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Abstract— Feedback is both a pillar of control theory and a
pervasive principle of nature. For this reason, control-theoretic
methods are powerful to analyse the dynamic behaviour of
biological systems and mathematically explain their properties,
as well as to engineer biological systems so that they perform a
specific task by design. This paper illustrates the relevance of
control-theoretic methods for biological systems. The first part
gives an overview of biological control and of the versatile ways
in which cells use feedback. By employing control-theoretic
methods, the complexity of interlaced feedback loops in the cell
can be revealed and explained, and layered feedback loops can
be designed in the cell to induce the desired behaviours, such as
oscillations, multi-stability and activity regulation. The second
part is mainly devoted to modelling uncertainty in biology and
understanding the robustness of biological phenomena due to
their inherent structure. Important control-theoretic tools used
in systems biology are surveyed. The third part is focused on
tools for model discrimination in systems biology. A deeper
understanding of molecular pathways and feedback loops, as
well as qualitative information on biological networks, can
be achieved by studying the “dynamic response phenotypes”
that appear in temporal responses. Several applications to the
analysis of biological systems are showcased.

I. INTRODUCTION

System-theory and control-theory are particularly well
suited for crossing borders among disciplines: practically
any phenomenon can be represented as a dynamical system
and this allows us to put mathematics into action in the real
world, to understand it (explain and unravel the essence of
natural behaviours) and to improve it (by designing con-
trollers that suitably govern behaviours). In particular, many
tools from control theory that have been developed to tackle
crucial problems in engineering can be employed, if suitably
adapted, to address problems in the life sciences and in biol-
ogy. Indeed, the mathematical exactness of control-theoretic
tools can not only streamline technological progress, but
also help us gain more insight into the complex, fascinating
and apparently haphazard phenomena occurring in biology.
With the increase of complexity, the greater availability of
huge amounts of data, and the growing attention for the
contributions that can be achieved thanks to interdisciplinary
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approaches, new disciplines are arising that tackle funda-
mental and complex problems in biology and in the life
sciences with a system-level approach [1], [65], [93]. In
particular, systems biology aims at analysing the behaviour
of natural systems to unravel the design principles underlying
their complex dynamics and to mathematically explain their
peculiar properties. Conversely, synthetic biology aims at
engineering artificial biological systems de novo, so that they
exhibit the desired dynamic behaviour.

The control community has shown a growing interest in
this area and has proven that, by using control-theoretic
tools, it is possible to streamline both the analysis and the
synthesis of biological systems. Why are control-theoretic
methods so effective? Because the fundamental concept of
feedback is at the core of control theory and, at the same
time, is one of the most pervasive principles of nature. Living
beings rely for their survival on a huge amount of interlaced
feedback loops that regulate biological functions. Hence,
control-theoretic tools are naturally well tailored to analyse
and design feedback loops, also in biology.

Here we give a broad overview of interesting develop-
ments in the study of biological networks enabled by control-
theoretic methods. Although control-theoretic approaches
have led to significant insight, the complexity of biologi-
cal systems is such that new tools need to be developed
or refined to be able to successfully address many open
problems; future challenges are also outlined, to stimulate
novel research ideas. The paper is organised in three parts,
summarised in the next subsections, which focus on diverse
and complementary aspects to propose a well-rounded illus-
tration of control-theoretic methods for biological systems.

A. The versatile ways in which cells use feedback loops

In 1939, Walter Cannon wrote in his book The wisdom
of the Body: “The living being is an agency of such sort
that each disturbing influence induces by itself the calling
forth of compensatory activity to neutralize or repair the
disturbance”. Since this remarkable statement that postulates
the use of feedback control to support life, we have come
to appreciate that the use of feedback loops is ubiquitous
at every level of biological organization, from the gene to
the ecosystem. Section II, by Hana El-Samad, focuses on
examples that demonstrate the versatile roles and functions
that feedback loops play in cells, and also discusses the
need for tools, technologies and mathematical frameworks
for studying biological feedback control. First, we discuss
examples of the use for layered feedback loops to produce
oscillations and biological rhythms. We describe the use of
mathematical tools that led to establishing and analyzing
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these phenomena. We also discuss the use of feedback
in producing multi-stability, with examples illustrating bi-
ological switches. Then, we discuss more nuanced use of
feedback to modulate quantitatively the activity of biological
pathways. We present examples that include the use of
feedback to dynamically shift the dose response of a pathway
or to modulate the variability of pathway activity to induce
different distributions of behaviors across a population. Fi-
nally, we discuss available tools for studying and measuring
feedback activity in cellular pathways, and illustrate the
difficulty inherent in these endeavors. We motivate the need
for new tools, both experimental and computational, to study
biological feedback. As a closing statement, we pose the
nascent challenge of designing feedback control systems
using biomolecules for many biotechnological applications.

B. Biological phenomena, mathematical explanations

The control community has developed many mathemat-
ical tools that are tailored to face important problems in
engineering, but can also be successfully adopted to address
problems in systems biology, since feedback is both a
fundamental concept at the core of control theory and an
ubiquitous feature in biology: no living being could survive
without the myriad of entangled feedback loops that rule its
biological functions. When adopting control-theoretic tools
for the study of biological problems, it is crucial to deal
with the huge complexity of biological systems by means of
simplifications that allow us to nicely capture the essence of
the system and describe it in a framework that allows for
a significant mathematical analysis; and crucial to convince
biologists that simplifications are worth adopting because,
together with non-trivial mathematical tools, they enable a
deeper qualitative and quantitative understanding of biologi-
cal phenomena. Section III, by Franco Blanchini and Giulia
Giordano, discusses the use of the mathematical language
to address, formulate and solve problems in biology, which
needs to be always supported by an effective communication
between mathematicians and biologists. We investigate the
role of models well-suited to capture the inherent uncertainty
in biological systems, focusing on the concept of robust
and structural properties. We consider techniques for sys-
tem simplification based on time-scale separation and on
lumping subsystems with special properties (monotonicity, or
positivity of the impulse response) into aggregate elements.
Then, we overview mathematical tools and notions that have
been shown to be useful in systems biology, ranging from
graph theory, differential equations, BDC–decomposition to
frequency methods, from degree theory to Lyapunov and
parametric robustness tools. We show how the presented
methods have been actually applied to the analysis of biolog-
ical systems, including the structural stability of biochemical
networks and the structural steady-state influence.

C. Dynamic response phenotypes as tools for model discrim-
ination in systems biology

Understanding the roles of signal transduction pathways
and feedback loops is fundamental in both systems and syn-

thetic biology. Section IV, by Eduardo D. Sontag, discusses
certain types of network qualitative information that can
be gleaned from “dynamic phenotypes”, which encompass
both the transient characteristics of temporal responses and
the use of rich classes of probing signals beyond step
inputs. We focus on three examples: fold-change detection,
non-monotonic responses, and subharmonic oscillations. An
ubiquitous property of sensory systems is “adaptation”: a
step increase in stimulus triggers an initial change in a
biochemical or physiological response, followed by a more
gradual relaxation toward a basal, pre-stimulus level. Adap-
tation helps maintain essential variables within acceptable
bounds and allows organisms to readjust themselves to an
optimum and non-saturating sensitivity range when faced
with a prolonged change in their environment. Certain adapt-
ing systems, ranging from bacterial chemotaxis pathways
to signal transduction mechanisms in eukaryotes, enjoy
a remarkable additional feature: scale invariance or “fold
change detection”, meaning that the initial, transient behavior
remains approximately the same even when the background
signal level is scaled (“log sensing”). We review the bio-
logical phenomenon, and formulate a theoretical framework
leading to a general theorem characterizing scale invariant
behavior by equivariant actions on sets of vector fields that
satisfy appropriate Lie-algebraic nondegeneracy conditions.
The theorem allows one to make experimentally testable
predictions, and we discuss the validation of these predic-
tions using genetically engineered bacteria and microfluidic
devices, as well their use as a “dynamical phenotype” for
model invalidation. Systems described by order-preserving
dynamics are called “monotone systems”. Such systems
can be shown to have monotone response properties when
starting from steady states: a nondecreasing input can never
give rise to a biphasic response, for example. We briefly
review some of this theory and show as an example how
this tool can be used to invalidate a published model of
M. tuberculosis stress response (hypoxic induction pathway).
One challenging question in systems biology is that of
comparing different architectures for perfect adaptation. For
example both incoherent feedforward loops (IFFLs) and
integral feedback systems give rise to perfect adaptation
and, in some configurations, scale invariance. Recent work
has proposed the use of periodic signals to discriminate be-
tween these models. We review a theoretical result showing
that feedforward loops and monotone systems both lead to
entrainment, but nonlinear feedback architectures (such as
nonlinear integral feedback) may lead to period doubling
bifurcations and even chaos. This result is illustrated through
experimental work with C. elegans AIA interneurons, in
which odor-evoked intracellular Ca2+ response signatures,
to periodic on-off pulses of diacetyl, display subharmonic
behavior at high forcing frequencies.

II. BIOLOGICAL CONTROL: THE VERSATILE WAYS IN
WHICH CELLS USE FEEDBACK LOOPS

The idea that feedback loops are at the fundamental core
of life is not new. In fact, researchers of physiology and
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anatomy, as well as medical doctors, have long explored and
endorsed the idea of feedback in their attempts to understand
phenomena such as homeostasis. Concepts of feedback also
percolated into the thinking of molecular biologists since
the dawn of that field. For example, a review article, ti-
tled “Biological Feedback Control at the Molecular Level”
[15] highlights what perhaps are the first two established
examples of metabolic feedback regulation at the molecular
level. Since then, hundreds (if not thousands) of feedback
loops have been identified in cellular networks, and have
been shown to play critical role of virtually every aspect of
biological function, from the response to stress conditions
[59], [51], to developmental pathways [21], pathogens and
disease [85], symbiotic relationships of organisms to reside
within their eukaryotic hosts [98], and for the synthesis of
[83], resistance to [33], and persistence in the presence of
[17] antibacterial agents.

