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Abstract

This paper studies aspects of the dynamics of a conventional mechanism of ligand–receptor interactions, with a focus on the

stability and location of steady-states. A theoretical framework is developed, which is based upon the rich and deep formalism of

irreducible biochemical networks. When represented in this manner, the mass action kinetics of biochemical processes can be clearly

seen in terms of their component biochemical interactions, their kinetic rate constants, and the stoichiometry for the system. A

minimal parametrization is provided for models for two- or multi-state receptor interaction with ligand, and an ‘‘affinity quotient’’ is

introduced, which allows an elegant classification of ligands into agonists, neutral agonists, and inverse agonists.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Models of receptor–ligand interactions play an im-
portant role in understanding the biochemical mechan-
isms that initiate cellular signaling. They also serve the
practical purpose of guiding the identification and
optimization of new therapies that interact at receptors.
The earliest models were based on the specific receptor–
ligand interaction that results in Langmuir saturation (van
Rossum, 1977). Subsequently, it was realized that
receptor–ligand interaction can have at least three out-
comes (Kenakin, 2002; Leff, 1995). First, a ligand can
function as an agonist, resulting in a distinct biological
consequence, such as contraction, secretion, or chemo-
taxis. Second, a ligand can bind to a receptor with no
effect, i.e. as a neutral agonist, but this neutral activity can
be used to block or antagonize an agonist. And third, if the
receptor produces an intrinsic or constitutive amount of
activity, a ligand can suppress this constitutive response
by functioning as an inverse agonist. Down-stream
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biochemical feedback loops and other processes that
modulate or limit the initial receptor–ligand interaction
can further complicate the ligand–receptor interaction;
these secondary events will not be discussed here.
Many models have been developed to explain ligand–

receptor interactions (for reviews, see, inter alia, Woolf
et al., 2001; Lauffenburger and Linderman, 1993). For
these models, the biochemical reactions are delineated
and their interactions diagrammed. A system of
differential equations is then formulated to represent
the time-dependent events that result from mass action
kinetics. Experimental data for receptor–ligand interac-
tions are obtained at relatively long times that are taken
to be at steady-state, and for this reason, the represen-
tative differential equations are converted to algebraic
equations for the steady-state condition. The final
results are expressed in terms of equilibrium constants
derived from kinetic constants. Even with a modest
increase in the number of biochemical interactions, these
models produce complex expressions, that can require
the use of computer-based equation solvers (Bywater
et al., 2002). The formulas obtained in this manner are
complicated and virtually impossible to interpret in
biological terms, which suggests the appeal of a more
theoretical and conceptual approach. In this paper, we
introduce such an approach.
Our approach is based upon the ‘‘complex balancing’’

ideas described by Horn and Jackson (1972) and
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Feinberg (1977, 1995). It allows a systematic and concise
description of the mass action kinetics of biochemical
processes, expressed in terms of their component
biochemical interactions, their kinetic rate constants,
and the stoichiometry for the system, and it greatly
simplifies the study of their dynamical behavior, steady-
states, and stability properties. Among other benefits of
this approach, we will be able to:
k

(1)
42
guarantee existence and uniqueness (subject to
stoichiometry constraints) of positive steady-states,
C
1

C
2
(2)
k
24
guarantee global (subject to stoichiometry con-
straints) stability of these unique steady-states,
Fig. 1. A two-state receptor–ligand network.
(3)
 provide an explicit and simple parametric analysis
of the dependence of the steady-state values on the
kinetic constants and initial concentrations, and
(4)
 introduce an affinity quotient which allows the
classification of ligands into agonists, neutral
agonists, and inverse agonists.
Using this mathematical formalism, the response curves
of a receptor model that consists of two receptor
conformations and corresponding receptor–ligand com-
plexes will be studied in detail. For example, the two-
state model has been used to describe the responses of
the chemotactic cAMP receptor of the slime mold
amoeba Dictyostelium (Devreotes and Sherring, 1985).
We show that this model can exhibit the dose–response
curves corresponding to inverse agonists, as well as
those of positive and neutral agonists, depending on the
relative values of the kinetic constants. We will derive
equations that characterize agonism classes in terms of
the kinetic constants. These results will be extended to
the multi-state receptor case, and will show that
allowing more than two receptor conformations intro-
duces no qualitatively new behavior into the system, in
agreement with previous observations (Leff, 1995; Leff
et al., 1997; Woolf, et al., 2001).
As already mentioned, our approach is based upon

the rich and deep theory developed by Horn, Jackson,
and Feinberg for irreducible biochemical networks, and
more specifically, in the language of Feinberg (1995), for
zero-deficiency and weakly reversible chemical networks

