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An eigenvalue condition is given for the sampled positive-time accessibility of
a class of nonlinear systems. This result generalizes a previous result of the
author, which applied only to bilinear systems and which only concluded a
weaker notion of controllability.

1 Introduction

When a continuous-time system is regulated by a digital computer, control decisions are often
restricted to be taken at fixed times 0, δ, 2δ, ...; one calls δ > 0 the sampling time. Under
what is called zero-th order hold sampled control, the resulting situation can be modeled
through the constraint that the inputs applied be constant on intervals of length δ. A prefilter
may be applied to the system to smooth out control discontinuities, but mathematically the
situation is as with piecewise constant controls.

It is thus of interest to characterize the preservation of basic system properties when
the controls are so restricted. For controllability, this problem motivated the results in the
classical paper of Kalman, Ho, and Narendra [3]. This studied the case of linear systems and
established that controllability when sampling at intervals of length δ is preserved provided
that δ(λ − µ) is not of the form 2kπi, for any pair of distinct eigenvalues of the A matrix.
The dual version of this result, for observability, is basically the classical Nyquist-Shannon
sampling theorem from digital signal processing, and is usually summarized by the statement
that controllability (or observability) is preserved provided that one samples at more than
twice the natural frequencies of the system.

In [5], we found a general result which in particular implies, for the class of bilinear
systems, an analogous property; one now needs that δ(λ+λ′−µ−µ′) not be equal to 2kπ, k
non zero, for any four eigenvalues of the autonomous dynamics matrix. Thus in the bilinear
case, one must sample at more than 4 times (rather than twice) the natural frequencies of
the system. The bilinear result was obtained by inducing a linear system on the adjoint
representation of a certain Lie algebra associated to the given system. The result was proved
for transitivity, often called also the “weak controllability,” property. The present work
shows how to extend this to the much more interesting (forward) accessibility (or “positive
Chow”) property, with the same eigenvalue condition being sufficient. This extension is
possible based on new results on discrete time controllability from [4]. Moreover, we can
now generalize the result to deal with a much larger class than that of bilinear systems.

The plan for this paper is as follows. We first give definitions and state the main results.
After that we shall recall details of the linear case, giving an abstract proof of the classical
result, and finally we shall show how to reduce the nonlinear problem to a suitable linear
one on a larger dimensional space.
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2 Frequencies and Accessibility

The systems σ that we shall consider have the form

ẋ = f(x) +
m∑
i=1

uigi(x), (1)

where x(t) ∈ IRn and ui(t) ∈ IR for each t; n is the dimension of the system, m the number
of independent controls. We assume also that the vector field f is complete, that is, that
solutions of the unforced system are defined for all initial conditions and all t ≥ 0. Further,
we assume that f as well as the gi are real-analytic.

Fix an equilibrium state x0 ∈ IRn of (1), that is, a zero f(x0) = 0, and consider the
linearization F = (∂f/∂x)(x0). We shall say that the natural frequencies of the system (1)
(about the equilibrium state x0) are the imaginary parts of the eigenvalues of F , and let
ω(σ, x0), or just ω, be the set of these numbers (counted with multiplicities). Note that since
F is real, −ω ∈ ω whenever ω ∈ ω. For each nonnegative integer j we denote by

Bj

the set of all linear combinations
1

k

n∑
i=1

ρiωi (2)

with k a nonzero integer, ω1, . . . , ωn the natural frequencies, and the ρi’s nonnegative integers
satisfying

n∑
i=1

ρi = 2j + 2.

Note that if λ is the largest of the ωi, (equivalently, the largest absolute value of these,) each
element of Bj is in magnitude bounded by (2j + 2)λ.

The main results will hold for systems for which f is linear and the gi are all polynomial
vector fields. By σ̃Hd we denote the class of all systems for which f is linear, f(x) = Fx,
and the coordinates of all the gi are homogeneous polynomials of degree exactly d. For
instance, σ̃H0 is the class of all linear systems (the gi’s are constant vectors,) while σ̃H1 is the
class of bilinear systems, treated in [5]. We drop the superscript H to indicate more general
polynomials: σ̃d is the class of all systems for which f is linear and the gi are polynomials
of degree at most d. For such systems, the natural frequencies are just the imaginary parts
of the eigenvalues of F.

Under relatively mild conditions (the Poincaré resonance conditions), it is possible to
reduce under coordinate changes more general systems, at least locally, to the case where f
is linear. However, any structure on the gi’s is then destroyed.

