T, = qk(xk’Uk)' (7b)

We will return to this example after presenting our main
result in order to show that no well-behaved system having
smaller state dimension can duplicate the input/output
mapping of the system of (7).

III. SoME SYSTEM THEORY

In this section we will develop the system-theoretic re-
sults that will enable us to make the discussion in the
introductory section precise. We start with some defini-
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tions. Throughout we assume that the space of input values
U and the space of output values Y are fixed finite-dimen-
sional differentiable manifolds.

Definition 1: A ( finite-dimensional) system Z is a tuple
(X, {Pi}s>1-{9 }k>1,0), where: X is a finite-dimen-
sional differentiable manifold (of states); 0, the initial
state, is an element of X; p,: X X U — X is a continu-
ously differentiable map forall k > 1;and q,: XX U —> Y
is a continuously differentiable map for all k > 1.

This definition specifies precisely the nature of the non-
linear, time-varying, discrete-time systems under considera-

tion. The state equations are given by
k>1,x,=0 (8a)

(8b)

Xk+1 =Pk(xk,uk),
Yk = qk(xk’uk)'

Some related maps will also be useful. Let P, S XX U -
X denote the j-step state transition map for the system
starting in state x at time ¢. This is defined for j > 0 by

P o(x) = x, (92)

P, (x,u)=p,(x,u), (9b)
Byt ) = pry (B (ot )L,
Jj=1. (%)

The corresponding output map is Q. XXU > Y, de-
fined for j > 1 by
Ql,/('x’ul" .

.’u/) = q,ﬂ-_,l(P,‘j,l(x,u],- Tt uj,l), uj)’

(10)

The family of maps, f,(u,,- -, u,) = Q1 ((0,u,,- - -, u),
constitutes an external, or input/output, description of the
system,

Definition 2: The input/output map of the system 3,
denoted fs, is the family of continuously differentiable
maps { f,(u;,---,u,), k> 1}. We say that T is a realiza-
tion of the input/output map fs.

We now introduce our definition of realizability for
sufficient sequences, using the system theoretic concepts
defined previously.

Definition 3: A sufficient sequence (7}, Ty, - -+ ) is real-
izable if the functions (T\(u,), T,(u;, u,), ---) comprise
the input /output map of some system 3.

If a sufficient sequence is realizable, then there is a
finite-dimensional recursive procedure for computing the
sufficient statistic as data are sequentially processed. In
cases where a fixed, finite-dimensional sufficient statistic
can be found, it is usually easy to see how the sufficient
sequence can be realized as the input/output map of some
system; recall the example already described. There is no
completely general realization theory for the class of sys-
tems described above yet available in the systems litera-
ture. However, there are results that seem adequate for
applications like those discussed in this paper. If the in-
pui/output map takes the following homogeneous form,

j=1.



672

given here for scalar inputs

Y = i zé_‘,

(1 =0i,=0 i

hm(k’il" ’
0

.’,'m)

3n M’“

golu,) - g,lu, ) (11)

(or takes a polynomial form, a linear combination of
homogeneous terms of various orders), then a certain sep-
arable structure of the so-called Volterra kernel 4, will
assure existence of a state-affine realization, which takes
the form

m-1 mn
Xk+1 = Z Al(k)xkg:n(uk) + Z b:(k)g:n(uk)
i=0 i=1
(12a)
m—1
Y = Z ¢, (k)x, g (u,) + d,(k)gm(u,). (12b)
i=0

Conditions assuring state-affine realizability of input /out-
put maps described by Volterra series have been given in
various forms (see [10]-[12] for stationary series and {13]
for the time-varying case). Linear analytic realizability of
stationary input/output maps has been discussed in [14].

