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Abstract

Internal models are nowadays customarily used in different domains of
science and engineering to describe how living organisms or artificial
computational units embed their acquired knowledge about recurring
events taking place in the surrounding environment. This article reviews
the internal model principle in control theory, bioengineering, and neuro-
science, illustrating the fundamental concepts and theoretical developments
of the few last decades of research.
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1. INTRODUCTION

Mark Twain, apprenticed as a teenager to a Mississippi river pilot, later reported his mentor as
saying, “You only learn the shape of the river; and you learn it with such absolute certainty that
you can always steer by the shape that’s in your head, and nevermind the one that’s before your eyes”
(2, p. 73). In more abstract terms, the idea that incorporating an appropriate model of the external
world enables special abilities, such as adapting to external stimuli or executing smart operations
in the presence of partial information, pervades many fields of science. In his classic monograph
The Nature of Explanation (3), psychologist Kenneth Craik stated that “only [an] internal model of
reality. . .enables us to predict events which have not yet occurred in the physical world, a process
which saves time, expense, and even life” (p. 82); in other words, “the nervous system is viewed
as a calculating machine capable of modeling or paralleling external events,” and “this process of
paralleling is the basic feature of thought and of explanation” (p. 121).

Many studies in neuroscience support Craik’s vision. Vertebrates clearly act proactively rather
than reactively, acquire new skills, andmaintain mastered skills in response to changes in the exter-
nal environment and the motor system. There are many reasons to believe that these abilities are
enabled by the presence of internal models in the brain that compute the expected sensory conse-
quences of a given motor command and produce sensory prediction error signals when the actual
sensory input does not match expectations. Properties of this kind are also observed in some inver-
tebrates whose nervous systems implement predictions of the sensory consequences of actions (4,
5). Investigating the neural implementation of these internal models and their computations is an
active area of research. Internal models are also crucial for the proper functioning of many biolog-
ical organisms that must be able to detect changes in their environment and adjust their internal
states accordingly, a process commonly referred to as homeostasis or adaptation (6, 7). For exam-
ple, successful chemotaxis (movement toward high concentrations of a chemical attractant) ofEsch-
erichia coli depends on the ability of the bacteria to adapt to step changes in the chemoattractant (8).

The mathematical framework where the notion of an internal model finds its most developed
characterization is that of control and systems theory. By the 1930s, thanks to research at Bell Tele-
phone Laboratories, the mathematical foundation of classical linear feedback control was soundly
established. It had two implications: (a) Error feedback can reduce parameter sensitivity and final
tracking error, but only at the expense of high loop gain, and (b) adding an internal model allows
one to reduce the final tracking error to zero regardless of (reasonable) parameter perturbations
and requires only moderate loop gain. A familiar example is the integrator component of the clas-
sical proportional–integral–derivative (PID) controller used to track (specifically) step reference
inputs. In general, the price to be paid for perfect tracking was extra control complexity, including
a stabilizing compensator, specific to the reference signals to be tracked. Later, Smith (9) incor-
porated an internal model in his scheme of predictive control, and in the mid-1970s, a series of
seminal studies (see, e.g., 10, 11) on parameter-insensitive perfect asymptotic tracking led to the
recognition of both error feedback and the internal model as necessary and sufficient structural
features of robust linear multivariable systems. The necessary part, in particular, is known as the
internal model principle (IMP) of control theory (10). The sufficient part, moreover, generalizes
the PID control to arbitrary linear exogenous systems, as well as outputs of arbitrary dimension
(11). More specifically, the IMP claims that asymptotic regulation is achieved in the presence
of plant parameter variations “only if the controller utilizes feedback of the regulated variable,
and incorporates in the feedback path a suitably reduplicated model of the dynamic structure of
the exogenous signals which the regulator is required to process” (10, p. 193). Generalizations to
nonlinear systems (with a differential geometry perspective) were initially obtained by Hepburn
&Wonham (12, 13; see also 14), mainly in the case of step reference signals, and then extended to
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general exosystems by Isidori & Byrnes (15) and Huang & Rugh (16). Since then, many attempts
have beenmade to make the nonlinear framework even more general and constructive, and output
regulation is still an active research area in control theory.

As presented by Sontag (6), and as is the case for many principles in mathematics, nowadays the
IMP is regarded not as a single theorem, but rather as a mold for many possible frameworks and
theorems formulated in different ways according to the specific scientific field. Moreover, while
in control engineering the IMP is used mostly as a tool for the synthesis of control solutions, in
neuroscience and biology it instead plays a role in the analysis of complex systems. Indeed, neces-
sary conditions found in abstract mathematical settings inform scientists about what to expect and
where to look when trying to understand how organisms interact with the external world.The two
different approaches—that of the engineer and that of the scientist—build on the same principles
and have the potential for fruitful cross-fertilization.On the one hand, the analysis of natural phe-
nomena may guide the designer toward specific design choices. On the other hand, “designing is
understanding” (17, p. 4), and the success of some engineering strategies can help scientists decode
the functioning of specific phenomena. In this direction, and with the aim of bridging research
skills and viewpoints from control, biology, and neuroscience, this article presents an overview of
the concepts and tools that are behind the IMP. The main goal is to delineate the mold of the
IMP developed in the control community and how it is interpreted in the two fields of biology
and neuroscience. We begin in Section 2 with a broad overview of the development of internal
models in control theory. In Sections 3 and 4, respectively, we describe how internal models enter
in biology and neuroscience. Finally, Section 5 presents some closing remarks and a perspective
on the future.

2. OUTPUT REGULATION IN CONTROL THEORY

2.1. Problem Formulation and Historical Background

The problem of robust output regulation is usually cast in the following terms. Consider a finite-
dimensional, time-invariant, controlled plant modeled by equations of the form

ẋ = f (w, x, u), e = he(w, x), y = h(w, x), 1.

in which x ∈ R
n is a vector of state variables, u ∈ R

m is a vector of inputs to be used for control pur-
poses, w ∈ R

nw is a vector of inputs that cannot be controlled and include exogenous commands/
disturbances and constant uncertain model parameters, e ∈ R

p is a vector of regulated outputs that
include tracking errors and any other variable that needs to be steered to zero, and y ∈ R

q is a vec-
tor of outputs that are available for measurement. The problem is to design a controller, which
receives y(t) as input and produces u(t) as output, so that, in the resulting closed-loop system, x(t)
remains bounded and limt → ∞e(t) = 0, regardless of what the exogenous input w(t) actually is.

The exogenous inputw(t) is assumed to be an (undefined) member of a fixed family of functions
of time, the family of all solutions of a fixed ordinary differential equation of the form (known
as the exosystem)

ẇ = s(w) 2.

obtained when its initial condition w(0) is allowed to vary on a prescribed setW. For convenience,
it is assumed that the setW on which the state of Equation 2 is allowed to range is a compact set,
invariant for the dynamics of Equation 2.

The control law for Equation 1 is to be provided by a system modeled by equations of the
form

ẋc = fc(xc, y), u = hc(xc, y), 3.
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Figure 1

Control architectures based on (a) postprocessing and (b) preprocessing internal models.

with state xc ∈ R
nc . The initial conditions x(0) of the plant shown in Equation 1 and xc(0) of the

controller shown in Equation 3 are allowed to range over fixed compact setsX ⊂ R
n andXc ⊂ R

nc ,
respectively. The controller shown in Equation 3 solves the problem of output regulation if, in
the closed-loop system

ẇ = s(w), ẋ = f (w, x, hc(xc, h(w, x))), ẋc = fc(xc, h(w, x)), e = he(w, x), 4.

regarded as an autonomous system with output e, the positive orbit of W × X × Xc is bounded
and limt → ∞e(t) = 0 uniformly in the initial condition.