Accessibility

Fix again an equilibrium state x0. The set of states of σ that can be reached from x0

in time T > 0, using arbitrary (measurable locally integrable) controls u(·) is denoted by
AT (x0). The system (1) is said to be (forward) accessible (from x0) if it holds that for some
T > 0 this reachable set has full dimension, more precisely if

intAT (x) 6= ∅ . (3)



Let ω > 0 be any real number. We shall say that σ is ω-(forward) accessible (from x0),
or (forward) accessible under sampling at frequency ω (from x0), if the set of states

ATω(x0)

reachable from x0 in time T using controls sampled at that frequency has a nonempty
interior. A control u(·) defined on an interval [0, T ] is said to be sampled at frequency ω (in
radians/sec) iff T is an integer multiple of δ := 2π/ω, say T = rδ, and there are vectors

v1, . . . , vr

such that u(t) ≡ vi on the interval [(i − 1)δ, iδ). With this definition it is clear that ω-
accessibility for even a single ω implies accessibility. The following two main theorems
provide a converses to this fact; they will be proved later.

Theorem 1 Let x0 be an equilibrium state, and assume that σ ∈ σ̃Hd is accessible from x0.
If ω > 0 is not in Bd then σ is also ω-accessible.

Theorem 2 Let x0 be an equilibrium state, and assume that σ ∈ σ̃d is accessible from x0.
If ω > 0 is not in Bj for any j ≤ d, then σ is also ω-accessible.

With λ as above, the following is then an obvious consequence of Theorem 2. For linear
systems (d = 0), it is a version of the classical Sampling Theorem. For d = 1, one recovers
in a stronger form the result for bilinear transitivity given in [5].

Corollary 2.0.1 Accessibility is preserved under sampling for systems in σ̃d provided that
the sampling frequency be larger than 2j+2 times the largest natural frequency of the system.

It is possible to generalize these theorems to deal with nonpolynomial gi’s, but no simple
corollary as the above would appear to hold.

3 Linear systems

It is worth reviewing the case of linear systems in detail, since it will be useful later. This
is basically due to [3]. Let V be a vector space over the reals, and let A be a linear map
V → V . For any subspace B of V , we denote by

{A|B}

the smallest A-invariant subspace of V which contains B.

Assume from now on that V is finite-dimensional. We may then think of V as a Banach
space, when endowed with any fixed norm. (Since all norms are equivalent, the particular
norm used will not be important in what follows.) If f(z) is an analytic function defined on
an open set which contains the spectrum of A, we let f(A) be the application of f to A as per
the spectral mapping theorem. In particular, for each δ ∈ IR, eδA denotes the exponential of



the matrix δA, which is well-defined for all A, and θδ(A) will denote the application to any
A of the entire function

θδ(z) :=
eδz − 1

z
.

If it held that A = β(eδA) for some δ and some analytic function β, then for each vector
b it would hold that Ab is a linear combination of (finitely many) terms of the form ekδAb (k
= nonnegative integers,) and therefore

{A|B} = {eδA|B} (4)

for any subspace B. If it also holds that θδ(A) is invertible, then also

{A|B} = {eδA|θδ(A)B}. (5)

This last equality is a consequence of (4) applied to B = θδ(A)B and of the fact that
B ⊆ {A|θδ(A)B} for any subspace B, which in turn follows from

B = θδ(A)−1θδ(A)B

and the fact that θδ(A)−1 is again an analytic function of A (spectral mapping theorem).
The reason that (5) is of interest is that when

ẋ = Ax+Bu (6)

is a linear system, the system obtained by sampling with period δ (frequency ω = 2π/δ
rad/sec) is, by the variation of parameters formula, the discrete time system

x+ = eδAx+ θδ(A)Bu,

and therefore controllability is preserved with this sampling provided that the original system
is controllable and (5) holds.

The zeroes of the mapping θδ(z) are the complex numbers of the form 2π
δ

√
−1, so θδ(A) is

certainly invertible if ω is not a natural frequency of (6). Furthermore, the exponential map-
ping eδz is everywhere nonsingular, so there it admits a one-sided inverse θδ(z) = (1/δ) log z
defined on the spectrum of eδA iff it is one-to-one on the spectrum of A. We thus conclude
the fundamental linear sampling theorem:

Proposition 3.0.1 If kω 6= ω1−ω2 for each two natural frequencies of (6) and each nonzero
integer k, then (5) holds.

Note that the condition in this proposition is precisely the one that insures that the
exponential is one-to-one, but that this also implies that ω is not a natural frequency of the
system: otherwise, −ω is also a natural frequency and therefore 2ω = ω − (−ω) contradicts
the condition.



4 Discrete-time nonlinear accessibility

We shall need to use a result from [4]. For this, we first introduce the following vector fields
associated to a system (1) and any fixed real number δ > 0. Fix an i = 1, . . . ,m. Then
consider

Xi(x) :=
∂

∂ε

∣∣∣
ε=0
e−δfeδ(f+εgi)(x).