Our goal is to provide conditions assuring that a given
system 2 is the most succinct realization of its input /out-
put map, in the sense that its state space X has minimum
dimension. This is a standard problem in system theory,
although no result in the literature is directly applicable to
the class of systems defined above. (Specifically, we need a
result that applies to time-varying, nonlinear systems).
Therefore, we formulate conditions and prove the ap-
propriate theorem here. Roughly speaking, a state space of
minimum dimension is one consisting of only “reachable”
and “observable” states. These fundamental system-theo-
retic concepts must be suitably framed for the class of
systems under consideration. For a system X the image of
the map P, , ,(0,uy, -, u;, |): U/"' - X, denoted by
REACH (Z), is called the reachable set at time j. Observa-
bility, which reflects how the state space X and the output
space Y are coupled, will be expressed in terms the Jacobian
of the map Q#-“>-“: X — Y’, sending x to the vector
(Q.4 -9, ) evaluated at the points (x,w,).- -, (x, w,),
respectively. Here the fixed input sequences w, have lengths
/,.ie.. w, € U" We make a final definition to combine the
appropriate reachability and observability conditions.

Definition 4: A system Z is weakly canonical if and only
if there exists an element Xy € X and a time ¢, > 1, such
that: (1) x, belongs to the interior of REACH, ( 2); (2) there
exists an integer » and input sequences w, € U%,- -+ w, €
U’, such that the Jacobian of the map Q"¢ has
rank n = dim X at x,,.

Our main result states that a weakly canonical system
has minimal state dimension. As we will see, this is a useful
result because it allows this conclusion to be based on
straightforward Jacobian calculations.

Theorem 1: Let T be a weakly canonical realization of
the input/output map f= f5. Then dim X is minimal
among all possible realizations of fs.
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Proof: We must establish that if Z’is any system with
fs=f,and if dim 2’ = n’, then n’ > n. By assumption, X
is weakly canonical, so there exist xg,?,, r and input
sequences w,,- -, w,, as above. Let @ denote the map

or @ The observability assumption implies that x,, is a
regular point of Q, so Q is an immersion when restricted to
a small enough neighborhood of x,. Thus, locally Q is
equivalent to a standard injection R” — R" X R*. This
implies the existence of an open neighborhood V of x,, an
open subset W of Y’, and a continuously differentiable
map R: W — V, such that R e Q restricts to the identity
map on V. Since x, is in the interior of the reachable set at
time t,, we may assume (taking a smaller U if necessary)
that U is included in REACH o 2).

Now let Q" be the map Q""" “- obtained for the system
2’ when using the same inputs w,,- - -, w,, as above. Let V’
be the inverse image of W under Q’; this is open (in X’)
by continuity of Q". Denote by T the composition of maps
ReQ’: V' — V. Since V' is a manifold of dimension n’, V
of dimension »n, and T is smooth, it will be enough to show
that T is onto in order to conclude that n’ > n.

Pick any x in V. We need to find an x’ in ¥ with
Tx’ = x. Since x is in REACH,, there is some input w of
length ¢, — 1 with x = P, _,(0,w). Consider the state
x" = P{, _,(0,w), obtained by applying the same input to
the system Z’. We first claim that x’ is in ¥’ For any i,
1<i<r,

Q,’O_,,(x’,w,) = Q{,:0+/,—1(0"": w) = Ql,(+l,—l(0’ w: ),

(13)
where the colon denotes concatenation of the input strings,
and the second equality follows because fs. = f. From the
definition of w the last expression equals 0,,..(x, ;). Thus
Q'(x’) = Q(x), so in particular Q'(x’) is in Q(V), and
hence in W, and we have verified the claim that x" is in V.

Then T(x') = R>Q'(x’) = RoQ(x) = x, and the proof is
complete.

IV. APPLICATIONS

The simplest application of the theorem proved above
is to a sequence of independent random variables,
(U, U,, - - ), identically distributed according to an n-
parameter exponential family. The form of the common
density function is .

pluld,,- - 8,) = h(u)c(d,,-- - ¥,)exp — i &,g,(u).

i=1
(14)

We assume that the parameter space contains n linearly
independent vectors, that the density function is strictly
positive, and that the functions g,(u) are continuously
differentiable. Then

T U) = | T £ a(U)] (19)

i=1 im1
is a sufficient statistic, and (7},7,,--) is a sufficient
sequence. Choosing as a state vector x, = T,_,, we obtain
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the obvious corresponding realization
:xk+(gl(uk)"“vgn(uk)) (16a)
i =xg +(&uy), g, (). (16b)

Notice that this realization is time-invariant; the families
{p(x,u)} and {q,(x,u)} do not depend on k.

