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Absrract: Weak controllability of bilinear systems is preserved 
under sampling provided that the sampling period satisfies a 
condition related to the eigenvalues of the autonomous dy- 
namics matrix. This condition generalizes the classical Kal- 
man-Ho-Narendra criterion which is well known in the linear 
case. 
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1. Introduction and statement of result 

This note describes an explicit result for bilin- 
ear systems, to be obtained as a consequence of a 
more general but abstract sampling result given in 
[6]. It seems appropriate to present this explicit 
condition separately; the notations and statements 
are considerably simpler in the bilinear case. The 
criterion generalizes the classical one for linear 
systems [5,1,2]. In fact, its proof relies essentially 
in defining, for a given bilinear system, an associ- 
ated linear system, corresponding to the adjoint 
representation of the Lie algebra of the original 
system, to which the usual criterion is applied. 

We first give some general definitions. A (con- 
tinuous-time, input-linear, analytic) system X is 
described by equations 

w =f(xW) +lLi(MxwL 0.1) 
1 

where states x(r) belong to a real-analytic Haus- 
dorff second countable connected n-dimensional 
manifoldM,andcontrolsu(~)=(u,(-),...,~,,(a)) 
take values in 88”‘. We assume that f+ Cuigi is an 
analytic complete vector field for each u E Rm. A 
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bilinear system is one for which M = RR for some 
n, and the vector fields f, g,, . . . , g,,, are all linear. 
Thus there are in the bilinear case matrices F and 
Gi such that the equations take the form 

k=(F+Cu,G,)x. (1.2) 

See [3] for an introduction to systems (1.1) and 
bilinear systems. 

Let a=(~,,..., s,) be a sequence of positive 
real numbers, with T := Cs,, and let p := 
(CL ,, . . . , CL,) be a sequence of elements in R”‘. 
Then p,, is the control function u of length T 
defined as follows: 

u(t) :=pi if tE [so+ .-a +s~-,, so+ ... +si), 

i=l ,***, r (denoting sa := 0). If 6 is a positive 
real and p := (cc,, . . . , p,) E R”, I*: is the &sum- 
pled control p,, where u := (6,. . . ,6) (r times). 

If [ is in M and u = ~‘6 then f = +[[, u] is the 
solution at time T of (1.1) with this u(s) and 
initial condition x(0) = E; we say that { is 6- 
reachable from 5 (in r steps). The &accessibility 
relation is the equivalence relation generated by 
b-reachability, and A6(Q is the set of states 6- 
accessible from 1. Thus, {EAT iff there are 
integers r,, . . . , t,, and a sequence of states &, = 
E. E i,. . . , & = 3, such that for each i either & is 
S-reachable from &+, in - ti steps, or &+i is 
&reachable from & in ti steps. 

The system 2 is weakly &controllable at 5 if 
A,([) is a neighborhood of 5; it is weakly sampled 
controllable at 5 if it is weakly, &controllable at 6 
for some 6 > 0. 

Finally, recall that the system (1.1) satisfies the 
strong accessibility condition at [ iff the Lie algebra 
L, of vector fields on M generated by 

{adj(gi), j>O, i=l,...,m 1 (1.3) 

has rank n at [, i.e. 

dim span{ X(S), XEL,,} = n. 

Here ad{(h) denotes the Lie bracket [f, h]. This 
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property is equivalent to a notion of ‘zero time 
weak controllability’ at 5; see [7]. The result to be 
proved in this note is as follows. 

Theorem. Let Z be a bilinear system and pick 
[ E M. If 2 is sampled accessible at 6 then it 
satisfies the strong accessibility condition at .$. CotI- 
versely, if the strong accessibility condition at [ 
holds, then .Z is &accessible for each 6 > 0 such 
that 

+ 2kni for all nonzero k E Z 0.4) 
for any set of 4 eigenvalues h, , h 2, p,, pz of F. 

2. Proof of the result 

Necessity of the strong accessibility condition 
follows from Propositions 9.2 and 3.9 in [6]. We 
now prove the converse. 