The case in which the system shown in Equation 1 and the exosystem shown in
Equation 2 are linear was originally studied by Francis (18), Francis &Wonham (19), and Davison
(11), which highlighted the fundamental role of the IMP in the solution of such problems. The
internal model–based regulator proposed by Davison (11), shown in Figure 1a, is based on a suit-
able replica of the exosystem dynamics (the internal model) driven by the error, and a stabilizer
designed to stabilize the extended system given by the plant and the internal model.This regulator
is intrinsically robust—that is, it is able to steer the error asymptotically to zero even in the pres-
ence of uncertainties in the plant that do not affect the linearity of the system or the asymptotic
stability of the loop. Early attempts to extend the theory to nonlinear systems for the special case
where the exogenous input is constant were made in the mid-1970s by Francis & Wonham (19)
and later by Desoer & Lin (20),Hepburn &Wonham (12), and Huang & Rugh (16). The research
on the nonlinear output regulation problem for the general case where the exogenous input is time
varying began in 1990, when Isidori & Byrnes (15) gave a general formulation of the problem and
discussed the existence of local solutions. In particular, the solvability of the nonlinear output reg-
ulation problem was related to the solvability of a set of nonlinear partial differential and algebraic
equations known as regulator equations (see Equation 7 below). The design method proposed by
Isidori & Byrnes (15) presumed the availability of an accurate model of the controlled plant. If
only the regulated output is available for measurement and the model is affected by uncertain pa-
rameters, then to solve a problem of (robust) output regulation, one must establish an appropriate
nonlinear version of the IMP.

Initial progress in this direction was made by Huang & Lin (21), who, inspired by an example
from Byrnes & Isidori (22), realized that the steady-state tracking error in a nonlinear system
is a nonlinear function of the exogenous signals, and that a good internal model should be able
to reproduce the solution of the nonlinear regulator equations. Based on this observation, the
concept of a kth-order internalmodel was conceived, and a solution of the robust output regulation
problem for an uncertain nonlinear system was given under the assumption that the solution of
the regulator equations of the system is a polynomial in the exogenous input (23, 24). Further
results in this direction were given by Byrnes et al. (25) and Khalil (26). All of these contributions
were limited by the fact that the stabilization task is based on an eigenvalue assignment problem
for the linear approximation of an augmented system. Indeed, a regulator designed in this way is
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unable to yield global or semiglobal robust regulation.Moreover, like the regulators in References
11, 18, and 19, it cannot deal with uncertainties in the exosystem.

Since the mid-1990s, research on the output regulation problem has made further advance-
ments in two directions. First, the solution of the local robust output regulation problem has been
extended to cover the cases of semiglobal or global robust output regulation. Second, adaptive out-
put regulation techniques have been developed for dealing with uncertain exosystems. For these
purposes, the original concept of a nonlinear internal model was not adequate, and efforts have
been made to give it a more general characterization. The key elements for this generalization
are the concepts of immersion and steady-state generators, first proposed by Byrnes et al. (25) and
then further enriched and generalized in a series of papers (e.g., 27–29), leading to a variety of
internal models for different scenarios.

2.2. Steady-State Analysis

Consider the closed-loop system shown in Equation 4 and assume, as postulated in the definition
of the output regulation problem given in Section 2.1, that the positive orbit of the setW × X ×
Xc of initial conditions is bounded. Then, all trajectories of such a system asymptotically approach
a compact invariant set, known as the steady-state locus (30), which is the graph of a (possibly set-
valued) map defined onW. If such a map is single valued, then the steady-state locus can be given
the expression S = {(w, x, xc ) : w ∈W , x = x(w), xc = xc(w)}, in which x(·) and xc(·) are functions
defined onW. Then, in the closed-loop system, each exogenous input w(t) gives rise to a unique
steady-state response, expressed as xss(t) = x(w(t)) and xc, ss(t) = xc(w(t)). A consequence of the fact
that the steady-state locus is invariant under the flow of Equation 4 is that the maps x(·) and xc(·),
if continuously differentiable, satisfy the following pair of partial differential equations:

∂x
∂w

s(w) = f (w, x(w), hc(xc(w), h(w, x(w)))),
∂xc
∂w

s(w) = fc(xc(w), h(w, x(w))). 5.

A consequence of the second requirement in the definition of the output regulation problem
given in Section 2.1—that limt → ∞e(t) = 0 uniformly in the initial condition—is that the steady-
state response of the regulated output [i.e., ess(t) = h(w(t), xss(t))] is identically zero. Hence, the
map x(·) satisfies

he(w, x(w)) = 0. 6.

The constraints thus found can be organized as follows. Set

u(w) = hc(xc(w), h(w, x(w))).

Then, from the first equation in Equation 5 along with Equation 6, it is seen that the pair (x(·),
u(·)) satisfies

∂x
∂w

s(w) = f (w, x(w),u(w)), he(w, x(w)) = 0, 7.

while from the second equation in Equation 5, it is seen that the pair (xc(·), u(·)) satisfies
∂xc
∂w

s(w) = fc(xc(w), h(w, x(w))), u(w) = hc(xc(w), h(w, x(w))).

The first pair of equations (Equation 7), known as the nonlinear regulator equations, are seen as a
necessary condition that the plant must fulfill so that the problem of output regulation is solvable,
and they express the fact that, in steady state, when x(t) = x(w(t)) and u(t) = u(w(t)), the regulated
variable e(t) identically vanishes. The second pair of equations are seen as a necessary condition
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that the controller must fulfill, and they express the fact that, in steady state, the controller—
subject to the input y(t) = h(w(t), x(w(t)))—generates the required output u(t) = u(w(t)) needed to
force the regulated variable e(t) to remain identically zero.

In the special case in which e= y, the second pair of equations, in view of the second condition
of Equation 7, simplify to

∂xc
∂w

s(w) = fc(xc(w), 0), u(w) = hc(xc(w), 0). 8.

In a nutshell, the equations in question express the fact that the controller incorporates an internal
model of the feedforward input u(w(t)) needed to secure the desired (zero) steady-state response
of the regulated variable.

2.3. General Characterization of Internal Models

If we put Equation 8 in slightly more abstract terms, it can be seen that a basic ingredient in the
construction of a regulator is a steady-state generator, defined as follows.

Definition 1. The autonomous system (with output u)

ẇ = s(w), u = u(w), 9.

is said to be immersed into the system

ξ̇ = ϕ(ξ ), u = γ (ξ ), 10.

defined on a set � ⊂ R
q if there exists a smooth map τ :W → � such that

∂τ (w)
∂w

s(w) = ϕ(τ (w)), u(w) = γ (τ (w)). 11.

If this is the case, then the triplet (τ , ϕ, γ ) is said to be a steady-state generator.

Having introduced the concept of a steady-state generator, we are ready to give a general char-
acterization of the concept of an internal model as follows. Consider a system

η̇ = α(η, u) 12.

in which α : Rq × R
m �→ R

q is a sufficiently smooth function, vanishing at the origin.

Definition 2. Suppose the pair (s(w),u(w)) admits a steady-state generator (τ ,ϕ,γ ).The system
shown in Equation 12 is an internal model candidate if

α(τ (w), γ (τ (w))) = ϕ(τ (w)). 13.

The composition of the plant and internal model candidate characterizes what is called the
augmented system:

η̇ = α(η, u), ẋ = f (w, x, u), e = he(w, x). 14.