More specifically, the role of negative feedback to establish
robust and malleable operation has been explored in a
number of biological systems. Additionally, many exam-
ples of feedback strategies that are recognizable by control
practitioners have been documented in cellular regulation,
including integral control. For example, integral feedback
was demonstrated to be at work in the E. coli chemotaxis
circuit, where the percentage of active CheY proteins that
are responsible for regulating the bacteria’s tumbling fre-
quency adapts perfectly to step-changes in chemoattractant
concentration, maintaining the system’s sensitivity to new
concentration changes [20], [18], [3], [100]. This was termed
Biochemical Perfect Adaptation. Other examples of such
behavior include the perfect adaptation of the nuclear enrich-
ment of the S. cerevisiae MAPK Hog1 after step changes in
osmolarity [73], and the control of blood calcium concen-
tration in mammals [42]. In both cases, integral control was
shown to be the structural underpinning of this adaptation
and many ideas from classical feedback theory, such as the
internal model principle [47], were productively exploited to
accelerate our understanding of these systems. In addition,
many studies explored the role of negative feedback loops
as a fundamental requirement for oscillatory behaviors and
biological rhythms [74], [45], and positive feedback loops
to produce multi-stable systems that can accommodate pro-
cesses such as differentiation [46]. Here, we argue that these
biological functions of feedback, while crucially important,
cover only a small portion of a long list. We suspect that
there is still a large and largely unexplored canon of roles that
biological feedback loops may play. We discuss an example,
and then pose three questions for the field. The examples
are intently not described in great mathematical details, and
the questions are posed in simple form. We hope that this
accessible description will be read and understood by a wide
slice of the control community, perhaps tempting them to
embark on the study of biological feedback.

A. Positive feedback and switches in differentiation programs

The maturation of Xenopus frog oocytes has long been
used as a prototype model for cell fate induction [99], with

the immature oocyte representing the default fate and the
mature oocyte representing the induced fate. Transition from
immature to mature (maturation) is a progesterone-induced
resumption of meiosis I. This transition is irreversible with
a well-defined threshold: Oocytes treated with a sufficient
concentration of progesterone undergo maturation, whereas
those treated with a lower concentration do not. At the
biochemical level, a large progesterone stimulus up-regulates
the translation and gradual accumulation of the protein kinase
Mos through a largely unidentified pathway. Mos is the
essential initiator of meiosis; it signals through the mitogen-
activated protein kinase (MAPK) cascade (composed of Mos,
the MAPK kinase MEK1, and p42 MAPK) and promotes
the activation of the cyclin-dependent kinase 1(Cdk1) cyclin
B complex. Numerous positive feedback loops have been
identified in the p42 MAPK/Cdc2 network of an oocyte. For
example, Mos activates p42 MAPK through the intermediacy
of MEK, and active p42 MAPK feeds back to promote
the accumulation of Mos (Fig. 1). This positive feedback
was the subject of many studies, which established that
it is the engine for the sharp and irreversible switching
behavior of this maturation system. Analyses that spanned a
decade established both computationally and experimentally
the conditions under which this feedback loop can generate a
bistable system of this sort [99], [46]. Specific nonlinearities,
such as a so-called Hill function, were implicated in the
feedback to produce bistability, and the plausibility of their
existence at work in this system was also experimentally
probed. This (now) textbook material was an influential re-
sult, and a generation of biologists were trained with the idea
that positive feedback loop is necessary for producing multi-
stability, looked for it and found it in many developmental
systems. Irrespective of the details, the computational model
that conveyed the concept and ushered its experimental
investigation was a simple one, capturing the essence of the
phenomenon (shown in Fig. 1(c)).

B. Layers upon layers of feedback

Subsequent investigations found many other feedback
loops wrapped around the same Oocyte maturation pos-
itive feedback loop switch. For example, we discovered
that glycogen synthase kinase GSK − 3β, which prevents
progesterone-induced translation of Mos, is itself inhibited
by M-phase feedback (Fig. 1) [63]. This discovery brought
to the forefront the presence of another positive feedback
loop, formed by the aggregation of two negative interac-
tions. Disabling this feedback loop revealed a remarkable
phenotype–the Oocyte still maturated in all or none fashion,
but at a much lower concentration of progesterone stimu-
lus (Fig. 2). We concluded through simple analyses of an
updated phenomenological model (Fig. 1(c)), supported by
careful experimentation, that this stratification of feedbacks
also led to a stratification of their functions. The original
positive feedback established the switch, and the discovered
positive feedback involving GSK − 3β established its flip-
ping threshold (Fig. 2), moving the dose response without
changing its shape. By impinging on this threshold-setting
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Biological Diagram

Simple Model Diagram

a)

b)

c)

d)

Fig. 1: Positive Feedback loops in the Oocyte maturation switch. (a)
Biological diagram showing the canonical P42-MAPK positive feedback
loop (black) and the double-negative feedback loop implemented through
GSK − 3β (orange). (b) A diagram with a simplified set of interactions
that are modeled. (c) Model equations for diagram in (b). M is newly
synthesized Mos; M∗ is an aggregate of stabilized Mos and all Mos-
dependent signaling; G∗ is active GSK − 3β; kon designates activation
terms; koff designates inactivation terms; γ designates destruction; n terms
are theoretical Hill coefficients. (d) Fraction of mature Oocytes (fraction of
M∗ to total M ) as a function of stimulus (progesterone). Results adapted
from [63].

loop, environmental variables can move the tipping point of
the switch accordingly, therefore tuning the maturation of
the Oocytes according to their surroundings and allowing
them to integrate information from different inputs such as
the availability and abundance of amino acids [63]. This
picture is almost certainly partial. Many other feedback loops
decorate this system, and to date, their function remains
obscure.

C. Some (hopefully) thought-provoking questions

1) Why feedback? Is it the only way to achieve this
function?: The use of feedback in technological systems
is mainly studied and understood in terms of the ability of
feedback regulation to ensure robust stable operation in the
presence of disturbances, tracking references, and shaping
the dynamic response of a system. Therefore, it is perhaps
self-evident why negative feedback would be abundantly
used to achieve robust operation, including disturbance rejec-
tion and setpoint tracking, in biological systems. However,
in the absence of abundant technological examples, it is far
from clear why feedback loops would be used to achieve
purposes such as sensitization or desensitization of a pathway
based on its environment (e.g. shifting the dose response
discussed above). Is feedback in this capacity superior to a
plethora of other solutions that can be imagined or designed
to fulfill this function? If so, in what respect? If not, why
did it preferentially evolve? In fact, we show in Fig. 2 that
a feedforward architecture involving GSK−3β can achieve
modulation of the dose response of the maturation system, in
the same way that a feedback loop does. Understanding the
properties, constraints, and tradeoffs involved in the use of
feedback for implementing different non-canonical functions
will enable more predictive and compelling understanding of

Feedback model
a)

b)

c)

Feedforward model

Intact system

Inhibited system

Inhibited system

Intact system

Experimental data

model
d)

Fig. 2: Inhibition of double-negative GSK − 3β feedback loop shifts the
dose response of maturation as a function of the progesterone stimulus,
making the switch occur at lower level of stimulus. (a) Feedback model
block diagram. GSK − 3β double negative feedback loop can be disabled
by addition of the inhibitor 7AIPM. (b) A plausible feedforward model
involving GSK − 3β. (c) Fraction of mature Oocytes as a function of
progesterone stimulus determined experimentally in wild type and following
inhibition of GSK − 3β with 7AIPM to disable the double negative
GSK− 3β feedback loop. (d) Fraction of mature Oocytes as a function of
stimulus (progesterone) for models following inhibition of G. Both feedback
and feedforward loop architectures can produce a similar shift of the dose
response observed in the data. Results adapted from [63].

biology, as well as the extension of the feedback control field
in new and exciting dimensions.

2) How many feedback functionalities in biology?: The
biological literature is full of examples of feedback loops,
most of which remain unstudied and their function largely
unassigned. It is therefore natural to ask whether there is a
finite set of functionalities that feedback loops have evolved
to fulfill in biological networks and explore how this list can
be rigorously compiled and vetted. For every functionality, is
there a particular physical implementation that preferentially
evolved? If so, what are its general properties? Even if it
is impossible to build such an exhaustive list, it might be
interesting to clearly state the broader and most abundant
categories, facilitating the way for their careful examination.

3) Are existing tools in feedback and dynamical systems
theories sufficient to capture and analyze the biological
use of feedback?: There are probably thousands of papers
in the control literature prescribing analysis methods or
design strategies for, or proving theorems about, important
properties such as stability of a controlled system. There
are no such papers or mathematical results for how, for
example, to design a biological system with a prescribed
dose response, devise a controller that can achieve this dose
response, or ascertain any of its properties. While arguably
not of great relevance to technological systems, such a
property is essential for a biological system. Perhaps, dose-
response characteristics can be re-cast and embedded in
existing theories, or maybe we need new investigations and
results. It is interesting to consider a few such properties
that are biologically relevant, and attempt to extend existing
theories to study them in their own right, as valid and
important mathematical objects.
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III. UNDERSTANDING BIOLOGICAL PHENOMENA WITH
CONTROL-THEORETIC TOOLS

Understanding the design principles that rule the behaviour
of biological systems is one of the most fascinating research
challenges that we are currently facing.

A fundamental question is whether these principles can be
described in mathematical terms, or at least to which extent
mathematics is a proper language to describe them [1]. Math-
ematics is a beautiful language to explain biology from the
point of view of mathematicians, physicists and engineers,
who traditionally use this language to formulate and solve
problems in their disciplines. Yet, is mathematics equally
useful for biologist to solve problems in their discipline?
The interactions between mathematics and biology have
recently become deep, leading to the new field of systems
biology, characterised by an interdisciplinary approach [1],
[65], [93]. Yet there are some risks to avoid: on the one
hand, mathematical biology might be seen as an excuse to
study wonderful mathematical problems, claiming that they
have relevant applications, without contributing much to the
solution of actual biological problems; on the other hand, the
mathematical language might be seen as not worth adopting
by biologists, while the standard statistical approaches for
data analysis or extensive numerical simulations [37] might
be deemed sufficient to get biological insight.

Assuming that all parties have agreed on the benefit of
dealing with problems arising in the biological world using
a mathematical language, thanks to the many successful ex-
amples in the literature [6], [35], [39], [43], [68], [62], [76],
the adventure can begin. Clearly, a mathematical approach
requires models [34], [41], which can be either based on
physical-chemical laws and principles, or phenomenological
(based on macroscopic empirical relationships, mathemati-
cally described based on experimental data). In both cases,
the models we build must be valid, effective and detailed
enough to make the analysis meaningful, but simple enough
to enable a mathematical analysis:
• to be a realistic representation of a biological phe-

nomenon, a model cannot be too simple;
• to be useful to reveal the essential principles on which

the phenomenon relies, a model cannot be too complex.
Is then the common investigation space empty? We believe
that it is not. Of course, in the trade-off between essential
and detailed models, the choice depends on what we mean
by “explaining/understanding the design principles”.