Formally, we let J” be the following linear 
operator on vector fields on M: 

J” := E (G”/k!)ad;-‘. 
k-l 

If r: M + M is a diffeomorphism, we denote by 
Ad,, the linear operator on vector fields corre- 
sponding to conjugation by n, more precisely: 

AdAS) := b-‘)&+(5))) 

for any vector field X and each t in M (where 
(7~~‘)~ denotes the differential of rIT-’ at the point 
n(t)). ,Finally, let bj = J”gj. Even if the series 
defining bj does not converge in any reasonable 
sense, it is still possible to give a -well defined 
meaning to this vector field ([a], Section 8). In any 
case, we shall only consider the bilinear case, in 
which convergence is not an issue since we deal 
with entire functions of matrices. Consider for 
each 6 the Lie algebra of vector fields L, gener- 
ated by the elements 

1 Ad{,,,-,,J6gjIk>,0, i=l,..., m 1. 

The following result is proved in [6], Corollary 
9.8: 

Proposition. If L, has full rank at [ then 2 is 
weakly S-controllable at 5. Zf 2 satisfies the strong 

314 

accessibility condition at [ then there is a A > 0 
such that for each 0 < 6 < A, L, has full rank at [. 

So we need to establish that, in the bilinear 
case, L, has full rank at [ when the strong 
accessibility condition and the stated eigenvalue 
condition hold. Consider the analytic function 
o(z) := (e’ - 1)/z. For any finite dimensional lin- 
ear operator A, we may consider the following 
operator: 

w(A) := f A”-l/k!. 
k-l 

By the spectral mapping theorem, w(A) is nonsin- 
gular if A has no eigenvalues of the form 2kni. 
For any linear operator A on a space V and 
elements v ,,..., v,,of V,let 

wJl~...4,,~ 
:=span{A$,i=l,..., m, k,O}. 

In particular, let A be the operator ad., i.e. 
ad,(G) := GF- FG, acting on M,,(R) = {n x n 
real matrices). Pick any 6 > 0. The vector fields b, 
are linear, b,(t) = Bit, with 

Bi = &.+A)G, 

for each i. Also, by the Baker-Campbell-Haus- 
dorff formula we have that Ad,,,,-,,bi is a linear 
vector field corresponding to the matrix 

esAB. I’ 

Thus L, identifies with the Lie algebra of matrices 
generated by the following elements: 

6 ekSAa( 6A)G, = 6w( 6A) eksAGi (2.1) 

with i = 1,. . . , m and k 2 0. With these notations, 
in the bilinear case strong accessibility at [ means 
then that the set of all vectors of type M& with M 
in 

{AIG,,...,G,,,}, 

spans a space of dimension n. We shall prove that, 
for 6 and F satisfying condition (1.4), the linear 
span of the generators in (2.1) coincides with 
(A I G,, . . . > G,,,}. It will follow that L, has rank n 
at .$. 

Assume now that 6 and F satisfy condition 
(1.4). The eigenvalues of A are differences of 
eigenvalues of F, this follows from matrix equa- 
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tion theory, and is also a standard Lie algebraic 
fact (see e.g. [4], Chapter I, exercise 16). Thus the 
eigenvalues of A satisfy the condition that 

6[h-~]#2kni forallnonzerokEb. (2.4 
(This is the condition imposed on the ‘A’ matrix 
in linear system theory for the analogous sampled 
controllability result.) In particular, h = 2kni can- 
not be an eigenvalue of the real matrix &A (take 
p =x), and w(6A) is invertible. Thus we need to 
prove simply that 

{esA IG,,... ,G,,,} = {AIG,,...,G,,,}. 

This is precisely what is done when proving the 
classical linear system result. We give a simple 
argument here. Consider the exponential function 
e”. The condition (2.2) assures that this function is 
one-to-one in a neighborhood of the spectrum of 
6A. Since eZ is everywhere nonsingular, it has a 
well defined inverse (a determination of log z) in 
a neighborhood of the spectrum of esA. It follows 
that A is a function of esA, and the desired 
equality holds. 

3. Remarks 

Roughly, the theorem says that sampling at 
twice the frequency predicted by the linear theory 
will insure preservation of weak controllability. 
Actually, a much weaker condition is sufficient. 

By a simple coordinate change in Iw”, we can 
replace F by any linear combination F + EriCi. 
The eigenvalue condition for any of these new 
matrices will then be sufficient. Thus in various 
senses of genericity, all sampling periods 6 pre- 
serve accessibility, for fixed F, if the Gi are ‘ran- 
domly’ chosen. Finally, note that one could talk 
about systems like (1.2) with an added extra linear 
term on x (‘internally biaffine systems’); an anal- 
ogous eigenvalue condition results in that case as 
well, or, more generally, for systems with finite 
dimensional Lie algebra. 
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