We suppose that the Jacobian of the functions
(8(uy),- -+, g,(u,)) has rank n at some point (u!,-- -, u?)
€ R”. This is the Jacobian of the map P, (0, uy,-- -, u,),
and by the implicit function theorem, (u?,- - -, %) is in the
interior of the image of this map, REacH,, ,(Z). The
observability condition is trivially satisfied by choosing a
single input « of length 1 and noting that for every ¢ > 1,
Q. 1(x,u)=x+ (g (u), -, g,(u)), whose Jacobian is the
identity matrix. Thus, the system is weakly canonical and
so has minimum dimension by Theorem 1.

This example is universal, since for independent, identi-
cally distributed random variables with a marginal density
function satisfying certain regularity properties, a fixed-
dimension sufficient statistic will exist only when the den-
sity belongs to an exponential family [4], [15]-[18]. The
sufficient statistic for such a class is minimal sufficient, and
under the Jacobian condition described above, it may be
used as the state vector in a minimal-dimension realization
of the sufficient sequence.

We now complete the example introduced earlier con-
cerning autoregressive processes to show that these two
properties do not always coincide when we have a sequence
of dependent random variables. We first describe the reali-
zation in (7) in greater detail so that Theorem 1 may be
applied. The state at time k > 2p, x, € R**!, takes the
form

Xp+1

xk=(a0""’ap’ﬁlv""ﬁ’71""»7’,;)» (17)
where
k—i1-1
a; = Z uu, ., 0 <i< P (183)
=1
B =u, l<j<p (18b)
Y, T ey l<j<p. (18c)

The state equations will be written with superscript “+”
denoting time instant k + 1. From (3), (4), and (6)

+

ay =ag+ up,a =a, + WY1, @, =@, Uy,
(19a)
Bl =By.-.B =8, (19b)
¥, :Yz""’Y;-l:Yp,Y; =u,. (19¢)
The reachability condition will now be verified. Let
to = 3p + 2. The map Py, sends (uy,- -+, u;y,. ) to the
point
3p+1 3p 2p+1
2
Z u,, Z U, g5, Z Wl ps iy,
=1 =1 t=1
UpsUgpirs s Ugpan s
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and by the implicit function theorem, it suffices to show
that the Jacobian of this map has rank 3p + 1 for some
(uy,- -, u3,,,), taking x, as the image of this point under
Py 3,,1- The Jacobian is easily calculated, and the task
reduces to showing that the following (square) matrix has

rank p + 1 for some (u,, - S U3,.0)
Upyy Upia Uap+1
up+ up+2 up+1 +up+3 )
A=
Uy + Uy, Uy tuy,,, Up g+ g,

(20)
It is sufficient to show that the determinant of A, a
polynomial, is not identically zero; this is easily done by
noting that the variable u »+1 appears only in the diagonal
entries of A and that its determinant thus takes the form
up ] plus lower degree termsin u, .
To check observability note that the output maps into
the space Y = R‘7*2XP*1/2 From (5) the coordinates of
y, are given by

(“0 +ouf,a + ugyy, Lo, t “kYp,Blz + ug,
BBy, + upyy, - BB, + UrYp—1»
.322 + 712»3233 + 1Y, ,sz + szfl)- (21)

As before, let 7, = 3p + 2. Choose two input sequences of
length 1: w; =0 and w, = 1. Then consider only the
following 3p + 1 coordinates of the map Q<
{ao,al,- T A, Blz»ﬁlz + lev' ) *Blz + .sz—l} and {al + Y
a; + ¥,,- -, a, + v,}. The first group corresponds to «,
and the second to w,. Writing these coordinates as a
column vector and computing the Jacobian (with respect to

a()""aap’ Bl,”"B » .Yl’."wly‘p) giVeS
I O O

J=l0 B G| (22)
S 0 I

where O denotes a matrix of all zeros, / is an identity
matrix of appropriate size, and B is a diagonal matrix
having B, as its ith diagonal entry. The exact forms of
matrices G and S are not important since it is clear that
the matrix J has rank 3p + 1 if and only if 8, # 0 for
1 <i < p, or, equivalently, u, # 0, 1 </ < p. This condi-
tion is easily incorporated in the construction of x, as a
point in the image of the map P,,,,,, as above. This
completes our verification that the system in (7), defined
by (17)-(19), is weakly canonical and hence, by our theo-
rem, it has a state space of minimum dimension.