A consequence of the definition of the internal model candidate is that, in the augmented system,
the manifold M = {(w, η, x) : w ∈W, η = τ (w), x = x(w)} is rendered invariant by means of the
control u = u(w), and on such a manifold the regulated output is identically zero. In fact,

∂τ (w)
∂w

s(w) = α(τ (w),u(w)),
∂x(w)
∂w

s(w) = f (w, x(w),u(w)), he(w, x(w)) = 0.
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To further illustrate the role of the internal model, define η̄ = η − τ (w), x̄ = x− x(w), and
ū = u− γ (η), which changes the system shown in Equation 14 into a system of the form

˙̄η = ᾱ(w, η̄, ū), ˙̄x = f̄ (w, η̄, x̄, ū), e = h̄(w, x̄), 15.

where ᾱ(w, η̄, ū), f̄ (w, η̄, x̄, ū), and h̄(w, x̄) vanish at (η̄, x̄, ū) = (0, 0, 0) for all w � W.
Thus, if an output feedback control law of the form

ξ̇ = fs(ξ , e), ū = hs(ξ , e), 16.

with fs(0, 0) = 0 and hs(0, 0) = 0, stabilizes the equilibrium (η̄, x̄, ξ ) = (0, 0, 0) of the resulting
closed-loop system shown in Equation 15, then the controller

u = γ (η) + hs(e, ξ ), η̇ = α(η, u), ξ̇ = fs(e, ξ ), 17.

solves the output regulation problem for the original plant shown in Equation 1. In this way, the
robust output regulation problem for Equation 1 has been converted into a robust stabilization
problem of the equilibrium at the origin of the augmented system shown in Equation 15.

2.4. Construction of Internal Models

From the previous discussion, it follows that the design of an internal model must fulfill two
purposes: to make sure that the identity shown in Equation 13 holds and to make sure that
the system shown in Equation 15 is stabilizable by means of a feedback of the form shown in
Equation 16. A simple strategy to fulfill the identity shown in Equation 13 is to pick

α(η, u) = ϕ(η) +N [u− γ (η)], 18.

where N is a matrix of design parameters. In this case, the controller shown in Equation 17
becomes

u = γ (η) + hs(e, ξ ), η̇ = ϕ(η) +Nhs(e, ξ ), ξ̇ = fs(e, ξ ).

The matrix N could be chosen so as to induce, on the internal model, some good properties, such
as being input-to-state stable (ISS) (31), thus making it easier to design the stabilizer shown in
Equation 16. In what follows, we provide an overview of a few typical internal models widely used
in practice. For simplicity, we assume m = 1.

2.4.1. Canonical linear internalmodel. The canonical linear internalmodel was first proposed
by Nikiforov (32) and later formalized by Serrani & Isidori (33) and Serrani et al. (34). Suppose
that the system shown in Equation 9 is immersed into the linear system

ξ̇ = 
ξ , u = �ξ ,

and the pair (
, �) is observable. Let (M̃, Ñ ) ∈ R
q×q × R

q×1 be any controllable pair, with
M̃ Hurwitz and such that the spectra of the matrices 
 and M̃ are disjoint. Then, the Sylvester
equation T
 − M̃T = Ñ� has a unique nonsingular solution. Hence, α in Equation 18 can be
taken as

α(η, u) = Mη +Nu,

in which

M = T−1M̃T , N = T−1Ñ . 19.

Note that we could also pick

α(η, u) = M̃η + Ñu, 20.
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which corresponds to a steady-state generator (τ̃ , ϕ̃, γ̃ ), with τ̃ (ξ ) = T τ (ξ ), ϕ̃(ξ ) = T
T−1ξ , and
γ̃ (ξ ) = �T−1ξ . A particular advantage of Equation 20 is that it can handle uncertain exosystems
(see, e.g., 32, 34–36; for adaptive designs formultivariable and possibly non-minimum-phase linear
systems, see 37).

2.4.2. Two nonlinear internal models. The existence of the canonical linear internal model
requires the system shown in Equation 9 to be immersed into a linear system, which essentially
requires the nonlinearities in the plant shown in Equation 1 to be polynomial. To weaken this
restriction, two nonlinear models have been developed.The first one was given byHuang&Chen
(28) under the assumption that the system shown in Equation 9 can be immersed into a nonlinear
system of the form shown in Equation 10 with ϕ(ξ ) = 
ξ for some matrix 
. The particular form
of this immersed system leads to a nonlinear internal model of the form shown in Equation 18
with

α(η, u) = (M +N�)η +N (u− γ (η)), 21.

where � is the gradient of γ at the origin, the pair (
, �) is observable, and the pair (M, N) is
the same as in Equation 19. Under some assumption on γ , Equation 21 is globally ISS. Byrnes &
Isidori (27) proposed another nonlinear internal model under the assumption that there exist an
integer q and a sufficient smooth function g : Rq → R vanishing at the origin such that

Lqus(w) + g(u,Lqus(w), . . . ,Lq−1
u s(w)) = 0.

In fact, in this case, the system shown in Equation 9 can be immersed into a nonlinear system of
the form shown in Equation 10 with ϕ(ξ ) = col(ξ 2, . . . , ξ q, g(ξ 1, . . . , ξ q)) and γ (ξ ) = ξ 1. If g(·) is
bounded, then N can be chosen in such a way that the internal model is ISS. Adaptive approaches
in which g is estimated online from data have been proposed by Forte et al. (38) and Bin&Marconi
(39).

2.4.3. A general internal model. All three of the above internal model candidates are con-
structed under various assumptions on the solution u(w) of the regulator equations.Marconi et al.
(29) have proposed a general internal model. Specifically, it has been shown that there exist a num-
ber � > 0 and a subset S ⊂ C of zero Lebesgue measure such that, if q ≥ 2nw + 2 and (M,N ) ∈
R
q×q × R

q×1 is a controllable pair with M having eigenvalues in {λ ∈ C : Re[λ] ≤ −�} \ S, then
there exist a continuous map γ : Rq → R and a continuously differentiable map τ :W → R

q such
that Equation 11 is satisfied with ϕ(ξ ) = Mξ + Nγ (ξ ). As a result,

η̇ = Mη +Nu 22.

is an ISS internal model.
The applicability of the internal model shown in Equation 22 relies on the explicit construction

of the function γ . But this function is only known to exist. Methods for constructing a locally
Lipschitz approximation of such a function were discussed byMarconi&Praly (40),while adaptive
methods constructing it online from data have been proposed by Pyrkin & Isidori (41), Bernard
et al. (42), and Bin et al. (43). Note that Marconi et al. (29) used this internal model to study the
semiglobal robust output regulation problem for some non-minimum-phase nonlinear systems.

2.5. Post- and Preprocessing Internal Models, the Chicken-and-Egg Dilemma,
and the Robustness Issue

The internal model–based regulator given in Equation 17 has a structure shown in Figure 1b,
which is different from the one originally proposed by Davison (11) in the linear setting, shown in
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Figure 1a. Following the terminology used by Isidori & Marconi (44) and Bin & Marconi (45),
we refer to the two architectures as preprocessing and postprocessing.

As remarked in References 44–48, while postprocessing architectures are more appealing for
handling general multivariable systems, they pose some structural problems in the constructive
design of the regulator for nonlinear systems (in this way justifying the research drift toward
preprocessing schemes observed so far and summarized in the previous sections). In fact, a chicken-
and-egg dilemma arises in the design of the stabilizer and the internal model, because the former
depends on the latter (since it is expected to stabilize the cascade between the plant and internal
model) and the latter also depends on the former (since the cascade of the two is expected to
provide the ideal steady-state input) (see 45, 49). For linear systems, a sequential design of the two
units is possible since the harmonics of the ideal state inputs are known a priori (as coincident
with the exosystem modes) and are independent of the stabilizer. The nonlinear case is more
challenging and calls for a synergistic design of the stabilizer and internal model in which both are
simultaneously designed to guarantee the invariance of the steady-state manifold associated with
a zero regulation error and its attractiveness. The adoption of a mix of adaptive and identification
tools is one possible approach (investigated in 39, 42, 43).