(we will call such networks HJF networks, so as to reflect
the contributions of the above authors). For conve-
nience, we employ the formalism and notations intro-
duced in Sontag (2001), and also appeal to theoretical
results on global convergence shown in that reference
and in Chaves (2003).
2. Theoretical background

Our approach to mathematical models of receptor–
ligand interactions begins by formulating the system
graphically in terms of nodes consisting of elemental
events or ‘‘complexes,’’ and of edges comprised of
reaction rates. In order to illustrate the formalism, let
us consider first the two-state receptor model which is
depicted in Fig. 1. Here, R1 ¼ ½R1� represents the
concentration of free receptors in an inactive state,
R2 ¼ ½R2� represents the concentration of free receptors
in an active state, L ¼ ½L� represents the concentration
of free ligand, and C1 ¼ ½R1L�; C2 ¼ ½R2L� represent
the two corresponding receptor–ligand complexes.
From this diagram, and based on the principles of mass
action kinetics, one derives in a routine fashion the
following set of differential equations:

dR1

dt
¼ �ðk21 þ k31ÞR1L þ k12C1 þ k13R2L;

dR2

dt
¼ �ðk13 þ k43ÞR2L þ k31R1L þ k34C2;

dL

dt
¼ �k21R1L � k43R2L þ k12C1 þ k34C2;

dC1

dt
¼ �ðk12 þ k42ÞC1 þ k21R1L þ k24C2;

dC2

dt
¼ �ðk34 þ k24ÞC2 þ k42C1 þ k43R2L: ð1Þ

We now discuss the general formulation, for an
arbitrary biochemical network which consists of reac-
tions among n individual species x1;x2;y; xn: In the
example in Fig. 1, there are five species: R1;R2;L;C1;C2:
In such a general network, there will be a number m of
nodes, representing each group of reactants, or group of
products, in the network. In the example in Fig. 1, there
are four distinct nodes, corresponding to each of R1 þ
L; C1; R2 þ L; C2: We will always assume that the
number of nodes is no larger than the number of species:
mpn: (This is a key condition needed for our theoretical
results to be valid.)
We represent each node i; i ¼ 1;y; n by a vector bi:

Each bi contains the information on which individual
species participate as reactants at that node. Thus
each bi is in fact a vector in Rn; whose coordinates are



ARTICLE IN PRESS
M. Chaves et al. / Journal of Theoretical Biology 227 (2004) 413–428 415
bi ¼ ðb1i; b2i;y; bniÞ
0; with blia0 if species xl is part of

the node bi: The m vectors bi form the column vectors of
a matrix BARn	m:

B :¼ ðb1; b2;y; bmÞ:

As an illustration, in the particular case of the network
shown in Fig. 1, the nodes are characterized as follows:
K :¼ Kin � Kout :¼

�ðk21 þ k31Þ k12 k13 0

k21 �ðk12 þ k42Þ 0 k24

k31 0 �ðk13 þ k43Þ k34

0 k42 k43 �ðk24 þ k34Þ

0
BBB@

1
CCCA:
R1 þ L*b1; C1*b2; R2 þ L*b3; C2*b4;

where

b1 ¼

1

0

1

0

0

0
BBBBBB@

1
CCCCCCA
; b2 ¼

0

0

0

1

0

0
BBBBBB@

1
CCCCCCA
; b3 ¼

0

1

1

0

0

0
BBBBBB@

1
CCCCCCA
; b4 ¼

0

0

0

0

1

0
BBBBBB@

1
CCCCCCA

and

B ¼

1 0 0 0

0 0 1 0

1 0 1 0

0 1 0 0

0 0 0 1

0
BBBBBB@

1
CCCCCCA
:

For the next step in developing the model, links between
nodes are represented by a matrix containing all of the
kinetic constants. Specifically, if the reactants in node bi

are products resulting from the reactants in node bj ; then
there is an arrow pointing from bj to bi; with a
corresponding kinetic constant kij : A first matrix,
representing reactions ending at a node is Kin ¼
ðkijÞARm	m; where kija0 if there is an arrow from
bj to bi: A second matrix can be constructed, which
contains in its i-th diagonal entry the information on all
the reactions that start from the node bi; that is, Kout :
¼ Diagð