V. REALIZABILITY AND TRANSITIVITY

In sequential decision problems involving the models
(QU, FR ptoy k> 1, both a stopping rule and an
action rule must be determined for each k > 1. Bahadur [1]
showed that it suffices to consider sequential decision rules
based only on a sequence of statistics, provided that the
sequence 1s both sufficient and transitive. A sequence
(H(U), Hy(U, U,), - -+ ), where H, is F-measurable
for each k, is called transitive if for every k > 1 and for
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any function ¢ on U*), P%®)-integrable, and measurable
with respect to the sigma field F}*’ induced by H,,

E {(Up--- U)IFE 1)
= E (U UDIES V), as [P] (23)

for all P € P In words the statistic H, depends on the
past, U*~ Y only through H, ,. As illustrated by our
autoregressive process example, a sufficient sequence con-
sisting of minimal sufficient statistics in generally not
transitive. For instance, the component U,U, + U,U, , of
T, from (5) does not depend on U~V only through 7, _,.

When a realization for a sufficient sequence is given in
the form of (7), a realizable, sufficient sequence is easily
obtained by appending the observations (H; = (x,.U,),
H, = (x,,U,),---); this sequence will be transitive if
E U F* DY = Ep{U,JF{ ). as. [P). This condition
ensures that the realization incorporates the innovations
representation [19] for the process {U,, i = 1} in the sense
that the state must contain all past information in the
process needed to compute the minimum mean-square
error one-step prediction of U,. given any para-
metric model. For example, E {U,|F* 1} =
E{UjU; 1.+ Uy ), as. [P] for a pth-order autore-
gressive process, and the transitivity condition holds in this
case (cf. (18c)).

This discussion suggests an example showing that not all
finite-dimensional sufficient sequences are realizable by a
finite-dimensional systems. Let (U, i > 1) be a sequence of
observations from a purely nondeterministic, stationary,
Gaussian random process with unknown mean p and
known, smooth spectral density function. The joint density
function for (U,,- - -, U,) takes the form

) = h(uy,- -, u,)c(u)
cexp — {pg,(upc - ou,)s

where the sufficient statistic is given explicitly by

gn(ul'.' '~“,;)R;1Xn~ (25)

where R, is the covariance matrix of (Uy,---,U,) and x,
denotes the n-vector whose entries are all 1.

For analytical purposes, it is convenient lo use the
innovations representation of the process {W,, > 1},
where w, = U — p, i = 1. Specifically. for each n 21 the
sequence (W,,- - -, W,) may be represented as an invertible
linear transformation of the first n terms of a process of
independent Gaussian random variables, say {v,, i > 1}.
The innovations sequence is obtained by applying the
Gram-Schmidt procedure to the original sequence { W.}.
The form of the representation is [19], [20]:

W, (26a)
i1

= Vl/l + Z al.ju/lfj’

J=1

pluyu

n

(24)

o) = (uy.-

VI:

i>1. (26b)
It follows that the innovations sequence is obtained as the
output sequence of a time-varying invertible linear system
whose input sequence is {W;}. The coefficients in (26b)
and the variances of the v, random variables are determined
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by the projection theorem of linear least-squares estimation
theory and may be efficiently computed from the covari-
ance sequence using the Levinson-Durin recursions (see
[21] for further discussion).

Let {7, i > 1} be the sequence of random variables
obtained from (26) when the input sequence is changed
from { W} to {U,}. Using some simple algebra as in [9), it
may be shown that the sufficient statistic g, of (25) 1s given
by

g, (U, U,) = L v, (27)

i=1

The v, coefficients are all positive and may be given
explicitly in terms of the partial correlation sequence of the
process; again see [9]. Here it suffices to note that the
computation required to update the sufficient statistic in a
recursive way as more observations are made is equivalent
to computation of the output of a system that generates the
process {7, }. The system is the innovations representation
for { W,}, a process having the same spectral density as the
process {U,}. When this spectral density function does not
determine a finite-dimensional innovations representation,
the sufficient sequence { g, } does not admit a finite-dimen-
sional realization. A necessary condition for the existence
of a finite-dimensional system (linear or nonlinear) that
provides an innovations representation is that the process
have a rational spectral density function [22]. A particular
example arises from the choice of the covariance function
E{(U, = p)U, — p)} = p* /", for p satisfying —1 <
p < 1.