A very complicated model can provide some answers: for
instance, resorting to numerical simulations, systems of many
(partial) differential equations can be solved to check whether
the numerically-determined solutions fit the experimental
data; this allows the validation of the model, which can then
be adopted to make predictions, as in the case of Insulin
models (see [75] for a survey). However, this is not the
main focus of this section. Our aim and hope is to show
that mathematics can reveal and explain simple, essential
and “universal” laws – such as the fact that peculiar types
of motifs in biological systems generate a particular dynamic

1 2 1 2

Fig. 3: Positive (left) and negative (right) loops of two elements: hammer-
head arrows represent inhibition, while pointed arrows represent activation.

behaviour, regardless of the value of the parameters [1], [2]
– when suitably tailored tools and approaches are adopted.

A. Ask the right questions – and find their answers

Let us start with an example. Assume that a certain system
S(p) of differential equations, depending on the parameter
vector p, can represent a genetic regulatory network, and
denote as p̂ a particular choice of the parameters, fitted based
on experimental data.

Q1) Can we prove that the system S(p̂) is stable?
Is question Q1 of any interest? The answer from a bio-

logical perspective is often no (unless we are considering
special problems such as biological oscillators or bistable
systems), because most of the times, if the biological entity
exists and survives, it must be stable. Is then any stability
analysis useless? Let us change our question as:

Q1 – revised) Why is the system S(p) stable even under
huge variations of p?

This question is definitely more interesting. For instance,
in negative feedback loops time-scale separation is a fun-
damental property to ensure stability [1]; this is a general
principle and does not depend on a specific choice of the
parameter values. Investigating the astounding robustness of
biological systems [4], [18], [66], [67], [86] by means of a
structural analysis [22], [48] is often deeply interesting.

Definition 1: Let C be a class of systems and P be a
property pertaining to such a class. Given a family F ⊂ C
the property P is robustly verified by F , in short robust, if it
is satisfied by each element of F ; P is structurally verified
by F , in short structural, if the family F is not specified
resorting to quantitative parameter bounds.

Example 1: Consider the two matrices

A1 =

[
−a1 a2
a3 −a4

]
and A2 =

[
−a1 −a2
a3 −a4

]
,

where ai, i = 1, . . . , 4, are unknown positive coefficients.
Matrix A1 is robustly Hurwitz for proper numerical bounds
a−i ≤ ai ≤ a

+
i . Matrix A2 is structurally Hurwitz: no bounds

are required, as long as the parameters are positive. This
corresponds to a neat biological law: the positive feedback
loop of two self-degrading species activating each other (as
in A1) can be unstable, while the negative feedback loop
of two self-degrading species, an inhibitor and an activator
(as in A2), is always (structurally) stable (cf. the graph
representation in Fig. 3).
A massive literature has proposed many different types of
models for systems biology. We will here consider models
represented by Ordinary Differential Equations of the form

ẋ(t) = Sg(x(t)) + g0, (1)
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where x ∈ Rn is a vector of species concentrations, S ∈
Zn×m is a matrix representing an interconnection structure
(e.g., in chemical reaction networks [7], the reactions sto-
ichiometry), g : Rn → Rm is a vector function whose
components are monotonic in each argument (in chemical
reaction networks, the vector of reaction rates) and g0 ∈ Rn
is an external input.

Example 2: Consider the chemical reaction network

∅ a0−⇀ A, ∅ b0−⇀ B, B
gb−⇀ ∅

A+B
gab−−⇀ C

gc−⇀ D, A+D
gad−−⇀ ∅

Species A and B are supplied with flow a0 and b0, respec-
tively, and combine at rate gab to produce C, which converts
into D at rate gc. B has a self-degradation rate gb and finally
D combines with A, thus repressing its own production,
at rate gad. Species concentrations are denoted with the
corresponding lowercase letters and evolve according to the
equations

ȧ

ḃ
ċ

ḋ

 =


−1 0 0 −1
−1 −1 0 0

1 0 −1 0
0 0 1 −1



gab(a, b)
gb(b)
gc(c)

gad(a, d)

+


a0
b0
0
0

 ,
which can be cast in the framework of (1), where the
stoichiometric matrix S represents the system structure and
all the reaction rate functions are monotonically increasing
in their arguments.

For reasons that will become clear later on, we notice that
the Jacobian of a system of the form (1), evaluated at any
point x, admits the BDC-decomposition [23], [49], [48]

J(x) = B∆(x)C,

where ∆(x) is a diagonal matrix carrying on the diagonal
the absolute value of the partial derivatives of the vector
function g, while B and C are constant matrices that capture
the system interconnection structure. In Example 2,

B =

−1 −1 0 0 −1 −1
−1 −1 −1 0 0 0
1 1 0 −1 0 0
0 0 0 1 −1 −1

 , C =


1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
1 0 0 0
0 0 0 1


and ∆ = diag

{
∂gab

∂a ,
∂gab

∂b ,
∂gb
∂b ,

∂gc
∂c ,

∂gad

∂a ,
∂gad

∂d

}
� 0.

Hence, the system linearised around any equilibrium point
x̄, such that 0 = Sg(x̄) + g0, has the form

ż(t) = B∆(x̄)Cz(t) (2)

(local BDC-decomposition), where z(t) = x(t) − x̄
is the shifted variable. The nonlinear system can also
be equivalently rewritten, according to the global BDC-
decomposition [23], [24], [48], as

ż(t) = BD(z(t))Cz(t), (3)

where D(z) is a diagonal matrix with strictly positive func-
tions on the diagonal. The shifted system (3) is obtained by

exploiting the formula [64]

g(x)− g(x̄) =

(∫ 1

0

∂g

∂x
[σ(x− x̄) + x̄]dσ

)
(x− x̄),

and can be studied in a differential inclusion framework [5],
[12], [23].

B. Boundedness, stability, instability, bistability, oscillations

When analysing a system, a fundamental property is the
boundedness of the solutions. Unbounded behaviours in
nature are typically due to unbounded (exponential) growth,
such as that of bacteria. To assess boundedness, the theory of
invariant sets and of Lyapunov functions can be adopted [5],
[23], [25]. To investigate the boundedness of biochemical
systems, we can exploit their positivity: if x(0) ≥ 0
(component-wise), then x(t) ≥ 0 for all t > 0.

Theorem 1: System ẋ = f(x), with f regular enough, is
positive iff, for all k, fk(x1, . . . , xk−i, 0, xk+i, . . . , xn) ≥ 0
for all xi ≥ 0, if i 6= k.

Once boundedness of the solutions has been established,
it has a fundamental consequence: the existence of an equi-
librium [79], [95].

Theorem 2: Given the system ẋ = f(x), with f regular
enough, assume that all its solution are ultimately bounded
in a convex and compact set C with a non-empty interior.
Then, the system admits an equilibrium point in C.

In some cases, we are interested in finding conditions on
the parameters that ensure the existence of an equilibrium.

Consider again Example 2. The equilibrium values b̄ and
c̄ are fixed by gc(c̄) = a0/2 and gb(b̄) = b0 − a0/2. Then
ā is deduced from the equation gab(a, b̄) = b0 − gb(b̄)
and d̄ is derived from gad(ā, d) = gc(c̄) = a0/2. Under
proper assumption (unboundedness and monotonicity of the
functions in g), the equilibrium exists, but we must have
b0 − a0/2 > 0, hence 2b0 > a0, because gb(b̄) must be
positive. If this condition fails, the solution is unbounded.

Once the existence of equilibria is ensured, then the issues
are their number and their stability.

Assume for brevity that the system admits a positively
invariant convex and compact set C with non-empty interior.
Hence, there exists an equilibrium in C and we assume that
there are none on the boundary. We call the equilibrium
x̄ ∈ int(C). Is it unique? An answer can come from the
topological degree theory [58], [71].

Theorem 3: Given the system ẋ = f(x), with f regular
enough, assume that it admits m equilibria x̄(k), k =
1, . . . ,m, which are all in the interior of C, and that the
Jacobian is non-singular in all of them. Then

m∑
k=1

sign
[
det(−J(x̄(k)))

]
= 1.

This theorem has interesting consequences. If an equilib-
rium x̄ is unstable due to a single real positive eigenvalue
(while all the other eigenvalues have negative real part), then
the characteristic polynomial has a negative known term.
On the other hand, the known term is det(−J). In view
of Theorem 3, this equilibrium cannot be unique and at least
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other two must exists; under suitable assumptions, they are
exactly two and stable. This is a typical situation when a
local stability analysis can reveal a global property such as
bistability. Conversely, if the equilibrium is unstable due to
precisely two complex eigenvalues with positive real part,
then det(−J) is positive and this situation is compatible with
the uniqueness of the equilibrium. This type of instability is
typically associated with an oscillatory behaviour.

In general, it is possible to discriminate the type of in-
stability associated with either real or complex non-negative
roots as follows. Consider a system of the form

ẋ(t) = f(x(t), θ),

where θ ∈ Θ is a parameter vector. Assume that an
equilibrium x̄θ exists for all θ ∈ Θ and that, for some
nominal value θ∗, the Jacobian computed at the equilibrium
is Hurwitz. What type of transition to instability can occur
when θ is changed? [26] If the transition is due to a single
real root that crosses 0 to become positive, at some critical
value θcr, then the Jacobian determinant must be 0. So,
the critical values can be found by analyzing det[J(θ)].
Conversely, if a pair of complex roots crosses the imaginary
axis, then det[−J ] > 0. Finding critical values is harder:
we must typically consider the characteristic polynomial
det[λI − J(θ)] and, e.g., compute the Routh-Hurwitz table.

Uniqueness of the equilibrium is guaranteed if the Jaco-
bian is non-singular for all x in the invariant set C [101].
An algorithm to check structural non-singularity for Jaco-
bian matrices that admit the BDC-decomposition will be
discussed later on.