These are analytic vector fields; note that completeness of f is used in this definition, since
we need to know that e±δf (p), the flow in time ±δ of the vector field f starting at p, is
defined for any p ∈ IRn. (By well-posedness of ode’s, this implies that eδfe−δ(f−εgi)(x) is also
defined, for small ε.) For small δ, there is an expansion (see for instance [2])

Xi(x) =
∞∑
i=1

δi

i!
adi−1

f (gi)(x);

here adf denotes the Lie bracket linear operator on vector fields,

adf (Y ) := [f, Y ].

Still for any fixed δ, one considers also the conjugation under the flow of f , also a linear
operator on vector fields:

Adδf (Y )(x) := (e−δf )∗Y (eδf (x)),

where “∗” indicates differential. For small δ, one has also the expansion

Adδf (Y )(p) :=
∞∑
i=0

δi

i!
adif (Y ).

Now let X be the subspace of vector fields generated by the Xi’s, let

Lδ := Lie algebra generated by {Adδf |X},

and let Lδ(x) denote the subspace of the tangent space at x ∈ IRn spanned by the vectors
Y (x), Y ∈ Lδ. The main result which we need from [4] is the following, restated in terms of
sampling of a continuous-time system. We state only a sufficient condition; a necessary and
sufficient characterization is also given in that reference, but it is somewhat less elegant.

Theorem 3 The system σ is ω-accessible from the equilibrium state x0, for ω = 2π/δ, if
Lδ(x0) has dimension n.

Let B be the span of the vector fields g1, . . . , gm. From now on, we make the assumption
that

V := {adf |B} is finite dimensional. (7)

Note that for systems in the classes σ̃Hd and σ̃d this assumption holds true, since homogeneous
polynomials of any fixed degree are invariant under adf for linear f .

Under assumption (7), one can introduce the operators eδA and θδ(A), for A = adf seen
as a linear operator on V . These are defined and analytic for all δ, and from their expansions
in terms of δ and analytic continuation we conclude that

Adδf = eδA



as linear operators on V and that
Xi = θδ(A)gi

for each i. Thus Lδ is the Lie algebra generated by the right-hand side of (5), with the
present A and B. It follows that if δ is such that (5) holds then Lδ is the same as the strong
accessibility Lie algebra

L0 := {adf |B}LA
and hence it has rank n at x0 if the original system is accessible from x0. We thus conclude
from proposition 3.0.1:

Proposition 4.0.2 Let x0 be an equilibrium state, and assume that σ satisfies (7) and that
it is accessible from x0. If ω > 0 is such that kω 6= ω1 − ω2 for each two imaginary parts
ω1, ω2 of eigenvalues of adf on V and each nonzero integer k, then σ is also ω-accessible.

It is also possible to give a result for nonequilibrium initial states x0; see [4] for the
necessary discrete-time accessibility result.

5 Proofs of the main results

We are only left with translating proposition 4.0.2 to the case of linear f(x) = Fx and
polynomial gi’s. For this, we need the following fact (see a proof for instance in [1], lemma
12.2.5).

Proposition 5.0.3 The eigenvalues of adf , for linear f(x) = Fx, acting on the space of
all vector fields whose entries are homogeneous polynomials of degree d, are given by the
expressions

a1λ1 + . . .+ anλn − λi
for all i = 1, . . . , n and all nonnegative integers a1, . . . , an such that

a1 + . . .+ an = d, (8)

where λ1, . . . , λn are the eigenvalues of F .

Since the space of all polynomial vector fields of degree at most d is a direct sum of the
spaces corresponding to homogeneous ones, one has an analogue of the above for polynomials
of degree ≤ d, simply replacing equality by ≤ in (8).

Consider first the homogeneous case, theorem 1. Note that the imaginary part of an
expression

a1λ1 + . . .+ anλn − λi
is the expression

a1ω1 + . . .+ anωn − ωi,
where the ωi are the natural frequencies. Because of proposition 4.0.2, we need to check the
differences

a1ω1 + . . .+ anωn − ωp − (b1ω1 + . . .+ bnωn − ωq) (9)



with nonnegative ai, bi and
∑
ai =

∑
bi = d. An expression as in (9) can be also written as

ρ1ω1 + . . .+ ρnωn, (10)

with all ρi nonnegative integers and
∑
ρi = 2d+ 2. This is because any negative term −bωi

can be also written as bωi′ , for some other i′ (recall that the set ω of natural frequencies is
closed under additive inverses). Conversely, any expression as in (10) with∑

ρi = 2δ + 2

can be in turn expressed as in (9), for the same reason. This gives theorem 1. To prove
theorem 2, argue in exactly the same way, except that the sums of the ai and bi may now
be arbitrary up to d each, and therefore the sum of the ρi’s can be at most equal to 2δ + 2
and must be at least equal to 2. However, the case of sum = 1 can be reduced to that when
the sum is 2 (just compare with 2k in (2),) and hence the theorem results.
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