P
kj1;

P
kj2;y;

P
kjmÞ:

Thus, for the network in Fig. 1, we write

Kin :¼

0 k12 k13 0

k21 0 0 k24

k31 0 0 k34

0 k42 k43 0

0
BBB@

1
CCCA
and

Kout :¼

k21 þ k31 0 0 0

0 k12 þ k42 0 0

0 0 k13 þ k43 0

0 0 0 k24 þ k34

0
BBB@

1
CCCA:

The net contribution of both matrices is
In the last step, a vector-valued function is constructed
whose components consist of the mass action elemental

events defined at each node as

yBðxÞ ¼

xb11
1 xb21

2 ?xbn1
n

xb12
1 xb22

2 ?xbn2
n

^

xb1m

1 xb2m

2 ?xbnm
n

0
BBBB@

1
CCCCA:

For the model in Fig. 1, with x ¼ ðR1;R2;L;C1;C2Þ
0;

this vector is

yBðxÞ :¼

R1L

C1

R2L

C2

0
BBB@

1
CCCA:

These elemental events, when multiplied by the suitable
kinetic constants, provide the reaction rates: for
instance, the reaction ‘‘R1 þ L-C1’’ has a reaction rate
given by k21R1L; as the mass action kinetics rate is
usually expressed.
Finally, the time-dependent evolution of the concentra-

tion of the n species of this receptor–ligand model can
then be written compactly as the product of B; K and yB:

dx

dt
¼ BKyBðxÞ ð2Þ

or equivalently, for each species c ¼ 1;y; n;

dxc

dt
¼
Xm

i;j¼1

kijx
b1j

1 x
b2j

2 ?xbnj
n ðbci � bcjÞ: ð3Þ

Expression (2) is equivalent to Eq. (1), but has the
advantage that the information on the system is
‘‘condensed’’ into three objects: (1) the matrix B; which
defines the nodes involved in the reactions; (2) the
matrix K ; which specifies the kinetic constants; and (3)
the vector yBðxÞ; which specifies the elemental events.
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Throughout this paper the following assumptions are
required:
(A1)
 the matrix B has full column rank, i.e. the vectors
b1;y; bm are linearly independent, and none of its
rows vanish;
(A2)
 the matrix Kin is irreducible, i.e. ðKin þ IÞm has all
entries positive, where I is the identity matrix.
When they are satisfied, we shall say that the network is
an HJF network. The first condition translates into a
‘‘zero-deficiency’’ constraint, in the language of Fein-
berg (1995). The second condition amounts to the
requirement (‘‘weakly reversibility’’ in the language of
Feinberg (1995)) that there is a chemical pathway

connecting each pair of nodes. For instance, in the
example in Fig. 1, there exists a chemical pathway
leading from the node ‘‘R1 þ L’’ to the node ‘‘C2’’, by
passing through ‘‘C1’’. Similarly, it is possible to travel
from ‘‘C2’’ back to ‘‘R1 þ L’’ by another chemical
pathway. (In the example, the pathways happen to be all
reversible but, in general, complete reversibility is not
needed.) We need these assumptions in order to
conclude the existence and uniqueness of steady-states
of (2) (Feinberg, 1995; Sontag, 2001). (Actually, a
somewhat weaker condition, block-irreducibility, which
asks that each connected component of the reaction
graph should be weakly reversible, would be sufficient.)

2.1. Conservation laws and positive classes

The conservation laws for the networks described by
Eq. (2) can be found by constructing a subspace from
the differences of the column vectors of B: These
differences, called reaction vectors (Horn and Jackson,
1972), form the stoichiometric space, given by

D :¼ spanfbi � bj : i; j ¼ 1;y;mg

� spanfb1 � bj : j ¼ 2;y;mg:

The significance of D is that the concentrations of
receptor, ligand, and receptor–ligand complexes are
represented as trajectories constrained to evolve in a
subspace which is a parallel translate of D: That is, if we
compute all the vectors which are perpendicular to that
subspace D:

D> :¼ fgARn : g is perpendicular to all ðb1 � bjÞg;

it is not difficult to see (from Eq. (3)) that the inner product

g 
dx

dt
� 0:

Integrating, it follows that the linear combination
‘‘g  x’’ is constant throughout time:

g  x � g  xð0Þ;

where xð0Þ is the vector of initial concentrations. So,
each vector g in D> expresses a conservation law of
the system. By assumption (A1), the bi’s are linearly
independent, which implies that the space D has dimen-
sion m � 1: As a result; there are exactly n � ðm � 1Þ X1
other linearly independent vectors ðgÞ perpendicular to
D; and hence, there are also n � ðm � 1Þ distinct
conservation laws.
For the model in Fig. 1, the space D can be computed

to give

D ¼ spanfb1 � bj : j ¼ 2; 3; 4g

¼ span

1

0

1

�1

0

0
BBBBBB@

1
CCCCCCA
;

1

�1

0

0

0

0
BBBBBB@

1
CCCCCCA
;

1

0

1

0

�1

0
BBBBBB@

1
CCCCCCA

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

and two ð¼ 5� 3Þ linear independent vectors perpendi-
cular to D can be picked as

1

1

0

1

1

0
BBBBBB@

1
CCCCCCA

and

0

0

1

1

1

0
BBBBBB@

1
CCCCCCA
;

corresponding to the following conservation equations:

LðtÞ þ C1ðtÞ þ C2ðtÞ ¼ a;

R1ðtÞ þ R2ðtÞ þ C1ðtÞ þ C2ðtÞ ¼ b

for some positive constants a and b: As expected, these
equations reflect the conservation of the total amount of
ligand and of the total amount of receptors. In other
words, one can say that

a ¼ Ltotal ¼ Lð0Þ þ C1ð0Þ þ C2ð0Þ; ð4Þ

b ¼ Rtotal ¼ R1ð0Þ þ R2ð0Þ þ C1ð0Þ þ C2ð0Þ: ð5Þ

Formally, for each pair of positive constants a; b; the
pair of Eqs. (4,5) defines a subspace of R5; where the
trajectories of system (1) evolve whenever the initial
conditions satisfy Ltotal ¼ a and Rtotal ¼ b: We call a
positive class any set that is the intersection of one such
subspace with the positive orthant:

Sx0 :¼ fxARn
X0: gðiÞ  x ¼ gðiÞ  x0;

i ¼ 1;y; n � m þ 1g;

where the vectors fgð1Þ; gð2Þ;y; gðn�mþ1Þg form a basis of
D> and where x0ARn

>0: Each positive class may also be
represented as a parallel translate of the stoichiometric
space D; since (see Fig. 2)

Sx0 ¼ ðx0 þDÞ-Rn
X0

¼fxARn
X0: x ¼ x0 þ d; for some dADg:
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2.2. Steady-states

The steady-states of system (2) (i.e., the steady-state
concentrations of the component biochemical species)
are the vectors %xARn defined by

f ð %xÞ ¼ BKyBð %xÞ ¼ 0

and can be divided into positive and boundary steady-

states:

Eþ ¼ f %x: f ð %xÞ ¼ 0;

and %xi > 0; for all coordinates ig;

E0 ¼ f%z: f ð%zÞ ¼ 0;

and %zl ¼ 0; for some coordinate lg:

A boundary steady-state corresponds to a situation
when at least one of the species becomes completely
depleted. The boundary steady-states for system (2),
can be found by solving the equation yBð%zÞ ¼ 0: For
model (1) the boundary steady-states are determined
according to

R1L ¼ 0; C1 ¼ 0; R2L ¼ 0; C2 ¼ 0;

so that the set E0 is given by

E0 ¼ fðr1; r2; 0; 0; 0Þ
0; ð0; 0; r3; 0; 0Þ

0: r1; r2; r3 > 0g:

For our results, in addition to assumptions (A1) and
(A2), we also require
(A3) There exist no boundary steady-states in each

positive class, i.e.