The quest for robustness is a further fundamental research topic when dealing with the de-
sign of the regulators for multivariable nonlinear systems (50, 51). As shown by Bin et al. (51),
the formal requirement of robustness necessarily asks one to specify which property must be pre-
served under system uncertainties (with zero asymptotic regulation error being only one—often
quite idealistic—possible property) and which kind of topology is used to model system uncer-
tainties. In the case of nonlinear systems, insisting on the ideal property of zero regulation error
in the presence of arbitrary plant uncertainties seems to be unrealistic, to the point that Bin et al.
(51) proved that no finite-dimensional robust regulator exists if unstructured perturbations are
considered. This result motivates research toward approximate but robust designs, such as the
adaptive approaches mentioned above and the one given by Astolfi et al. (46), or toward infinite-
dimensional internal models, such as those already used in the context of iterative learning and
repetitive control (52–54), thus opening the way to broader notions of the IMP depending on the
adopted achievable property and the topology in which perturbations are intended.

3. AN INTERNAL MODEL PRINCIPLE IN SYSTEMS BIOLOGY
AND BIOENGINEERING

Organisms depend critically, for their adaptability and survival, on their ability to formulate ap-
propriate responses to chemical and physical environmental cues, distinguishing background sig-
nals from informative inputs. They must maintain a narrow range of concentration levels of vital
quantities (homeostasis and adaptation) while at the same time appropriately reacting to infor-
mative changes in the environment (signal detection). This is achieved by regulatory changes in
metabolism and gene expression,which are in turnmediated by signal transduction and gene regu-
latory networks in individual cells that process sensed chemicals (such as nutrients or chemokines)
or physical inputs (such as temperature, pressure, or electric potentials). Much theoretical, mod-
eling, and analysis effort has been devoted to understanding these aspects of living systems, tradi-
tionally in the context of steady-state responses to constant or step-changing stimuli. In the field
of synthetic biology, and motivated by the need to tune the dynamics and improve the robust-
ness of designed gene circuits, biological engineers have proposed various ways to mimic natural
molecular feedback control mechanisms, including mechanisms for adaptation (55). The anti-
thetic controller design, briefly discussed in this section in the context of the IMP, is a particularly
notable solution to the adaptation problem through genetic engineering or enzymatic pathways.
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Σ y(t) → y0u(·) ∈ U

Figure 2

The system discussed in Section 3, which has a regulated output y(t) when inputs are in U .

To study the simplest formulation, in this section we will say that a system � regulates against
all external input signals u in a given class U of time functions (e.g., U might be the class of all
constant inputs or of all inputs that are periodic with a certain period) if a certain quantity y(t)
associated with the system (the output, in control-theory terms) has the property that y(t) → y0
as t → ∞ whenever the system is subject to an input signal from the class U (Figure 2), where y0
is a fixed value that does not depend on the particular input u ∈ U . In control theory, this would
be called a disturbance rejection property (or, if the output is the error signal with respect to a
desired reference input, a tracking problem).

In biology, one often uses the term adaptation for this property. An example studied by
Yi et al. (56) from a control-theoretic viewpoint is that of bacterial E. coli chemotaxis, where adap-
tation against constant inputs (chemoattractants) plays a central role in enabling motion in the
directions of nutrient change. If the nutrients being sensed do not change much during a time
interval, then they are sensed as constant, and no directed motion happens. In this example, and
simplifying a little to give the intuitive idea, y0 is the internal concentration of a kinase, a chem-
ical signaling protein. At this special value y0, the bacterium moves purely at random, instead of
actively trying to move in a directed fashion. Adaptation against constant inputs is achieved by
an integrator embedded in the system, in which the methylation state of a receptor serves as a
memory (integrator), and the error is the average kinase activity relative to its basal value.

The question that the IMP asks is, If a system � is seen experimentally to regulate against all
inputs in U , then what can be said about its internal structure? Answers to this question may help
guide experimentalists and modelers by ruling out putative mechanisms and suggesting a search
for components responsible for adaptation.

A bit more formally, the IMP states, roughly, that if the system� adapts to U , then it necessarily
must contain a subsystem �im that can itself generate all inputs in the class U . The terminology
arises when thinking of�im as amodel of a system that generates the external signals. For example,
if y(t)→ y0 as t→ ∞whenever the system is subject to any external constant signal (i.e., the class U
consists of all constant functions), then the system � must contain a subsystem �im that generates
all constant signals (typically an integrator, since constant signals are generated by the differential
equation u̇ = 0). If, instead, y(t) → y0 as t → ∞ whenever the system is subject to a sinusoidal
signal at frequency ω [i.e., the class U consists of all functions of the type A sin (ωt + φ), for some
fixed ω but different possible amplitudes A and phases φ], then � should have a subsystem �im
that generates these signals (such as a harmonic oscillator ẋ1 = x2, ẋ2 = −ω2x1), and so forth. In
addition, the IMP specifies that, in an appropriate sense, the subsystem �im must have only y as its
external input, receiving no other direct information from other parts of the system or the input
signal u. One intuitive interpretation is that �im generates its best guess of the external input u
based on how far the output y is from y0. Pictorially, if we have the situation shown in Figure 2,
then there must be a decomposition of the system � into two parts, as shown in Figure 3, where
the system �im (with y � y0) is capable of reproducing all the functions in U . The IMP originates
in the biological cybernetics literature, and like any principle, it is not a specific result, but rather
is a guide for different theorems, which hold under different technical assumptions and whose
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y(t) → y0u(·) ∈ U

Σ0

ΣIM

Figure 3

Decomposition of � into �0 and �im, the latter driven by y(t).

conclusions will depend on the precise meaning of “class of external signals,” “reproducing all
functions,” and so on.

The theory of Francis and Wonham applies to systems � that are already partitioned into a
plant and a controller. The robustness assumption amounts to the requirement that the given
controller should perform appropriately [in the sense that the regulation objective y(t) → y0 is
achieved] even when the plant subsystem—but most definitely not the controller subsystem—is
arbitrarily perturbed.The conclusion is that the controller is driven by y and incorporates a model
of the external signals. (It is obvious that some additional condition, such as structural stability,
must be imposed, since otherwise the trivial system � that simply outputs y� y0 for every possible
input signal u adapts but does not contain any subsystem generating the signals in U .)

In biological applications, it is very difficult to think of a plant and controller as different
objects—the system regulates itself, and therefore the separate robustness of a controller is ar-
guably not a natural condition. In addition, few biological systems behave in even approximate
linear regimes. Thus, it is desirable to have theorems that (a) apply to nonlinear systems �,
(b) do not require the system � to be split between plant and controller subsystems, and (c) do
not require structural stability (robustness) in the sense of the Francis and Wonham theory.

We review here a result from Sontag (6), illustrated with an example from Shoval et al. (57),
that shows that, under certain Lie-algebraic conditions on the system and assuming that the inputs
in U are not too unstable, the IMP holds when we impose instead of robustness a condition that
amounts to a signal detection property: that the output must reflect sudden changes in the input
(thus ruling out the trivial solution y � y0).

We study dynamical systems with inputs and outputs in the standard sense of control systems
theory (58):

ẋ = F (x, u), y = h(x), 23.

where F and h are functions that describe the dynamics and the readout map, respectively. Here,
u = u(t) is a generally time-dependent input (in biology, an input is typically called a stimulus or
excitation) function, x(t) is an n-dimensional vector of state variables, and y(t) is the output (in
biology, response or reporter variables). These notations are slightly different from those in the
previous section. Here, u is the input received from the exosystem (see below), called w previ-
ously, and y is the regulated output. In addition, the state x encompasses both the state x and the
controller state xc, because we do not wish to impose an a priori decomposition between plant
and controller. To describe the positivity of variables as well as other constraints, we introduce the
following additional notations. States, inputs, and outputs are constrained to lie in open subsets,
which we call X,U, and Y, respectively, of Euclidean spaces Rn,Rm, and R

q. For example,U = R>0

means that the input values must be scalar (m = 1, U ⊂ R
1) and positive. The functions F and h
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are differentiable. We will assume that for each piecewise-continuous input u : [0,∞) → U and
each initial state ξ ∈ X, there is a (unique) solution x : [0,∞) → X of Equation 23 with initial
condition x(0) = ξ , and the corresponding output y : [0,∞) → Y is y(t) = h(x(t)). For simplicity,
we will restrict the discussion to scalar-input, scalar-output n-dimensional systems for which the
input appears as a first-order term:

ẋ = f (x) + ug(x), y = h(x). 24.