Concerning structural stability, the Zero-Deficiency The-
orem [44] is the most famous result. For a network of the
form ẋ = Sg(x), the stoichiometric compatibility class [7]
is the positively invariant set

SCC(x(0)) = x(0) + Im [S] .

Assume that the rate functions follow the law of mass ac-
tion [57], hence the reaction rates are monomials: a reaction
of the form mA + nB −⇀ C has rate gab(a, b) = kambn

(constant terms can be accommodated by assuming ka0

for the input flow ∅ → A). If the reaction network has
zero deficiency (a quantity that depends on the network
interconnection topology) and is weakly reversible, then it
admits the entropy as a Lyapunov function [44], [53], hence
it admits in each stoichiometric compatibility class a single
equilibrium point that is locally stable. The conditions to be
tested are structural, independent of parameter values.

Other stability criteria have been suggested based on
special classes of Lyapunov functions: polyhedral [23], [50],
[80] and piecewise-linear-in-rate [5]. When the network
admits a polyhedral Lyapunov function (as in the Example 2)
and its Jacobian is structurally non-singular, no matter how
the smooth and increasing function g is taken, the equilib-
rium point, if it exists, is globally stable [24].

1

2

3

Fig. 4: The incoherent feed-forward loop motif (IFFL).
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Fig. 5: The flow graph corresponding to the chemical reaction network in
Example 2.

C. Graph representation

The graph representation of biochemical systems is a
fundamental communication tool to enable mutual under-
standing between biologists and mathematicians [22], [77].
As an example, consider the incoherent feed-forward loop
motif (IFFL) [1], [2]. Looking at Fig. 4, a biologist imme-
diately understands the mechanism: node 1 has a positive
(activating) effect on node 3, which is compensated by the
negative (inhibitory) signal passing through node 2 (with
a belated effect if the reactions have comparable rates,
since two steps are required for the inhibitory signal to
reach its target). Anyone used to the mathematical language
immediately understands that the graph can be associated
with the equations

ẋ1 = gu(u)− k1x1
ẋ2 = g21(x1)− k2x2
ẋ3 = g31(x1) + g32(x2)− k3x3

where g21 and g31 are increasing functions, while g32 is
decreasing. Typical choices are the Hill functions

ginc(x) =
qxm

p+ xm
, gdec(x) =

q

p+ xm
.

To preserve this crucial communication channel, any graph
description should be easy to translate in equations and vice-
versa. There are mainly two types of graph representations:
• flow or reaction graph (where the arcs are flows);
• signal graph (where the arcs are signals).

Fig. 4 shows a signal graph, while the flow graph associated
with the chemical reaction network in Example 2 is in
Fig. 5. Graph analysis of biological networks is a very
well investigated subject [40], [72], [77]. As an example, a
bistable behaviour is typically associated with the presence
of a positive cycle in the network graph, while an oscillatory
behavior requires the presence of a negative cycle (see [26],
[28] for a more general classification for systems having both
positive and negative cycles).

D. Influence and adaptation

Identifying structural influences can be very useful to
analyse systems and invalidate models. An input u has a
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structurally positive (negative, zero) influence if, no matter
how the parameters are chosen, the variation in the steady-
state value of the output y due to a step input u is positive
(negative, zero); the influence is indeterminate if it does
depend on the parameter values. For systems admitting a
BDC-decomposition, under stability assumptions, we can
assess steady-state influences by looking at the steady-state
output of the system

ż = B∆Cz + Eu, y = Hx,

where u > 0 is constant, and checking if the sign of

φ(∆) = det

[
−B∆C −E

H 0

]
is the same for all ∆ = diag{∆1, . . . ,∆m} with ∆i >
0. In fact, the steady-state output variation is δȳ =
[φ(∆)/ψ(∆)] δū, where ψ(∆) = det(−B∆C) > 0, in view
of the assumed stability, and the input variation is δu > 0.

Theorem 4: [49] The function φ(∆1,∆2, . . . ,∆m) is pos-
itive (negative) for all ∆k > 0 if and only if φ(1, 1, . . . , 1) >
0 (< 0) and

φ(∆̂1, ∆̂2, . . . , ∆̂m) ≥ 0 (≤ 0)

for all possible choices ∆̂k ∈ {0, 1}, while it is zero if and
only if it is zero for all choices. It is undetermined otherwise.

The result relies on the fact that φ(∆1,∆2, . . . ,∆m)
is a multi-affine function of the ∆k, and a multi-affine
function defined on a hyper-rectangle reaches its minimum
and maximum on the vertices. A different approach for this
type of investigation has been proposed in [92].

An interesting outcome is the influence matrix [49], whose
(i, j) entry is the signed influence resulting from applying an
additive input to the equation of species j and taking species
i as output. The structural influence matrix for Example 2 is

Σ =


1 −1 −1 −1
−1 1 1 1

1 0 1 −1
? 1 1 1

 . (4)

A zero steady-state influence, as in the case of Σ32, is
associated with perfect adaptation, a remarkable feature of
some living systems [1], [31], [100]. The only indeterminate
sign, which depends on the choice of ∆, is Σ41.

Remark 1: To assess the structural non-singularity of the
matrix B∆C, the same vertex-type result can be exploited.
Indeed, also ψ(∆1, . . . ,∆m) = det[−B∆C] is multi-affine.
Hence it is positive (negative) iff it is nonnegative (nonpos-
itive) on all vertices and ψ(1, . . . , 1) > 0 (< 0). In view
of multi-affinity, to check Hurwitz stability of B∆C, given
bounds of the form ∆− ≤ ∆ ≤ ∆+, we can adopt value-set
techniques, well established in the control literature [19], and
in particular the Mapping Theorem. These techniques extend
in a remarkable way to uncertain systems well established
frequency-domain methods for the stability and harmonic
analysis, in particular those based on the Nyquist plot.

Structural influences provide a remarkable tool to inval-
idate biological models: given a model, if we assess the
presence of a structurally signed influence and the predicted
sign is contradicted even by a single experimental observa-
tion, then the model is invalidated. The importance of model
invalidation will be stressed also in Section IV.

E. Time-scale separation

Time-scale separation is a fundamental ingredient in the
analysis of biological networks. In general, chemical reac-
tions in the same network may have completely different
rates, which allows for approximations: the most famous one
is due to Michaelis and Menten. Consider the reaction

E + S
α−⇀↽−
β
X

γ−⇀ E + P

where X = [ES] is an intermediate species, E an enzyme,
S the substrate, P the product. We can apply a singular
perturbation [64] argument: we assume that the reversible
reaction is much faster than the other (hence γ ≈ 0) and
consider the steady state relation αes = βx. Then, since
e+ x = e0 = const, we have αe0s = βx+ αxs and we can
derive the approximate production speed of p

ṗ = γx =
γe0s

β/α+ s
=

Vmaxs

KD + s
.

A similar argument can be used to investigate multi-
molecular reactions. The reaction 2A + B

k−⇀ C in practice
occurs in two steps, because it is unlikely that the three
molecules (A,A,B) meet at the same instant. Hence

A+B
α−⇀↽−
β
X, X +A

γ−⇀ C.

However, if the reversible reaction is faster, then αab = βx
and the production of C is

ċ = γxa =
γα

β
a2b = kaba

2b,

which is the accepted formula for trimolecular reactions.
Time-scale separation is important in many other con-

texts, for instance to explain the robust stability of negative
loops [1, Section 6.5].

F. Complexity and aggregation

Given the huge complexity of biological networks, it
is crucial to find systematic methods for simplification. A
possible strategy is to identify subsystems of nodes that can
be considered as a single aggregate element, because they are
characterised by a strong property, such as being monotone
or near-monotone [8], [10], [90], [94]. A system

ẋ(t) = f(x(t), u(t)), y(t) = g(x(t))

is input-output monotone if, given xA(0) ≥ xB(0) and
uA(t) ≥ uB(t), the corresponding state and output solutions
satisfy xA(t) ≥ xB(t) and yA(t) ≥ yB(t) (all component-
wise). As further discussed in Section IV, in monotone (or
cooperative) systems, all the variables tend to the same
ordered behaviour. Exploiting this fact, all the “cooperating
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variables” can often be seen as a single entity. A recent
endeavor to generalise this concept considers systems with
a positive impulse response [28].

G. Other systems-and-control challenges in biology

Many other fundamental aspects in systems biology can
attract people from the systems and control community.

Modularity. In electrical engineering we know how to
generate a cascade of systems, each influencing the down-
stream one without being influenced by it, and the properties
of these cascades are well studied. How to achieve the same
goal in biological systems is not always clear, due to the
retroactivity issues considered in [38], [39].

Self-organising systems. How do complex living systems
organise themselves? This is a wide chapter in biology [32],
including morphogenesis, pattern formation, and tissue dif-
ferentiation. The current standard methods in control theory
are perhaps not powerful enough to investigate problems of
such a complexity; still it is a nice challenge to employ
control tools in at least some particular problems [13], [56].

Optimality. This is a crucial aspect in nature, in view of
competitive evolutionary selection, but has received relatively
scarce attention. Optimality in evolution is a knife-edge
battle: a very small increment of the survival chances can
produce a huge evolutionary advantage in the long run [1].
Formalising this concept is not easy at all. Typically, if two
species A and B share the same environment, one is more
likely to dominate but several factors need to be considered
to predict which one. Even the simple “chance to survive”
can change completely based on the environment conditions.

Biologically inspired mechanism. Nature can inspire us
and suggest engineering solutions (for synchronization [82],
swarming [30], decentralized control [16], [27], [29], [60],
[61]) that mimic those in biological systems, whose effi-
ciency is proven by natural selection.

We finally stress that, as thoroughly discussed in [1],
mathematical tools are precious to explain why biological
systems can preserve their function in spite of enormous
variations of the parameters and the external conditions.

This problem often has to be faced case by case. Im-
portantly, assessing structural stability of a certain class of
systems does not necessarily explain where the robustness
originates from. For instance, for the network in Example 2,
as long as an equilibrium exists, it is globally stable, as en-
sured by a piecewise–linear Lyapunov function that certifies
structural stability, but that cannot provide any explanation
for it. Conversely, in matrix Σ in (4), the fact that Σ32 = 0
can be explained by looking at the steady state computed
before and noting that gc(c̄) = a0/2, hence constant per-
turbations on b0 (b0 → b0 + δb0) cannot alter the value of
c̄. The computation of the steady state requires less sophisti-
cated mathematical notions than Lyapunov theory. Therefore,
sometimes the simpler is the mathematics involved, the more
useful is the biological explanation achieved.