Lauritzen [23] has introduced another notion, related to
transitivity, in order to study prediction problems n sto-
chastic processes whose probabilistic structure is unknown.
A sufficient sequence (G,(U,),G,(U,Uy), --+) is called
totally sufficient if for every k > 1 the (marginal) sigma
field induced by U,, say o(U,), and F‘*~" are condition-
ally independent, given Fi*~ ", the sigma field induced by
G, ,. for all P& P This condition implies that
E{UJF* VY = EL{UJF¥ 1Y, as. [P], which is the
condition introduced above to obtain transitivity of the
sufficient sequence of augmented states from a realization.

These ideas are illustrated in the following example, due
to D. Basu [24], where it turns out to be necessary to
increase the dimension of a transitive sufficient sequence in
order to achieve totality; as a result, the dimension of the
corresponding realization must also increase. Let U, and
U, be independent, identically distributed Gaussian ran-
dom variables with unknown mean p and variance 1. For
Jj>2let U= U, + W, where the {W.} is a sequence of
independent, identically distributed Gaussian random vari-
ables with mean 0 and variance 1. The sequence (U,, U; +
U,, U, + U,, - - ) is a transitive sufficient sequence with an
obvious 1-dimensional realization: x; = 0; x, = Uj; x; =
x, + Uy and x,_, = x; for k > 3. The sequence is not
totally sufficient because U, is not independent of
Uy, -+, Ui_y) given U + U, for j > 2. However, U is
independent of (U,,---,U;_;) given U,. Hence the se-
quence (U, 0), (Uy, Uy), (U, Uy), -+ ) is totally sufficient
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(and transitive). This sequence requires a realization of
dimension 2. Viewed another way, the one-dimensional
realization of the original sufficient sequence does not
incorporate the innovations representation of the U, pro-
cess, because E{UJ|F*V}=U,+ U + U, =x, for
k > 2. After expanding the state space to include U,, a
totally sufficient sequence is obtained.

V1. REALIZABILITY AND DISCRETE-TIME
NONLINEAR FILTERING THEORY

Our autoregressive process example is also a convenient
setting to illustrate a connection with (discrete-time) non-
linear filtering theory, by which we mean the theory of state

estimation in nonlinear stochastic dynamical systems of the
form

ka1 =f(§k’wk) (28a)
M = h(fk’wk)’ (28b)

where {, and w,, k > 1, are random variables with known
statistics. It is desired to find a recursion for computing the
sequence of conditional densities p($, , ,[n,,- -, 7). k = 1.
The autoregressive process of (1) is transformed into this
framework by adopting a Bayesian viewpoint and regard-
ing the parameter vector s as a random quantity. Then by
choosing the 2p + 1 dimensional state vector §, =
Wi, Uk_p, #), and observations n, = U,, state equa-
tions are found by using (1) and the time invariance of .
Explicitly,

$ev1 = fk[g ?] + me;

~ (U, U, 00 + W,

(29a)

M = (29b)

where O denotes a matrix of zeros of appropriate dimen-
sions, I is the (p + 1)-dimensional identity matrix, e, is
the first unit vector of dimension 2p + 1, and the matrix
Z=(z,,),1<ij<pisgivenbyz =38, , where §
1s the Kronecker symbol.

Note that after p observations are made, i.e., k > p, the
filter need generate only the posterior density function for
9, namely p(u,,- - -, u,), or by sufficiency of the statistic
T, from (5) p(®|T,(uy, - -, u,)). We can give a useful form
for this family of density functions for ¢ by employing
natural conjugate density functions [25] or any reproducing
family of densities [26] corresponding to the conditional
density function (2). Specifically, we rewrite (2) using the
functions comprising the sufficient statistic T,:

P(“la""“kw)=gk(Tk(“1a""uk)"9)- (30)