The vector fields f and g are smooth, and h is a smooth function.
We will illustrate the main result by means of the incoherent feedforward loop (IFFL) model

that is often studied in the systems biology literature:

ẋ = αu− δx, ẏ = β
u
x

− γ y, 25.

with h(x, y) = y, where u, x, and y are assumed to evolve in the set of positive real numbers. In
vector form, this is ẋ = f (x) + ug(x), where the vector fields are

f (x, y) =
(

−δx
−γ y

)
and g(x, y) =

(
α

β/x

)
. 26.

In an IFFL, the input u directly helps promote the formation of the reporter y and also acts as
a delayed inhibitor, through an intermediate variable x. This incoherent counterbalance between
a positive and a negative effect gives rise, under appropriate conditions, to adaptation. There are
many models of IFFLs, but this is one of the simplest. IFFLs are ubiquitous in systems biology.
Kim et al. (59) provided a large number of incoherent feedforward input-to-response circuits,
which participate in converting EGF to ERK activation (60, 61), glucose to insulin release (62,
63), ATP to intracellular calcium release (64, 65), and nitric oxide to NF-κB activation (66); car-
rying out microRNA regulation (67); and many other processes. A variation of the model studied
by Shoval et al. (57) was given by Tyson et al. (68) and Sontag (69) and appears in slightly mod-
ified forms in models of Dictyostelium chemotaxis and neutrophils (70, 71), microRNA-mediated
loops (72), and E. coli carbohydrate uptake via the carbohydrate phosphotransferase system (73)
and other metabolic systems (74). Bleris et al. (75) showed experimentally and analytically that
IFFLs are especially well suited to controlling protein expression under DNA copy variability.

We will say that the system shown in Equation 24 adapts to inputs in a class U if for each u ∈ U
and each initial state x0 ∈ X, the solution of Equation 24 with initial condition x(0) = x0 exists for
all t ≥ 0 and is bounded, and the corresponding output y(t) = h(x(t)) converges to a fixed value
y0 ∈ Y (which does not depend on the particular input u ∈ U ) as t→ ∞. As usual in control theory,
we describe the class of inputs U with respect to which adaptation holds through the specifica-
tion of an exosystem that produces these inputs. An exosystem is simply any autonomous system
� described by the equations

ẇ = Q(w), u = θ (w),

and such that the input class U consists exactly of the functions u(t) = θ (w(t)), t ≥ 0, for each
possible initial condition w(0). For example, if we are interested in step responses, we pick ẇ = 0,
u = w. This means that the possible signals are the solutions of ẇ = 0, i.e., the constant functions
of time; in other words, U is the set of functions u(t) for which u(t ) = ū for all t for some ū ∈ U.
(In biology, the term perfect adaptation is used, or, in the context of biochemical networks and y
being one of the state variables, absolute concentration robustness.) On the other hand, if we are
interested in sinusoids with frequency ω, then we would use ẋ1 = x2, ẋ2 = −ω2x1, u = x1.

We also impose the condition that the signals in U do not grow without bound. Specifically,
the exosystem is assumed to be Poisson stable, meaning that for every state w0, the solution
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w(·) of ẇ = Q(w), w(0) = w0, is defined for all t > 0, is bounded, and satisfies that w0 is in the
omega-limit set ofw. In other words, the exosystem is almost periodic in the sense that trajectories
keep returning to neighborhoods of the initial state. Both the constant and sinusoidal examples
mentioned above are generated by Poisson-stable systems. By contrast, ramps (linearly growing
signals) are not generated by Poisson-stable systems, since they require an unstable second-order
system ẇ2 = 0, ẇ1 = w2, u = w1, to generate them. Thus, adaptation to ramps is not included in
the scope of the theorem to be stated. The exosystem is assumed to have states that evolve on
some differentiable manifold, Q is a smooth vector field, and θ is a real-valued smooth function.

The IMP claims that a copy of this exosystem must be embedded in the system shown in
Equation 24. More precisely, one says that the system contains an output-driven internal model
of U if there is a change of coordinates that brings Equation 24 into the following block form:

ż1 = f1(z1, z2) + ug1(z1, z2),
ż2 = f2(y, z2),
y = κ (z1),

so that the subsystem with state variables z2 is capable of generating all of the possible functions
in U . That is, for some function ϕ(z2) and for each possible u ∈ U , there is some solution of

ż2 = f2( y0, z2)

that satisfies ϕ(z2(t)) � u(t). A change of coordinates means that there is some integer r ≤ n and
two differentiable manifolds Z1 and Z2 of dimensions r and n − r, respectively; a smooth function
κ : Z1 → R; two vector fields F and G on Z1 × Z2 that take the partitioned form

F =
(

f1(z1, z2)

f2(κ (z1), z2)

)
, G =

(
g1(z1, z2)

0

)
;

and a diffeomorphism 
 : Rn → Z1 × Z2, such that 
′(x)f (x) = F(
(x)), 
′(x)g(x) = G(
(x)), and
κ(
1(x)) = h(x) for all x ∈ U, where 
1 is the Z1 component of 
 and a prime indicates a Jacobian.
Intuitively, the signal z2 computes an integral of a function of the output y(t), and when y(t) �

y0, z2 is (up to the mapping ϕ, which may be interpreted as a sort of rescaling) a signal in U . For
example, if U consists of constant functions (adaptation to steps), then for y � y0, one obtains (for
different initial conditions) the possible constant signals.

To prove a theorem justifying the IMP, Sontag (6) imposed several technical conditions. The
first (which we will refer to here as A1) is a signal detection or sensitivity property: For some
positive integer r, called in control theory a finite uniform relative degree, LgLkf h ≡ 0, k = 0, . . . ,
r − 2, and LgLr−1

f h(x) �= 0 ∀ x ∈ X. Generally, LXH denotes the directional or Lie derivative of a
function H along the direction of a vector field X: (LXH)(x) = �H(x) · X(x), and one understands
LYLXH as the iteration LY(LxH). [In the special case that Lgh(x) �= 0 for all x, the relative degree
is r = 1, since the condition for k < r − 1 is vacuous.] Given that the relative degree is r, one may
consider the following vector fields:

g̃(x) = 1
LgLr−1

f h(x)
g(x), f̃ (x) = f (x) −

(
Lrf h(x)

)
g̃(x), τi := adi−1

f̃ g̃, i = 1, . . . r,

where adX is the operator adXY= [X,Y] = Lie bracket of the vector fields X and Y, and adi−1
f̃ is the

iteration of this operator i− 1 times (when i= 1, τi = g̃). One says that a vector field X is complete
if the solution of the initial value problem ẋ = X (x), x(0) = x0, is defined for all t and for any initial
state x0. Two vector fields X and Y are said to commute if [X, Y] = 0. The two final assumptions,
then, are that τ i is complete, for i = 1, . . . , r (A2), and that the vector fields τ i commute with each
other (A3). (In the special case r= 1, condition A3 is automatic, since every vector field commutes
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with itself.) These assumptions are satisfied for linear systems. The assumptions are also satisfied,
for example, for the IFFL system in Equation 25. Indeed, since Lgh = (0, 1) · (α,β/x)t = β/x is
everywhere nonzero, we have that r = 1. Thus, we need only check that

τ1 = g̃ = 1
Lgh(x)

g(x) = x
β
g(x) =

(
α

β
x
1

)
is complete, which is true because g̃ is a linear vector field.