IV. TRANSIENT BEHAVIORS AS SIGNATURES OF
BIOLOGICAL MOTIFS, AND THEIR USE AS TOOLS FOR

MODEL INVALIDATION

One of the central questions in systems and synthetic
biology is that of understanding the roles of signal transduc-
tion pathways and feedback loops, from the elucidation of
such pathways in natural systems to the engineering design
of networks that exhibit a desired behavior. This part of
the tutorial discusses certain types of network qualitative
information that can be gleaned from “dynamic phenotypes”,
a term that we take as encompassing both the transient char-
acteristics of temporal responses and the use of rich classes
of probing signals beyond step inputs. We focus on three
examples: fold-change detection or scale-invariance, non-
monotonic responses, and subharmonic oscillations, sketch-
ing both mathematical theory and biological applications.

We consider dynamical systems with inputs and outputs
in the standard sense of control systems theory [91],

ẋ = f(x, u) , y = h(x, u) . (5)

The functions f = (f1, . . . , fn)T , h describe respectively
the dynamics and the read-out map. Here, u = u(t) is a
generally time-dependent input (stimulus, excitation) func-
tion, x(t) = (x1(t), . . . , xn(t)) is an n-dimensional vector
of state variables, and y(t) is the output (response, reporter)
variable. In order to describe positivity of variables as well
as other constraints, we introduce the following additional
notations. States, inputs, and outputs are constrained to lie
in particular subsets X, U, and Y respectively, of Euclidean
spaces Rn,Rm,Rq , and the functions f and h are contin-
uously differentiable. We assume that for each piecewise-
continuous input u : [0,∞) → U, and each initial state
ξ ∈ X, there is a unique solution x : [0,∞)→ X of (5) with
initial condition x(0) = ξ, which we write as ϕ(t, ξ, u), and
we denote the corresponding output y : [0,∞) → Y, given
by h(ϕ(t, ξ, u), u(t)), as ψ(t, ξ, u).

A. Scale-invariance

Biological sensory systems are often “perfectly adapted”
to constant inputs. This means that a step change in an
input triggers an initial change in a response (which may be
biochemical, such as activation of a pathway or expression
of a particular gene, or physiological), and there is a conse-
quent relaxation toward a pre-stimulus basal level. Perfect
adaptation has a role in maintaining important variables
within acceptable bounds, and allows organisms to readjust
themselves to an optimum and non-saturating dynamic range
when faced with a long-lasting change in their environ-
ment. It has been recently observed that some adapting
systems, which play a role in bacterial chemotaxis pathways
or in signal transduction mechanisms in eukaryotes, have
in addition a stronger feature, called scale invariance or
“fold change detection” (“FCD”). This means that the initial
(transient) behavior remains approximately the same even
when the background signal level is scaled (“log sensing”).
This property, related to Weber’s law in psychophysics, can
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be interpreted as robustness to scale uncertainty, and plays
an important role in key signaling transduction mechanisms
in eukaryotes, including the ERK and Wnt pathways, as
well as in Escherichia coli and possibly other prokaryotic
chemotaxis pathways. Theoretical predictions about FCD
behavior made in [88] were subsequently experimentally
verified in [70] for bacterial chemotaxis.

We next discuss the formulation of the FCD property,
present a “certificate” for its validity (equivariances), and
explain how this property can be used as a “dynamical
phenotype” for model invalidation. The main references for
the material here are [88] and [87]. The general setup is
that of invariance under the action of a more general set of
symmetries in inputs, and in that context FCD is the special
case where the symmetries are given by the action of the
multiplicative group of positive real numbers.

We will assume that for each constant input u(t) ≡ ū,
there is a unique solution x̄ = σ(ū) of the algebraic equation
f(x̄, ū) = 0. Often one also assumes in this context that this
steady state is globally asymptotically stable (GAS): it is
Lyapunov stable and globally attracting for the system when
the input is u(t) ≡ ū: limt→∞ ϕ(t, ξ, u) = σ(ū) for every
initial condition ξ ∈ X. The GAS property is not required
for the results to follow, however.

If X is an open set, or the closure of an open set, in Rn, we
say that the system (5) is analytic if f and h are real-analytic
(can be expanded into locally convergent power series around
each point) with respect to x, and it is irreducible if it
is accessible and observable. By an accessible system we
mean one for which the accessibility rank condition holds:
FLA(x0) = Rn for every x0 ∈ X, where FLA is the
accessibility Lie algebra of the system. Intuitively, this means
that no conservation laws restrict motions to proper sub-
manifolds. For analytic systems, accessibility is equivalent
to the property that the set of points reachable from any
given state x has a nonempty interior; see a proof and more
details in the textbook [91]. An observable system is one for
which ψ(t, x0, u) = ψ(t, x̃0, u) for all u, t implies x0 = x̃0.
Intuitively, observability means that no pairs of distinct states
can give rise to an identical temporal response to all possible
inputs. For analytic input-affine systems, observability is
equivalent to the property that any distinct two states can be
separated by the observation space; see [91], Remark 6.4.2
for a proof and discussion. In the context of applications to
biomolecular systems, analyticity and irreducibility are weak
technical assumptions, often satisfied.

We say that the system (5) perfectly adapts to constant
inputs if the steady-state output h(σ(ū), ū) equals some fixed
y0 ∈ Y, independently of the particular input value ū ∈ U.
That is, the steady-state output value is independent of the
actual value of the input, provided that the input is a constant
(a step function).

Invariance will be defined relative to a set P of continuous
and onto input transformations π : U → U. For each input
u(t) and π ∈ P , we denote by “πu” (even when π is
nonlinear) the function of time that equals π(u(t)) at time t.
(The continuity assumption is only made in order to ensure

that πu is a piecewise continuous function of time if u is.
The ontoness assumption, that is, πU = U, can be weakened
considerably: it is only used in the main theorem in order
to prove that a system ẋ = f(x, πu), y = h(x, πu) is
irreducible if the original system is irreducible, but far less
than ontoness is usually required for that. An example is
scale invariance, in which U = R>0 and P = {u 7→
pu, p ≥ 0}. Scale invariance is sometimes called “fold-
change detection” (FCD), because the only changes that can
be detected in a response are due to different fold-changes in
inputs. We say that the system (5) has response invariance
to symmetries in P or, for short, that it is P-invariant if

ψ(t, σ(ū), u) = ψ(t, σ(πū), πu) (6)

holds for all t ≥ 0, all inputs u = u(t), all constants ū, and
all transformations π ∈ P .

Under the assumption that the action of P is transitive,
i.e., for any two ū, v̄ ∈ U, there is some π such that v̄ = πū,
P-invariance implies perfect adaptation, because the outputs
in (6) must coincide at time zero, and any two inputs can be
mapped to each other.

Given a system (5), we will say that a set of input trans-
formations P , a parametrized set of differentiable mappings
{ρπ : X→ X}π∈P is a P-equivariance family if

f(ρπ(x), πu) = (ρπ)∗(x)f(x, u), h(ρπ(x), πu) = h(x, u)

for each π, and for all x ∈ X and u ∈ U, where (ρπ)∗ denotes
the Jacobian matrix of ρπ . If this property holds, the system
is said to be ρπ-equivariant under the input transformation
π.

The first equality is a first order quasilinear partial differ-
ential equation on the n components of the vector function
ρπ , for each u ∈ U, and one may solve such equations, in
principle, using the method of characteristics. The second
equality is an additional algebraic constraint on these com-
ponents. Observe that the verification of equivariance does
not require the computation of solutions ψ(t, σ(πū), πu). We
omit the subscript π when clear from the context.

The main result in [87] is a necessary and sufficient
“certificate” for scale invariance, as follows.

Theorem. An analytic and irreducible system is P-
invariant if and only if there exists a P-equivariance family.

An application to model invalidation: The paper [97]
studied the adaptation kinetics of a eukaryotic chemotaxis
signaling pathway, employing a microfluidic device to expose
Dictyostelium discoideum to changes in chemoeffector cyclic
adenosine monophosphate (cAMP). The work focused on the
dynamics of activated Ras (Ras-GTP), which was in turn
reported by RBD-GFP (the Ras binding domain of fluo-
rescently tagged human Raf1), and showed almost perfect
adaptation of previously unstimulated cells to cAMP con-
centrations ranging from 10−2 nM to 1 µM . Furthermore,
the authors compared alternative models for adaptation and
concluded that the best fit was obtained by using an inco-
herent feedforward structure. The model that they identified

475



was given by a system of 6 differential equations:

dR1/dt = kR1(v + r1)(Rtot
1 −R1)− k−R1R1

dR2/dt = kR2
(v + r2)(Rtot

2 −R2)− k−R2
R2

dGEF/dt = kGEF u− k−GEFGEF
dGAP/dt = kGAP u− k−GAPGAP

dRasGTP /dt = kRAS GEF (RAStot −RasGTP )

−k−RAS GAP RasGTP

dRBDcyt/dt = koff
RBD (RBDtot −RBDcyt)

−kon
RBD Ras

GTP RBDcyt

where u := R1 + R2. The symbol v stands for the
chemoeffector cAMP, and the authors assumed the existence
of two different receptor populations (R1 and R2, with
very different Kd’s) which when bound pool their sig-
nals to downstream components (through u). The constants
r1 and r2 represent levels of constitutive activation. The
variables GEF and GAP represent activation and deac-
tivation of RasGEF and RasGAP, RasGTP represents the
activated Ras, and RBDcyt describes the cytosolic reporter
molecule RBD-GFP. The best-fit parameters were obtained
as: Rtot

1 = 0.1, Rtot
2 = 0.9, r1 = 0.012nM, r2 = 0.115nM,

kR1
= 0.00267nM−1sec−1, k−R1

= 0.16sec−1, kR2
=

0.00244nM−1sec−1, k−R2 = 1.1sec−1, kGEF = 0.04sec−1,
k−GEF = 0.4sec−1, kGAP = 0.01sec−1, k−GAP =
0.1sec−1, RAStot = 1, kRAS = 390sec−1, k−RAS =

3126sec−1, RBDtot = 1, koff
RBD = 0.53sec−1, kon

RBD =
1.0sec−1. We now show how, for certain input regimes, this
system satisfies a scale-invariance property. For more details,
see [89].