S-E0 ¼ |:

Assumption (A3) is often satisfied for biochemical
networks. This is indeed the case for this two-state
model, and can be verified as follows. Upon substitution
into Eqs. (4) and (5), note that points of the type

ðr1; r2; 0; 0; 0Þ
0 imply that Rtotal ¼ r1 þ r2;

and Ltotal ¼ 0;

so this would be an experiment involving no ligand, and
thus no reactions would occur. Similarly, points of the
type

ð0; 0; r3; 0; 0Þ
0 imply that Rtotal ¼ 0; and Ltotal ¼ r3;

corresponding to an experiment where only molecules of
ligand are present, and again no reactions would occur.
In both cases, the pair ða;bÞ ¼ ðLtotal ;RtotalÞ does not

define a positive class, because either Ltotal ¼ 0; or
Rtotal ¼ 0:
On the other hand, it can be shown (see Feinberg,

1995; Horn and Jackson, 1972) that each positive class
contains exactly one positive steady-state, and that this
positive steady-state is globally asymptotically stable
(see Sontag, 2001) with respect to the class. In other
words, for HJF networks, i.e. under assumptions (A1)–
(A3) (as in the case of the two-state model, and later on
for the multi-state model), the trajectory of system (2)
with a given initial condition xð0Þ ¼ x0; converges to the
unique positive steady-state %x in the same class of x0:
The positive steady-states ðEþÞ can be further

characterized in terms of the kinetic constants kij : In
order to give this characterization, we need to introduce
the set

nullspaceðKÞ :¼ fv ¼ ðv1; v2; v3; v4Þ
0: Kv ¼ 0g:

The steady-states satisfy

%xAEþ 3BKyBð %xÞ ¼ 0

3KyBð %xÞ ¼ 03yBð %xÞAnullspaceðKÞ;

where the second equivalence is justified because, by
assumption (A1), the matrix B has full column rank, and
the third equivalence is simply the definition of the
nullspace of K :
Then the following statement (‘‘complex balancing’’)

is immediate from the assumptions; see e.g. (Horn and
Jackson (1972)) or Lemma V.1 in Sontag (2001).

Lemma 1. The point %x is a positive steady-state if and

only if the vector yBð %xÞ belongs to the nullspace of K.

Assumption (A2) states that the matrix Kin is
irreducible (as was mentioned earlier, this assumption
is essentially a mathematical way to describe the
property of ‘‘weak reversibility’’ of the biochemical
network). This irreducibility property allows a very
useful characterization of the nullspace of K :
(1)
 the nullspace of K has dimension one,

(2)
 the nullspace of K is spanned by a positive vector.
This means that the nullspace of K can be characterized
by a scaling factor s and positive constants v2; v3
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and v4 as

nullspaceðKÞ ¼ fsð1; v2; v3; v4Þ
0: sARg:

The positive constants v2; v3 and v4 depend only on the
kinetic constants kij : A computation of the nullspace of
K for the model in Fig. 1 is presented in Appendix A,
where explicit expressions for the parameters v2; v3 and
v4 in terms of the kij are obtained. This characterization
of the nullspace of K is obtained as a routine application
of the Perron–Frobenius Theorem from linear algebra,
see e.g. Berman and Plemmons (1979); for ease of
reference, a sketch of the proof is also presented in
Appendix A. For each steady-state %xAEþ; there is an
appropriate, positive, value of s so that

yBð %xÞ ¼ s

1

v2

v3

v4

0
BBB@

1
CCCA; ð6Þ

where the factor s depends on the initial conditions xð0Þ:
To summarize, the steady-states for the receptor–

ligand model of Fig. 1 are completely characterized by
Eqs. (6), and (4),(5):

BKyBð %xÞ ¼ 03

%R1 %L

%C1

%R2 %L

%C2

0
BBB@

1
CCCA ¼ s

1

v2

v3

v4

0
BBB@

1
CCCA ð7Þ

and

%L þ %C1 þ %C2 ¼ Ltotal ; ð8Þ

%R1 þ %R2 þ %C1 þ %C2 ¼ Rtotal ; ð9Þ

so there are 6 independent equations to determine 6
distinct quantities %L; %C1; %C2; %R1; %R2 and s (which also
depends on Ltotal and Rtotal).

The steady-states can be parametrized by the three

numbers v2; v3; v4 which summarize all the information

needed about the kinetic constants, together with the two

numbers Ltotal and Rtotal which summarize all the

information needed about the initial states.