Themain theorem in Reference 6 says the following: Suppose that assumptions A1–A3 hold for
the system in Equation 24. If this system adapts to inputs in a class U generated by a Poisson-stable
exosystem, then it contains an output-driven internal model of U .

The proof of this theorem consists of showing that there is, under the stated conditions, a
change of variables as claimed. The map producing the change of variables is obtained by solving
a first-order partial differential equation. Conditions A1–A3, as well as the assumption that inputs
appear linearly, are sufficient but not necessary for the IMP to hold. In addition, instead of a change
of coordinates into the block form with states (z1, z2), one may state weaker versions of the IMP,
which assert only the existence of a function z2 = π (x) so that ż2 = f2(y, z2) and a function ϕ so
that ϕ(z2(t)) reproduces all inputs; this can be formalized in the language of immersions, as in the
previous section.

Let us now illustrate this change of variables with the system in Equation 25, or Equation 26
in vector form. This system adapts to steps (constant inputs): It is easy to see, for any constant
(positive) input u(t) � u, that there is global asymptotic stability of the steady state x0 = αu/δ and
y0 = βδ

αγ
, and that y0 is independent of u. We already checked properties A1–A3 and the system,

so the theorem says that it should be possible to recast the system in integral feedback form. The
proof in Reference 6 asserts the existence of a mapping ϕ(x, y) whose Lie derivative along g solves
the following first-order linear partial differential equation:

Lgϕ = ∇ϕ · g = αϕx(x, y) + β

x
ϕy(x, y) = 0.

Generally, such an equation may be solved using the method of characteristics. However, in our
example, the solution is immediate: ϕ(x, y) = αy − βlog x. The map

(x, y) �→ (z1, z2) = (y,ϕ(x, y)) = (y,αy− β log x)

is a diffeomorphism whose inverse is y= z1 and x = e(αz1−z2 )/β .We obtain the following equations
in the new coordinates (z1, z2):

ż1 =βue(z2−αz1 )/β − γ z1,

ż2 =βδ − αγ z1,

with output y = z1. This has the desired internal model form ż1 = f1(z1, z2) + ug1(z1, z2), ż2 =
f2(y, z2), and y = κ(z1) if we define f1(z1, z2) = −γ z1, g1(z1, z2) = βe(z2−αz1 )/β , f2(y, z2) = f2(y) =
βδ − αγ y, and κ = identity. Thus, z2 is the variable that integrates the error: When y = y0 = βδ

αγ
,

the equation for z2 becomes ż2 = 0, whose solutions are all the possible constant signals. We can
also write this system in terms of the coordinates x = ez2/β , y = z1, as follows:

ẋ = cx (y0 − y) , ẏ = βuxe−
α
β
y − γ y,

with c := αγ /β. More details are given in Reference 57. This system has the generic form
ẋ = xF (y0 − y), ẏ = G(x, y, u), of nonlinear integral feedback systems in Reference 76. Bacterial
chemotaxis models often can be shown to have this form.
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The antithetic controller proposed by Briat et al. (77), and subsequently implemented experi-
mentally in E. coli bacteria (78) and in in vitro cell-free bacterial extracts and other systems (79–81),
is based on the following underlying structure:

ẋ1 = y0 − ηx1x2,

ẋ2 = y− ηx1x2,

ẋ3 = k(x1, x3, u), y = h(x),

in which the scalar x1 and x2 variables (actuator and sensor species, respectively) correspond to a
genetically engineered controller and x3 corresponds to the system being controlled. The input
u might represent environmental parameters such as acidity or temperature or might quantify
the number of copies of a particular gene inserted in cells. The interaction term x1x2 represents
an irreversible molecular binding or sequestration process in which the two controller species
annihilate each other, such as an anti-σ factor binding and inactivating a σ factor (a protein needed
for the initiation of transcription in bacteria). If the system converges to steady state for constant
inputs u, then it is clear that y(t) → y0, the value that represents adaptation. Thus, we expect an
integral controller to be present in the system (IMP with exosystem u̇ = 0). Indeed, let us simply
change variables, letting z1 consist of x1 and x3 and z2 := x1 − x2. Clearly, ż2 = y0 − y, so this
change of variables displays the form predicted by the IMP, with f2(y, z2) = f2(y) = y0 − y. Note
that in the new coordinates, ẋ1 = y0 − η(x1 − z2)x1, and the equations for x3 remain unchanged.
[If the original system is not affine on inputs u, then the IMP form will simply have a more general
dynamics ż1 = f (z1, z2, u).]

4. INTERNAL MODELS IN NEUROSCIENCE

Sensorimotor integration, the transformation of sensory information into motor actions, is one
of the most studied functions of the nervous system. Producing context-appropriate movement
for foraging, escaping from predators, or mating is critical to animal survival. Moreover, since the
output of this computation (movement) and many of its inputs (sensory stimuli) can be measured
from behavior alone, sensorimotor integration can be studied in humans as well as a variety of
animal species.

Many of the early studies focused on reflexive movements, in which sensory stimuli directly
drive stereotypical motor actions in response. However, it has been clear for a long time (82) that
many sensorimotor transformations in nature do not fall in this category but display predictive
and adaptive features. The framework of control theory has been very influential in developing
insight into the computations underlying these features and guiding experimental investigations
of their neural implementation.

Whenever it is observed that a control system is capable of perfect (asymptotic) tracking of
the reference signals produced by an exogenous system, the IMP implies that the controller must
include an internal model of this exosystem (in addition to feedback control). Similarly, a control
system capable of closing a sensorimotor loop with no apparent delay (or a delay that is signifi-
cantly shorter than the sensory and actuation lags) must include an internal model of relevant parts
of the sensorimotor plant within a feedforward or predictive control scheme. Theoretical consid-
erations such as these can be translated into experiments that probe the use of internal models in
the nervous system.

Here, we review some of the experimental evidence that the sensorimotor transformations per-
formed by humans and many animal species are in fact consistent with the use of internal models
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of the plant and the environment, and discuss what is known about their neural implementation.
A variety of techniques and experimental preparations have been effectively employed to func-
tionally probe these models, but revealing the neural mechanisms underlying these computations
has proved challenging, with progress limited to a few special preparations and focused mostly on
internal models of the plant. Therefore, while they are outside the IMP discussed in the previous
sections—since they are driven by copies of the control signal u—we start by discussing evidence
for forward (direct) models of the plant (for an extended discussion, including inverse models of
the plant, see 1). Internal models of the environment—which directly relate to the IMP—are dis-
cussed afterward, focusing on the context of modeling the feasible trajectories of a moving target.
Finally, we indulge in a bit of speculation on the relation between the two types of models and the
possible utility of the IMP for future experimental investigations. Some of the fascinating ques-
tions that remain open for investigation include (a) to what extent internal models are explicitly
represented in the nervous system, as opposed to implicitly computed; (b) whether there are sep-
arate neural substrates for different types of internal models and for feedback control; and (c) to
what extent neural mechanisms implementing internal models have been conserved across species.

4.1. Internal Models of the Plant

Humans and animals can perform motor gestures that require exquisite temporal and spatial pre-
cision, such as hitting a baseball or catching evading prey. While this is theoretically achievable
via pure feedback control (with the right sequence of fast reflexive corrections), the sensorimotor
delay is usually large relative to the task. For example, visual processing alone takes a minimum
of 20 ms in insects such as dragonflies and 100 ms or more in humans. Significant delays are also
introduced in the loop by neural computations and muscle contractions to generate forces. It is
hard to imagine how a purely feedback-based controller with these lags could enable a hunting
dragonfly to catch its prey within 150 ms or enable a professional baseball player to hit a ball
within 500 ms. Moreover, any sensory apparatus has limited resolution, and the sensory informa-
tion driving the feedback loop (e.g., the prey or ball position) must be isolated from a variety of
noise sources. In particular, the nervous system must distinguish useful sensory information about
the external world from self-motion artifacts, which every motor gesture produces. Finally, it is
unclear how context-dependent movements could be implemented in a purely reflexive system.
For example, insects have an innate optomotor reflex that keeps their body orientation aligned
with the horizon, but this reflex would prevent a dragonfly from performing banked turns while
pursuing prey.