Let y, be the value of 7, obtained from observations of

(Uy,---,U,) as the output of the system (7). A family of
densities for & is obtained by taking

pi(91y) =gk(y,~9)/fegk(y,(p)dqv, (31)

for all y in the image of the map T, (-). By the reproducing
property of tbjs family [26], { p,(#|y,)} is a sequence of
density functions obeying the sequential form of Bayes’
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rule required for compatability:

Pisi(Blyiay) = C(")P(“kHU’k»O)Pk(‘?l)’k)’
(32)

where c(®) is the appropriate normalizing constant. Thus,
the system (7) is naturally regarded as a nonlinear filter
generating the conditional density functions for the state of
the system (29). From our previous analysis we may con-
clude that the minimum-dimension nonlinear filter associ-
ated with the autoregressive parameter estimation problem
has dimension 3p + 1. For applications of reproducing
densities to sequential decision problems involving simulta-
neous estimation and hypothesis testing, see the work of
Birdsall and Gobien [26], who clearly recognized the im-
portance of realizable sufficient sequences.

Our results on minimum-dimension realizations for suf-
ficient sequences may be applied to a more general class of
discrete-time nonlinear filtering problems that includes the
autoregressive parameter estimation problem. Suppose that
there is a underlying Markovian state process and that the
observation at each instant is conditionally independent of
past states and observations given the present state. Then
under suitable regularity conditions, there exists a finite-
dimensional transitive sufficient sequence for the condi-
tional distribution of the state given the observation se-
quence, if and only if this distribution and the conditional
distribution of an observation given the state both have the
exponential family form [27], [28]. (This is a significant
generalization of the situation in the case of independent
observations mentioned above in connection with the first
example of Section IV.) Sawitzki [29] considered the con-
struction of realizations using a transitive sufficient se-
quence as a state, but he did not attempt to study any of
the associated system theoretic issues such as minimum
dimensionality.

VII. CONCLUDING REMARKS

As a final point, we will compare our result with the
local results on minimum-dimension sufficient statistics of
Barankin and Katz [30], [31]. Thanks to our assumptions
about the regularity of the functions that comprise a suffi-
cient sequence, realizability is divorced from probabilistic
considerations. However, various probabilistic properties
of the state space of a stochastic system of the form (7)
may be investigated. A particular example from [30], [31]
(see also [6]) illustrates the character of our notion of
system dimension. Consider the bivariate random variables

U, = (u',u”), belonging to the 2-parameter exponential
family of density functions

f(w' |9, #,) = c($,,9;) exp — {‘91‘P(“’) + S (u”)},
(33)

where the parameters ¢, and #, are positive, ¢(#,, #,)is a
normalizing constant, and the function ¢ is defined by

wl, ifw<0

(p(w): 0, ifOSWSI.
(w - 1)%,

(34)
ifw>1
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In the notation of Section IV we have g,(u) = ¢(u’) and
g-(u) = @(u"”). The Jacobian of these functions vanishes
only on the set given by {(u",u”): 0 <u’ <lor0 <u” <
1}. so the corresponding system (16) has minimum dimen-
ston 2. Yet for every j > 1, there is a subset of 2/’ having
nonzero probability where the sufficient statistic T, from
(15) is identically zero.

Such focal phenomena are incorporated into our theory
in a straightforward way and will be important in a formu-
lation of a realization theory for stochastic nonlinear sys-
tems. However, we believe our result will be adequate in
many statistical applications, because the conditions re-
quired for a system to be weakly canonical will turn out to
be generic, in a suitable sense. In the strongest sense, for all
k sufficiently large, they will be satisfied P-almost surely
for all P € P'*). Even in contrived examples like the one
of (33 and 34), the probability of observing an exceptional
sequence decreases geometrically, and our system-theoretic
approach gives generic results in the weak (Chebyshev)
sense.

The same kind of local phenomena were treated by
Barankin and Katz [30], [31] in their study of minimum-
dimension, continuously differentiable sufficient statistics.
Viewed in terms of sufficient sequences and realizations,
the Barankin- Katz work deals with constructing an output
space Y X of minimum dimension at a fixed time instant
k. This szatic problem is much earlier than the problem we
have addressed. Indeed, Jacobian conditions provide ex-
istence results by application of the implicit function
theorem.
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