With these parameters, and cAMP concentrations which
are small yet also satisfy r1 � v(t) and r2 � v(t),
it follows that Ṙ1 ≈ kR1

Rtot
1 v − k−R1

R1 and Ṙ2 ≈
kR2

Rtot
2 v − k−R2

R2, so we may view u(t) as an input
(linearly dependent on the external v(t)) to the three-variable
system described by GEF , GAP , RasGTP . Since RBDcyt

depends only on RasGTP , we may view the latter as
the output. As a final simplification, observe that with the
given parameters there is a significant time-scale separation,
with RasGTP being a fast variable compared to GEF
and GAP (kGEF , k−GEF , kGAP , k−GAP are in the range
0.01 − 0.4, while kRAS = 390, k−RAS = 3126). So this
three-dimensional system naturally reduces (at the slower
time scale) to:

ẋ1 = −a1x1 + b1u

ẋ2 = −a2x1 + b2u

y =
Kb3x1

a3x2 + b3x1

where x1 = GEF , x2 = GAP , and y is the quasi-steady
state value of RasGTP as a function of x1 and x2. The
constants are a1 = k−GEF , b1 = kGEF , a2 = k−GAP ,
b2 = kGAP , a3 = k−RAS , b3 = kRAS , and K = RAStot.
This system is equivariant under xi 7→ pxi, so it is scale-
invariant. Indeed, Fig. 6 shows a simulation of the entire

six-dimensional system (not merely of our two-dimensional
reduction) when using a step from 1 to 2 nM of cAMP,
confirming that essentially the same response is obtained
when stepping from 2 to 4 nM.

Fig. 6: Scale-invariance for model from [97]: responses to steps 1→2 and
2→4 coincide.

This prediction of scale-invariant behavior was found to
contradict experimental observations (personal communica-
tion from authors of [97]): testing the system with double
the input, at least in the given ranges, resulted in responses
that were far from similar.

What did we learn from this example? For one thing, that
the published model (at very the least, the fitted parameters)
is not quite right. But more conceptually, it shows the power
of scale-invariance as a “dynamic phenotype” to invalidate
models: a very high-level experiment, simply testing if
outputs are approximately the same when inputs are doubled,
serves to obtain important information about the model.

B. Monotonicity

Systems described by order-preserving dynamics are
called “monotone systems”. Such systems can be shown
to have monotone response properties when starting from
steady states: a nondecreasing input can never give rise to
a biphasic response, for example. We briefly review some
of this theory and show as an example how this tool can
be used to invalidate a published model of M. tuberculosis
stress response (hypoxic induction pathway).

We assume here that X and U are an open subsets of Rn
and R (we restrict to scaler inputs, m = 1, only for notational
simplicity, but results easily generalize). We assume that the
partial derivatives

∂fj
∂xi

(x, u) and
∂fj
∂u

(x, u)

have the same sign (either ≥ 0 or ≤ 0) for all (x, u) ∈ X×U.
For those derivatives that are not identically zero, we write
ϕij and γi for their signs (±1):

ϕij := sign
∂fj
∂xi

(x, u) and γi := sign
∂fi
∂u

(x, u)

and let ϕij = 0 or γi = 0 if the corresponding derivative is
identically zero.

A (graph) path π from the input u to a node xj means,
by definition, a sequence of k indices

`1, `2, . . . , `k = j
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such that γ`1 6= 0 and

ϕ`i,`i+1
6= 0

for all i = 1, . . . , k − 1. We denote by s(π) the sign of the
path, defined as the product

s(π) := γ`1 ϕ`1`2 ϕ`2`3 . . . ϕ`k−1`k .

Similarly, a path from a node xi to a node xj means, by
definition, a sequence of k indices

`1, `2, . . . , `k = j

such that
ϕi,`1 6= 0

and
ϕ`i,`i+1

6= 0

for all i = 1, . . . , k − 1. We denote by s(π) the sign of the
path, defined as the product

s(π) := ϕi`1 ϕ`1`2 ϕ`2`3 . . . ϕ`k−1`k .

If there is a path from the input u to a node xj , we say that
xj is (graph) reachable. If there is a path from a node xi
to the output node xn, we say that the node xi is (graph)
observable.

The following Theorem and proof are from [14], and
heavily rely upon an earlier version of the result given
in [11].

Theorem. If the system is initially in steady state, the
response of the output xn(t) will monotonically increase or
decrease in time in response to changes in the input u(t) if
u(t) is monotonically increasing or decreasing in time and
all the directed paths from input node u(t) to the output
node xn(t) have the same parity. Furthermore, monotonically
increasing (decreasing) u(t) will trigger monotonic increase
(respectively, decrease) of xn(t) if parity is positive or will
trigger monotonic decrease (respectively, increase) if parity
is negative.

In other words, a non-monotonic (biphasic, bell-shaped)
response requires a negative feedback and/or and incoherent
feedforward loop, see Fig. 7.

Fig. 7: Left: monotonic input. Middle: two possible state behaviors. Right:
two impossible behaviors, as the response is biphasic.

A sketch of the proof is as follows. We start by “pruning”
those state variables xj which do not lie in any path from
the input node to the output node xn. We now formalize this
construction, which is analogous to the “Kalman decompo-
sition” reduction to minimal systems in linear control theory
[91]. We start by splitting the set of variables X into four
disjoint subsets of variables x = (x, y, z, w), as follows:

1) the output node xn is a component of the vector x,
2) the components of x are reachable and observable,
3) the components of y are observable but not reachable,

4) the components of z are reachable but not observable,
and

5) the components of w are neither reachable nor observ-
able.

We assume without loss of generality that the output node xn
is in the first set of variables, x, since otherwise there would
be no path from the input to the output, and the output is
then constant when starting from a steady state. It is clear
that, with this partition, the equations look as follows:

ẋ = f(x, y, u)

ẏ = g(y)

ż = h(x, y, z, w, u)

ẇ = k(y, w)

(for example, there cannot be a z nor w dependence in f
and in g, since otherwise the z and/or w variables would be
observable).

To prove the Theorem, we need to show, for the original
system ẋ = f(x, u), that if we start from a steady state
f(x0, u0) = 0 and if u(t) is monotonic in time, with
u(0) = u0, then xn will be also monotonic in time (with
the same, or opposite, monotonic behavior depending on
parity). Write x0 = (x0, y0, z0, w0), so f(x0, u0) = 0
means that f(x0, y0, u0) = g(y0) = h(x0, y0, z0, w0, u0) =
k(y0, w0) = 0.

The assumption that all directed paths from the input node
u to the output node xn have the same parity applies also
to the subsystem given by the variables in x in which the y
variables are set to y0:

ẋ = f̂(x, u) = f(x, y0, u) (7)

with initial state x(0) = x0, because partial derivatives of
f̂ with respect to x and u are also partial derivatives of the
original f .

Suppose that we have already proved the theorem for
this subsystem in which all variables are reachable and
observable. We claim next that the same is then true for
the original system. Consider the solution x(t) of (7) with
input u = u(t) and x(0) = x0. Consider also the solution of
the full system ẋ = f(x, u) with x(0) = x0 and the same
input u, and write it in the corresponding block form

x(t) = (ξ(t), ψ(t), ζ(t), ω(t)).

We want to prove that ξ(t) = x(t) for all t ≥ 0, from which
the claim will follow. But this just follows because g(y0) = 0
implies that y(t) ≡ y0. (Note that the variables ζ(t) and ω(t)
do not affect the output variable, which is a component of
ξ(t).)

We now prove the theorem for the x-subsystem, for
which all variables are reachable and observable. For ease
of notation, we will write f̂ simply as f , use n for the size
of x, and assume that the output node is xn. Pick any index
i ∈ {1, . . . , n}. By reachability, there is at least one path
π from the input to xi and, if i < n, then by observability
there is at least one path θ from xi to the output node xn.
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We claim that every other path π′ from the input to xi has
the same parity as π. Suppose without loss of generality that
the parity of π is +1. We need to see that every other path
π′ from the input to xi also has parity +1. If i = n, this is
true by assumption (all paths from input to output have the
same parity). So assume i < n. Suppose that π′ has parity
−1. Then, the path πθ obtained by first following π and then
following θ has parity (+1)∗ρ = ρ, where ρ is the parity of
θ, and the path π′θ obtained by first following π′ and then
following θ has parity (−1)∗ρ = −ρ. So we have two paths
from input to output with different parity, which contradicts
the assumption of the Theorem. In conclusion, every two
paths from the input to any given node have the same parity.

We assign a label with values “+1 or −1” σu and σi,
i = 1, . . . , n, to the nodes u and each node x1, . . . , xn
respectively, as follows: σu := +1, σi := sign of any path
from u to xi. A key observation is that, if ϕij = +1 then
σi = σj , and if γi = +1 then σu = σi. Indeed, if we have a
path π from the input to xi, then a path π′ can be obtained,
from the input to xj , by simply adjoining the edge from i
to j, which has parity equal to the parity of π. Since σj is
the sign of any path from the input to xj , it follows that
σi = σj , as claimed. The statement for γi = +1 is simply
(since we defined σu := +1) that σi = +1 if the one-step
path from the input to node xi has parity 1, which means
that all paths have this parity. Similarly, if ϕij = −1 then
σi = −σj , and if γi = −1 then σu = −σi.

Now make the change of variables xi 7→ σixi (i.e., reverse
the sign of variables with a “−1” label). Writing the system
in the new variables, we have now that

∂fi
∂u

(x, u) ≥ 0 and
∂fj
∂xi

(x, u) ≥ 0

for all i = 1, . . . , n and all i, j = 1, . . . , n respectively. Thus
in the new variables we have what is called a cooperative
system [90].

We must prove that, if u = u(t) is a monotonically
increasing input for a cooperative system, and if x(0) = x0
is a steady state f(x0, u0) = 0, then every coordinate xi(t)
of x(t) (and, in particular, the output node) is monotonically
increasing as well. (In the original coordinates, before sign
reversals, xi(t) will decrease if σi = −1.) Similarly if u =
u(t) is a monotonically decreasing input for a cooperative
system, and if x(0) = x0 is a steady state f(x0, u0) = 0,
then every coordinate xi(t) of x(t) (and, in particular, the
output node) is monotonically decreasing as well. We prove
the increasing statement, since the second statement is proved
analogously. From now on, for any two vectors a, b ∈ Rn,
we write simply a ≤ b to mean that ai ≤ bi for each
i = 1, . . . , n.