It is thus posited that the nervous system combines some form of model-based predictive
control with sensory-driven feedback loops. As the nervous system plans and executes a motor
action, a copy of the motor command [efference copy (82)] is thought to be processed through a
forward model of the plant and combined with incoming delayed sensory input (afferent input).
Such a control architecture (Figure 4) resolves the limitations of pure feedback control. The
nervous system can avoid the large sensorimotor lag by closing the loop with predicted sensory
input or with some predicted internal state, computed using the forward model within a state
observer (e.g., by using a Kalman filter–type architecture). Moreover, the sensory consequences
of self-motion can be predicted and canceled from the incoming sensory stream to improve
the ability to extract sensory information about the external world. This cancellation can occur
by adding to the sensory input a signal equal and opposite to the predicted contribution of
self-motion (“software cancellation”) or by moving the sensory apparatus (e.g., the eyes) in a way
that counteracts the effect of self-motion (“hardware cancellation”). Similar mechanisms can be
used to guarantee that reflexive responses are activated only by unexpected sensory inputs and
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Figure 4

Example of a control architecture with a forward model of the plant, as it may be used in the nervous system
to predict upcoming sensory inputs [ypre(t)], identify the unpredicted information [yunp(t −�)] within the
raw sensory signals [ys(t)], or estimate internal states [xpre(t)]. The controller may use ypre(t) or xpre(t) to close
the loop without being subject to the sensorimotor lag �.

not by self-motion artifacts. For challenging goal-oriented tasks, such as catching prey or hitting
a baseball, the nervous system may also exploit internal models of the external world to predict
the future position of the goal. We discuss these models in the next subsection.

Significant insight into sensorimotor integration, at least at the computational level, can be
obtained even without neural recordings, by tracking the sensory inputs and motor behavior in
well-designed experimental conditions. Wolpert et al. (83) used this approach to show that hu-
mans are able to optimally combine internal model predictions and sensory feedback to estimate
the current state of their arms. They asked human subjects to use one arm to move a computer-
controlled manipulandum in the dark and then to report the estimated state of that arm at the end
of the movement. Assistive or resistive forces were applied to the manipulandum in some of the
trials. The bias and variance of the estimates in the different conditions were inconsistent with
pure feedback (in this case proprioception, the sense of relative position between body parts) but
were well described by an optimal linear estimator employing a forward model (Kalman filter).
Mehta & Schaal (84) found similar results when they asked subjects to control a virtual inverted
pendulum via a manipulandum with and without visual feedback. Controlling an inverted pen-
dulum requires real-time control (the control sequence cannot be memorized), but subjects were
able to successfully perform this task even during 500-ms periods of visual blackout, suggesting
that a forward model was used to provide a persistent estimate of the pendulum state. There is
also behavioral evidence for the use of forward models to predict the consequences of self-motion.
For example, the latency of eye movements in tracking a moving target, which is usually 130 ms,
disappears when the target is manually controlled by the subject (85)—a hardware cancellation of
self-motion effects.

While behavioral evidence for forward models in the human brain is relatively rich, the in-
vestigation of their neural implementation is limited by the lack of available neural recordings.
Indirect evidence, however, points to the cerebellum as a possible locus for these computations.
Perturbation of the cerebellum via transcranial magnetic stimulation during a reaching task pro-
duces performance deficits consistent with the use of a delayed estimate of the arm position instead
of the real-time estimated position (86). Similar motor deficits are observed in patients with cere-
bellar damage (87).

Direct neural evidence for forward models has been found in the cerebellum of nonhuman
primates, in the context of vestibular sensing of head movement. Brooks et al. (88) recorded the
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neural activity of the deep cerebellar nuclei, which send the output of the cerebellum to the rest
of the brain, when the head of a monkey rotated actively toward a target and when it was rotated
passively by a torque motor. They found neurons that responded only to passive rotations of
the head and not to active (voluntary) rotations, reflecting a software cancellation of the sensory
consequences of self-motion. When a passive rotation was added during active head rotations,
the activity of the neurons was proportional to the passive component alone—the unexpected
sensory input. Even more interestingly, if the same passive rotation was added to every voluntary
movement, the neurons gradually reduced their activity to zero, consistent with adaptation of the
forward model responsible for computing the expected consequences of self-motion, which now
included the added passive term. The output of the cerebellum may thus represent the difference
between predictions, made by a rapidly adaptive forward model, and actual sensory inputs. This
output may be used as an innovation term (as in a Kalman filter) by other brain regions that are
thought to hold the current estimate of the body state, such as the posterior parietal cortex (89, 90).

But is the forward model itself—which transforms motor signals and current state signals
into predicted sensory signals—fully implemented within the cerebellum? After all, the forward
model–related signals in the cerebellum reported by Brooks et al. (88) may be inherited from up-
stream regions or may reflect a distributed computation involving not only the cerebellum but also
other regions [including the posterior parietal cortex, as argued by Mulliken & Andersen (91)].
While this question has not been definitely answered, there are anatomical, computational, and
experimental considerations (92) suggesting that the forward model may be implemented within
the cerebellar cortex itself (not to be confused with the cerebral cortex, of which the posterior
parietal cortex is one part). The main neurons in this region (Purkinje cells) receive thousands of
sensory inputs and efference copies of motor commands, organized in a strikingly regular fashion
that could favor learning complex associations between these inputs. The regular high-frequency
spiking patterns of these neurons (simple spikes) encode the expected sensory inputs better than
the true ones (93). Purkinje cells also produce special complex spikes when a mismatch occurs
between expected and actual sensory inputs—for example, when there is an unexpected sensory
input after movement. Complex spikes are thought of as teaching signals, and there is evidence [at
least in specific domains, e.g., eye movements (94)] that they may induce changes in the pattern
of activity of simple spikes—perhaps reflecting an adaptation of the forward model.

The closest thing to a mechanistic explanation for how a forward model may be implemented
comes from a cerebellum-like region in a very different family of organisms, the mormyrid elec-
tric fishes (95). These animals sense the presence of other fishes (conspecifics, prey, etc.) by cre-
ating weakly electric fields around their bodies and monitoring changes in these fields. However,
the activity of the fishes themselves affects the electric fields they use to sense the environment:
Their movements in the water affect these fields, and so do the active electric pulses they emit
for electrolocation and communication. These animals therefore must be able to cancel the sen-
sory consequences of their own actions to be able to sense the environment, and in fact they do.
Through a combination of complex experimental perturbations and measurements, Sawtell and
colleagues (as reviewed in 95) could observe the emergence of software cancellation signals in the
output of Purkinje-like cells after repeated stimulation of the inputs of these cells during specific
bouts of activity. This suggests that the strengths of the synaptic (input) connections to these cells
are highly adaptive and that the forward model implementation may be in these synapses, along
with the biophysical properties of the cells themselves and their downstream connections.