We let ϕ(t, x0, v) denote the solution of ẋ = f(x, u)
at time t > 0 with initial condition x(0) = x0 and input
signal v = v(t). Kamke’s Comparison Theorem (see [90]
for systems without inputs, and [8] for an extension to
systems with inputs), asserts as follows: Let y(t) and z(t)
be two solutions of the system ẋ = f(x, u) corresponding,
respectively, to an input v(t) and an input w(t). Suppose

that y(0) ≤ z(0) and that v(t) ≤ w(t) for all t ≥ 0. Then,
y(t) ≤ z(t) for all t ≥ 0.

Now pick an input v that is non-decreasing in time and an
initial state x0 that is a steady state with respect to v0 = v(0),
that is, f(x0, v0) = 0. Since v(t) is non-decreasing, we have
that v(t) ≥ v(0) so that, by comparison with the input that
is identically equal to v(0), we know that

ϕ(h, x0, v) ≥ ϕ(h, x0, v0)

for all h ≥ 0, where, by a slight abuse of notation, “v0”
is the function that has the constant value v0. We used the
comparison theorem with respect to inputs and with the same
initial state. The assumption that the system starts at a steady
state gives that ϕ(h, x0, v0) = x0 for all h ≥ 0. Therefore:

x(h) ≥ x(0) for all h ≥ 0 . (8)

Next, we consider any two times t ≤ t+h. We wish to show
that x(t) ≤ x(t+h). Using (8) and the comparison theorem
now applied with respect to initial states and the same input,
we have that:

x(t+ h) = ϕ(t, x(h), vh) ≥ ϕ(t, x(0), vh) ,

where vh is the “tail” of v, defined by: vh(s) = v(s + h).
On the other hand, since the function v is non-decreasing, it
holds that vh ≤ v, in the sense that the inputs are ordered:
vh(t) ≤ v(t) for all t ≥ 0. Therefore, using once again the
comparison theorem with respect to inputs and with the same
initial state, we have that

ϕ(t, x(0), vh) ≥ ϕ(t, x(0), v) = x(t)

and thus we proved that x(t + h) ≥ x(t). So x is a non-
decreasing function. This concludes the proof.

Sometimes we only care about conditional monotonicity,
depending on monotonic behavior of a particular node, even
if the input is not monotonic. The following theorem from
[14] is useful in that context.

Theorem. If the system is initially in steady state, the
response of the output xn(t) will monotonically increase or
decrease in time in response to changes in the input u(t)
if all the directed paths from the input nodes to the output
node pass through an internal node xi(t) with monotonically
increasing or decreasing dynamics and all the directed paths
from input node xi(t) to the output node xn(t) have the same
parity. Furthermore, monotonically increasing (decreasing)
xi(t) will trigger monotonic increase (respectively, decrease)
of xn(t) if parity is positive or will trigger monotonic
decrease (respectively, increase) if parity is negative.

A proof is as follows. The assumption that all directed
paths from the input node u to the output node xn must pass
through the internal node xi can be formalized by splitting
the set of nodes x into three subsets, x = (x, y, z), where

1) the components of x are those nodes xj , j 6= i, for
which there is at least one path from the input node u
to xj which does not pass through node xi,

2) y = xi, and
3) the components of z are all remaining nodes, including
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xn.
For this partition, the equations look as follows:

ẋ = f(x, y, z, u)

ẏ = g(x, y, z, u)

ż = h(z, y)

because, if there were any dependence of h on some coordi-
nate xj , then there would be a path from the input to some
component of z (follow a path to xj and concatenate it with
an edge from xj to this component).

The condition that all the directed paths from y = xi to
the output node xn have the same parity means that in the
system

ż = h(z, v)

(where we now view y(t) as an input, which we write as
“v(t)” to avoid confusion) all paths from the input to the
output have the same parity, as in the hypothesis of the
Theorem. Suppose that we consider an input u, starting
from a steady state (x0, y0, z0). Think of v(t) = y(t) as
an input. Since we started from a steady state, we know that
h(v(0), z0) = 0. Thus, if v(t) is monotonic, the previous
theorem gives us that the output is monotonic, increasing
or decreasing depending on parity and on the increasing or
decreasing character of the input.

Fig. 8: Example to illustrate monotone dependence results, from [14].

For example, on the system shown in Fig. 8, the
first theorem allows us to conclude that monotonically
increasing input u(t) will ensure monotonic increase of
x1, x2, x4, x5, x10, x11 (since all directed paths from u to
the respective node have positive parity), and monotonic
decrease is ensured for x3, but monotonicity cannot be
guaranteed for x6, x7, x8, x9. On the other hand, if we do
not know whether input signal u(t) is monotonic or in case
an additional negative path in the network from u(t) to x5 is
added, we may still use the second formulation to conclude
that if x5(t) is monotonic so will be x10 and x11. Indeed,
all the paths to x10 and x11 from input u(t) pass through
x5 and all the paths from x5 to x10 and x11 have positive
parity. The argument does not work for x9 due to a negative
feedback loop between x6 and x7 (a directed path that goes

around this loop will have the opposite parity from the path
that does not). These results play a useful role in ruling out
putative biological pathways, as illustrated next (see [14] for
more details).

Regulation by the sigma-factor σE affects the hypoxic
stress response pathway in M. tuberculosis, and specifically
the expression of two critical central metabolism genes, icl1
(Rv0467, glyoxylate shunt) and gltA1 (Rv1131, methylcitrate
cycle), which play a role in persistence of tubercle bacilli in
infections. Transcription of icl1 requires both σB , which is
transcribed under σE control, and the σB-regulated transcrip-
tion factor lrpI (Rv0465c, local regulatory protein of icl1).
The resulting circuit (see [36]) is a feedforward coherent
loop, as illustrated in the left panel of Fig. 9. This circuit
has no feedback loops nor IFFL’s, and hence monotone
activation of σE should result in monotone gene expression.
However, experiments in which oxygen is depleted over a
three-day course, with concomittant monotone σE activation,
lead to a biphasic, not monotone, activation of the target
gene, as shown in the right panel of Fig. 9 (from [84]). This
model invalidation motivated the search for new regulatory
architectures in [14].

Fig. 9: Left: network from literature. Right: experimental σE and gene
expression dynamics, inconsistent with network.

C. Distinguishing between adaptation topologies: Response
to periodic inputs

One challenging question in systems biology is that of
comparing different architectures for perfect adaptation. For
example both incoherent feedforward loops (IFFL’s) and
integral feedback systems give rise to perfect adaptation
and, in some configurations, scale invariance. Recent work
has proposed the use of periodic signals to discriminate be-
tween these models. We review a theoretical result showing
that feedforward loops and monotone systems both lead to
entrainment, but nonlinear feedback architectures (such as
nonlinear integral feedback) may lead to period doubling
bifurcations and even chaos. This result is illustrated through
experimental work with C. elegans interneurons, in which
odor-evoked intracellular Ca2+ response signatures, to peri-
odic on-off pulses of diacetyl, display subharmonic behavior
at high forcing frequencies.

Perfect adaptation means that, for constant (step) inputs,
outputs are not identically zero, but, after a transient, recover
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asymptotically to their steady state value. In particular, such
systems exhibit nonmonotone responses to step inputs (which
are monotonic), and it follows therefore that such systems
must include an IFFL or a negative feedback loop. How
to distinguish between them using i/o data? One answer
is provided in [78], and says that feedforward systems
(including IFFL’s) entrain to periodic inputs. That paper also
shows that monotone systems (under some mild conditions)
also entrain to periodic inputs. Thus non-entrainment to
inputs is a “signature” of a negative feedback loop in the
system. We outline some details next. In this section, we
assume that inputs, states, and outputs all take nonnegative
values.

Feedforward systems: Consider first purely feedforward
systems, meaning that the state variables {x1, . . . , xn} sat-
isfy the property that if xi influences xj , then xj does not
influence xi. One can always re-label variables in such a way
that no element xi influences any element xj with j < i.
In this form the system has a cascade structure, that is to
say the Jacobian (Jij = ∂fi/∂xj) is lower triangular. Let
us make the following mild (and reasonable for biological
systems) assumptions on trajectories, given an input u: (i)
solutions are bounded (xi(t) ≤ ci for some ci > 0) for all t;
(ii) the diagonal elements of J are negative (∂fi/∂xi < 0),
which means biologically that every species is degraded, typ-
ically in a concentration-dependent manner such as a linear
degradation term like −kixi or a Michaelis-Menten term like
−kixMi /(1+xMi /x

M
i0 ), where M is a Hill coefficient; (iii) the

off-diagonal elements of J are bounded, i.e., all |Jij | ≤ pmax
for some pmax > 0.

Suppose from now on that the input u is T -periodic. Then
the system has a unique periodic solution with period T
(same as stimulus), to which every other solution converges.
The proof consists of choosing a diagonal matrix P with
Pii = 1/pi, so as to make the off-diagonal elements of
PJP−1 arbitrarily close to zero, the larger that p� pmax is.
Then, the matrix measures µ1, µ2, or µ∞, associated with
the L1, L2, or L∞-norms, respectively, of PJP−1 are all ap-
proximately equal to the largest (i.e. least negative) diagonal
element. Thus, the system is infinitesimally contracting and
by Theorem 2 in [81] all xi(t) are T -periodic, as claimed.

Cooperative systems: For systems that are not feedfor-
ward, there are entrainment results as well, as long as all
loops are positive. We now sketch the case of cooperative
systems, meaning (we allow now vector inputs) that

∂fi
∂uj

(x, u) ≥ 0 ∀i, j and
∂fi
∂xj

(x, u) ≥ 0 ∀i 6= j

hold for all states x and input values u. This discussion
is also from [78]. Such systems are particular cases of
monotone systems with inputs as defined in [9], meaning
that they satisfy:

x(1)(t0) ≥ x(2)(t0), u(1)(t) ≥ u(2)(t) ∀t ≥ t0
⇒ x(1)(t) ≥ x(2)(t) ∀t ≥ t0

where we abbreviate the component-wise inequality xi ≥ yi
for all vector components i by x ≥ y. An important result for
periodically forced monotone systems ẋ = f(x(t), u(t)) is
given as Theorem 5.26 in [54], which credits the unpublished
1997 Ph.D. thesis by I. Těšćak. This result applies to systems
that are irreducible, meaning that all its Jacobian matrices
are irreducible (that is, every variable can indirectly affect
every other variable, possibly through an arbitrary number
of intermediates; see also [55]). The result states that x(t)
converges to a solution with period kT , where k ≥ 1 is an
integer, for almost all initial conditions if the stimulus u(t)
is periodic with period T (u(t) = u(t+ T )). It is important
to note that, generally, there may be stable periodic solutions
with period kT and k > 1, as shown in [96]. Thus, if we
are interested in entrainment (global convergence to period-
T trajectories), we need to find additional conditions which
rule out k > 1.
Special case: two-dimensional systems with no negative
loops. First, we show that a monotone system which only
contains two dynamical elements and which is stimulated
with period T , if it has a solution with period kT , where k
is an integer, then k must equal 1. A related result exists in
the literature, namely that for two-dimensional periodically
forced irreducible cooperative systems, solutions approach a
T -periodic solution [52]. We present the following results
to make the exposition self-contained and build towards the
results in the subsequent case, and also because we do not
need to assume irreducibility.

Lemma. Consider a two-dimensional dynamical system,
driven by an input of period T (u(t) = u(t+T )), and suppose
that x(t0) is a periodic point with some period kT , where
k is a positive integer. Then there is some time t1 so that
x(t1) ≤ x(t1+T ) or some time t2 so that x(t2) ≥ x(t2+T ).

A proof is as follows. Suppose without loss of generality
that t0 = 0 (otherwise we are done, with t1 = 0) and
that x1(0) > x1(T ) and x2(0) < x2(T ) (if the opposite
inequalities hold, the reasoning is analogous). There is some
integer s > 1 so that x1((s − 1)T ) ≤ x1(sT ) since,
otherwise, x1((s − 1)T ) > x1(sT ) for all s, and therefore
x1(0) = x1(kT ) < x1((k − 1)T ) < . . . < x1(0), which is a
contradiction. Now pick any such s and let S = (s − 1)T .
Then, the continuous function p(t) := x1(t) − x1(t + T )
has p(0) > 0 and p(S) ≤ 0, so there is some minimal t1 so
that p(t1) = 0. Similarly, consider q(t) := x2(t)−x2(t+T ),
which has q(0) < 0, and conclude that there is some minimal
t2 so that q(t2) = 0. Suppose that min{t1, t2} = t1. Then
x1(t1) = x1(t1 + T ) and x2(t1) ≤ x2(t1 + T ). If instead
min{t1, t2} = t2, then the other inequality holds. This
completes the proof of the Lemma.

Assuming the input has period T , we introduce the nota-
tion F (x(s)) = x(s+ T ) for the solution to the differential
equation ẋ(t) = f(x(t), u(t)) at time s + T when starting
with initial condition x(s) at time s. Furthermore, we denote
by F k = F ◦ . . . ◦ F (k times) the k-fold iteration of F .
We next show by induction that F k(x(s)) = x(s+ kT ) for
all k. For k = 1, this follows from the definition. Next,
assuming that Fn(x(s)) = x(s + nT ) holds, we define
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z(t) = x(t+nT ) and note that ż(t) = ẋ(t+nT ) = f(x(t+
nT ), u(t + nT )) = f(z(t), u(t)), where the last equality
follows from the definition of z and the periodicity of u. So,
like x(s) before, we can map z(s) forward in time by one
period z(s+ T ) = F (z(s)) = F (Fn(x(s))) = Fn+1(x(s)),
and, also, z(s + T ) = x(s + nT + T ) = x(s + (n + 1)T ).
Thus, we have Fn+1(x(s)) = x(s+ (n+ 1)T ), as claimed.

Corollary: Consider a two-dimensional monotone system,
with a periodic input, and consider a solution of period kT ,
x(t) = x(t + kT ). Then x(t + T ) = x(t) for all t, i.e., the
orbit of x has period T .

To prove this, observe that the mapping F is monotone
by assumption. We pick the time t1 as in the Lemma (the
proof would be analogous with t2), so x(t1) ≤ F (x(t1).
By monotonicity, the inequality is preserved under repeated
mappings, Fn(x(t1)) ≤ Fn+1(x(t1)). So, iterating, x(t1) ≤
x(t1 + T ) ≤ x(t1 + 2T )... ≤ x(t + kT ) = x(t), where the
last equality comes from the assumption that x(t) has period
kT . Since x(t1) = x(t1 + T ), we have x(t) = x(t+ T ) for
all times t.

Positive feedback loops stimulated from rest: Next, we
consider cooperative systems of arbitrary dimension, not just
two, but instead take the special case where the initial state
is an equilibrium x̄ corresponding to the zero input, that is,
f(x̄, 0) = 0. We again follow [78].

Any (nonnegative) input starting from x̄ results in a
trajectory that is (coordinatewise) larger than x̄. Indeed, it
is a general fact that x(1)(t) ≤ x(2)(t) for all t ≥ 0 if the
systems starts from the same initial state x(0) and if the
inputs satisfy u(1)(t) ≤ u(2)(t) for all t ≥ 0. So, if we
compare the steady state (i.e. with input u(1)(t) = 0) to the
system after the onset of stimulation, i.e., u(2)(t) ≥ 0 for all
t ≥ 0, and x(0) = x̄, it follows that x̄ = x(1)(t) ≤ x(2)(t)
for all t ≥ 0. In particular, x̄ ≤ F `(x̄) for all positive integers
`.

Suppose that, as in the conclusion of Těšćak’s Theorem
cited earlier, we know that a trajectory x(t) converges to a
periodic orbit of period kT , for some positive integer k. We
want to show that if x(0) = x̄ then in fact k = 1. Call the
periodic orbit Γ. Since x(t) → Γ as t → ∞, in particular
it holds that x(`T ) → Γ for integers ` as ` → ∞. As Γ
is compact, the sequence x(`T ) stays in a compact set and
thus has a converging subsequence F `j (x̄) = x(`jT ) → x̃
as j → ∞, with `1 < `2 < . . . → ∞. Necessarily x̃ ∈ Γ,
so solutions starting from x̃ are periodic of period k, i.e.
F k(x̃) = x̃. Moreover, x̄ ≤ F (x̄) and monotonicity of F
imply

F `j (x̄) ≤ F `j (F (x̄)) = F (F `j (x̄))→ F (x̃)

as j →∞, and coupled with x̄ ≤ F `j (x̄) for all j, this gives,
by passing to the limit, x̄ ≤ F (x̃).
Theorem. Let F (introduced above) be a monotone mapping.
Suppose that these properties hold for two fixed states x̄ and
x̃:
(1) x̄ ≤ F (x̃)
(2) F k(x̃) = x̃ for some integer k ≥ 1
(3) F `j (x̄)→ x̃ as j →∞, with `1 < `2 < . . .→∞.

Fig. 10: Odor sensing in C. elegans and sensory/interneurons. Two possible
circuits for adaptation, a negative feedback loop and an IFFL. Figures
from [69] and [78].

Fig. 11: Top: Testing for odor-evoked intracellular Ca2+ response signature
via periodic on-off pulses of diacetyl, population measurements. Entrain-
ment at high periodic inputs (T = 39s) and subharmonic behvior at lower
period (T = 15s). Bottom: single-neuron recording T = 20 gives response
of period about ∼ 200, indicating that IFFL’s (or positive feedback systems)
cannot be the reason for behavior.

Then F (x̃) = x̃.
To prove this, first pick an arbitrary integer n ≥ 0. Now

observe that for any j, and letting for simplicity r := `j :

Fn(x̃) = F rk+n(x̃) = F rk+n(x̃)− F rk+n(x̄) + F rk+n(x̄)

≤ qj + F rk+n+1(x̃) = qj + Fn+1(x̃)

where qj := F `jk+n(x̃)−F `jk+n(x̄) and where we used (2)
to obtain Fn(x̃) = F rk+n(x̃), then (1) to get F rk+n(x̄) ≤
F rk+n(F (x̃)) = F rk+n+1(x̃) and finally again (2) to get
F rk+n+1(x̃) = Fn+1(x̃). Observe that F k(x̃) = x̃ implies
that F `jk+n(x̃) = Fn(F `jk(x̃)) = Fn(x̃). So F `jk(x̄) →
x̃ implies that F `jk+n(x̄) = Fn(F `jk(x̄)) → Fn(x̃) =
F `jk+n(x̃), or F `jk+n(x̃)− F `jk+n(x̄)→ 0. Thus, qj → 0
as j → ∞, so we conclude that Fn(x̃) ≤ Fn+1(x̃) for all
n ≥ 0.

From this,

x̃ ≤ F (x̃) ≤ F 2(x̃) ≤ . . . ≤ F k(x̃) = x̃,

The worm C. elegans can locate odor sources across
a 100,000-fold concentration range, and various sensory
and interneurons participate in the recognition pathway, see
Fig. 10. The paper [78] discussed how the above theorems
can be used to rule out IFFL’s as responsible for adaptation in
a local circuit controlling the AWA sensory neuron, leading
to the postulation of a negative feedback model. This is
because at high frequencies of inputs, one does not obtain
entrainment, see Fig. 11.
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V. CONCLUSIONS

We have surveyed successful applications of control-
theoretic approaches to the study of problems in biology.
Studying structures based on feedback and layered feedback
loops in biological systems enables a deeper understanding
of their function (Section II). Assessing structural properties,
which rely on the topology of the system interconnections
and do not depend on specific parameter values, helps us dis-
cover the source of the extraordinary robustness of biological
systems and can be also used for model invalidation (Sec-
tion III). The mathematical analysis of dynamic phenotypes
can provide fundamental qualitative insight into phenomena
such as fold-change detection, non-monotonic responses, and
subharmonic oscillations, giving us powerful tools to invali-
date biological models (Section IV). All the sections testify
the importance of simple phenomenological models, able to
provide significant explanations, and the fundamental role
of structures and qualitative behaviors, given the inherent
uncertainties affecting the parameters of biological systems.
Sections II and III end with open questions and problems,
hoping to make more control-theorists eager to apply their
tools (or develop novel tools) to gain a better understanding
of the complex and fascinating world of biology.
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