As illustrated by the electric fish case, some animal species may be more experimentally ad-
vantageous than primates for studies of the implementation of forward models of the plant (or
any other internal model). Mice are becoming increasingly popular in the sensorimotor field, as
it is now possible to combine genetic techniques for measuring and perturbing neural activity
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in the brain with complex behavioral paradigms (e.g., 96). Insects are also particularly appealing
for their smaller nervous systems, individually identifiable neurons, and available genetic tools in
some species (the fruit fly Drosophila melanogaster). It has long been known, for example, that dur-
ing singing, crickets use efference copies of motor commands to modulate sensory inputs (97), but
this could be done through a much simpler mechanism than a forward model (4). Recent behav-
ioral and neural data, however, appear to be consistent with the hypothesis that internal models
may also be implemented in the nervous systems of insects. A behavioral study of dragonfly hunt-
ing flights showed that dragonflies predictively steer their head while maneuvering to keep the
image of the prey in a fixed region of the eyes (5). In experimental conditions with the prey (a
computer-controlled bead) moving at a constant speed, the head rotation almost perfectly can-
celed in hardware the effect of self-motion as well as the predictable movement of the prey. This
suggests that the head control circuitry includes a forward model and a model of prey motion,
perhaps very simple ones (for a possible neural substrate, see 98). Moreover, a neurophysiolog-
ical study of the fruit fly revealed that during fast, voluntary flight maneuvers, visual neurons
receive motor-related inputs that are consistent in magnitude, sign, and latency with what would
be needed to cancel in software the sensory consequences of the maneuver (99).

4.2. Internal Models of the Environment

The survival and success of an animal are tied to the environment in which it operates and are
particularly dependent on the interactions with external actors such as prey, predators, and mates.
It is thus not surprising that the nervous systems of most animals are also capable of internalizing
regularities in the environment to improve perception and action selection. Having an internal
model for how passive objects are physically bound to move (e.g., due to gravity) or how active
external actors are likely to move (e.g., how a prey trajectory is likely to evolve in the near future)
gives the nervous system similar advantages to having an internal model of its own plant. It enables
an animal to properly weigh noisy sensory information against prior expectations (as in a Kalman
filter) and to perform real-time control based on predicted sensory inputs or the estimated state of
the environment. This avoids the large sensorimotor lag that would render pure feedback-based
control ineffective and makes goal-oriented motor actions possible even when sensory inputs are
unavailable or unreliable (e.g., when prey that are being pursued are visually occluded).

Here,we focus on the internal models of amoving object in the context of interception or visual
tracking.This is only a subclass of all the internal models of the environment that are likely present
in the nervous system, but one that is tractable experimentally since predictions andmeasurements
can be easily compared.

To track and intercept a falling inanimate object, the human brain uses an internal model
of physical properties of the world, including gravity and momentum. In a study by Lacquaniti
& Maioli (100), when a person prepared to intercept a free-falling ball dropped from different
heights, muscle activity at the elbow and wrist joints (measured via electromyography recordings)
preceded contact by a fixed amount of time (approximately 100 ms), suggesting a correct time-to-
contact estimate in the brain. Moreover, when balls of different masses were dropped, the ampli-
tude of preparatory activity was proportional to the expected momentum of the balls at impact.
Internal models of gravity may be innate rather than learned, and somewhat hard coded in the
nervous system. In fact, astronauts in space are still biased toward expecting objects to fall accord-
ing to gravity, which leads to incorrect interception behaviors (101), despite prolonged exposure
to a 0-G environment. Similar results have been observed in simulated visual 0-G experiments on
Earth. Zago et al. (102) asked subjects to intercept a ball falling behind a projector screen (when
it reached the bottom edge of the screen) based on the visual cues provided by a constant-speed
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(hence 0-G) target projected on the screen.The speed of the projected target and the timing of ball
release were coordinated so that the positions of the physical and virtual target would match at the
interception point below the screen. The performance of the subjects in this task remained well
below baseline (assessed with 1-G virtual targets) even after many repetitions, and were consistent
with the subjects not fully abandoning the assumption of gravity when computing the expected
time to contact.

The brain can, however, switch between different internal models of a moving object depend-
ing on the context. In another experiment presented by Zago et al. (102), subjects were able to
correctly intercept the 0-G virtual target if the task was changed so that the physical ball was re-
moved and the interception was performed with the click of a mouse. Interestingly, in this task
the subjects performed better when trained on 0-G rather than 1-G virtual targets. These results
may be accounted for by the existence of separate internal models for passive and active targets—
the gravity model may have been engaged in the task with the physical ball but not in the virtual
interception task.

There is strong behavioral evidence that the nervous system can predictively track the move-
ment of a self-propelled (e.g., prey) or externally controlled target, provided it is sufficiently
smooth and regular. For example, human subjects engaged in a manual interceptive task can track
without delay targets moving along sinusoidal trajectories at up to 2 Hz (103). These results are
well accounted for by a computational model that augments optimal state feedback (enabled by
a state predictor and a Kalman filter, as discussed for forward models of the plant) with a distur-
bance observer that plays the role of the internal model of an exosystem producing the sinusoidal
trajectories. Similarly, monkeys can visually track complex trajectories (circles or Lissajous curves
in 2D) with a delay of only a few milliseconds (2–20 ms), much shorter than the full visuomotor
lag observed in response to unpredictable shifts of the target (80–100 ms) (104).

There are very few physiological studies of internal models of the environment, but the avail-
able results are similar to those described for forward models of the plant. Cerminara et al. (105)
recorded neural activity from the cerebellum of cats during a visually guided reaching task, with
the target moving at constant speed and disappearing for 200–300 ms in the middle of the task.
They found that the simple spike activity of certain Purkinje cells was significantly modulated
by the onset of target motion, and this activity remained modulated (higher or lower firing rates
compared with the baseline) until the target stopped moving. Crucially, the modulation of sim-
ple spikes during target motion persisted even when the target was not visible. Since the activity
of those cells did not appear to encode limb or eye movements, these results suggest that Purk-
inje cells may have been encoding the predicted (rather than the sensed) target motion produced
by an internal model. As in the case of forward models of the plant, computational models have
suggested that the cerebellar cortex may be the locus of the internal model computation (104).

While the experimental evidence is much too scarce to draw conclusions, it is tempting to
speculate that the similarities between neural data recorded in the context of forward models of
the plant and those recorded in the context of models of target motion (e.g., simple spike activity
encoding predictions in both cases) may result from a common mechanism for learning and exe-
cuting internalmodels. Studying the neural implementation of internalmodels of the environment
could be a tractable alternative to studying forward models of the plant, since the complexity of
the environment can be controlled experimentally. The IMP provides a useful theoretical frame-
work for this kind of investigation, as recent work has started to recognize (106). In the context
of target tracking, one approach could be to systematically increase the complexity of the exosys-
tem producing the trajectories to be tracked, and search for neural activity that adapts to match
the increased complexity of the exosystem. If the nervous system can predictively track the given
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trajectories, the IMP proves that an internal copy of the exosystem must in fact be embedded in
the neural controller.

5. CONCLUSIONS

In this article, we have presented some fundamental concepts about the IMP and reviewed its
development in the different scientific areas of control theory, bioengineering, and neuroscience.
In control theory, the IMP has a clear normative role, as it constitutes a design principle guiding
the synthesis of efficient control systems. In bioengineering and neuroscience, by contrast, the
relevance of the IMP lies more in necessary conditions, as they inform scientists about where
to look or what to expect when studying the complex behaviors of living organisms. In view of
these different interpretations and usages of the IMP, seeking a common unifying perspective
seems unnatural and simplistic. We therefore made no effort in this direction, and we instead
limited ourselves to reviewing the different ways in which the IMP develops in the three different
areas.Nevertheless, a common theme arises: the idea that the succession of recurrent events in the
environment leaves its footprint in the systems that engage with it in the form of internal models,
and that these models may be encoded as physical constituents in the system.This is the essence of
the IMP, and calling attention to this strikingly similar vision shared by rather different scientific
domains was ultimately the main goal of this article. All of the described IMP-based theories are
still subjects of active research, and establishing links between different areas aimed at unveiling
common underlying structures is an increasingly important research challenge.
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