2.3. Remarks on the scaling factor s and parameters v2;
v3 and v4

In essence, the factor s has recast the receptor–ligand
model in terms of the product of the steady-state
amounts of the basic conformation R1 and free ligand L:
And, as we shall see, the three numbers v2; v3; v4 lump
the eight kinetic constants kij and, together with s;
they provide a complete description of the steady-state
condition for the model with a minimal number of

parameters. It had already been remarked in Woolf et al.
(2001) that only 3 out of 8 constants that describe the
network of reactions would be independent. The
formalism described in this Section shows one possible
way of extracting the independent constants, as well as
providing them with a physical meaning. According to
(7), the vi’s are equilibrium constants that give the
fraction of steady-state values of the elemental events
relative to one another: for instance, v2 is the fraction of
the steady-state concentration of the receptor–ligand
complex %C1 relative to the value %R1 %L: As will be seen in
Section 3.3, in the case the reaction R1 þ L-C1 is much
faster then its reverse, then v2 is the inverse of the
dissociation constant for that reaction.
3. Steady-state activity of the two-state receptor model

In this Section, the two-state model is examined in
detail, using the formalism described earlier. Our steady-
state analysis will show that this model provides a good
description for receptor–ligand interactions not only for
the case of agonists, but also for the case of neutral and
inverse agonists, by varying the relative values of the
kinetic constants. We will develop explicit expressions
for several quantities of interest and provide a char-
acterization of the different classes of ligand affinity in
terms of the system’s parameters. In Section 5, the same
analysis will be extended to a multi-state receptor model
with p receptor conformations and corresponding
receptor–ligand complexes.
The steady-state response for different initial ligand

concentrations is determined experimentally using
ligand binding assays (Woolf et al., 2001). What is
observed in these experiments is usually some combina-
tion of the concentration of the species in the model, or
as introduced by Segel et al. (1986), one may consider
the final steady-state activity as a linear combination

A ¼ a1 %R1 þ a2 %C1 þ a3 %R2 þ a4 %C2:

Here the activity coefficients a1; a2; a3 and a4 are
arbitrary nonnegative constants. For the general case
of arbitrary (nonnegative) activity coefficients, we will
provide a complete and exact analysis of the final
steady-state activity, A; as a function of the initial
amount of ligand, Ltotal : This analysis will then lead to a
characterization of affinity classes based on the values of
the activity coefficients ai (as well as the kinetic
constants). We will assume, from now on, that the
initial conditions are of the form

R1ð0Þ ¼ R10; R2ð0Þ ¼ R0 � R10; Lð0Þ ¼ L0;

C1ð0Þ ¼ 0; C2ð0Þ ¼ 0;

that is, initially there are as yet no receptor–ligand
complexes. In particular, note that

Ltotal ¼ L0 and Rtotal ¼ R0:

As an example, we remark that a typical ‘‘response’’
may be determined as the fraction of receptors in one of
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the two possible states (Bywater et al., 2002; Devreotes
and Sherring, 1985), and plotted as a concentration–
response curve, that is,

½ %R2 þ %C2�=Rtotal ; vs: log Ltotal ;

corresponding to the choice

a1 ¼ 0; a2 ¼ 0; a3 ¼ 1; a4 ¼ 1;

in the final steady-state activity, A:
Since the steady-state values %R1; %R2; %L; %C1 and %C2

are uniquely characterized by a set of algebraic
equations (7)–(9), in principle, it is possible to obtain
the exact values for these constants in terms of the
kinetic constants ðkijÞ; and the initial conditions
ðR1ð0Þ; R2ð0Þ; Lð0Þ; C1ð0Þ and C2ð0Þ). However, the
use of direct substitution to solve this set of algebraic
equations can lead to very complex expressions (see
Bywater et al., 2002). Alternatively, one may solve the
set of differential equations (1) numerically, since one
knows that the solutions do converge to a (unique,
positive) steady-state. However, focusing only on a
numerical solution would not allow for general conclu-
sions about the actual functional dependence of
%R1;y; %C2; on the parameters kij and the initial condi-
tions R0; L0: The knowledge of this functional depen-
dence would enable one to show whether the model does
indeed exhibit the experimental curves A vs. log L0;
characteristic of the three classes of ligand affinity. For
this specific system, a closed explicit expression for
%R1; %R2; %L; %C1 and %C2; can be given, using the
techniques developed in Feinberg (1995), Sontag
(2001) and later in Chaves (2003), and summarized in
Section 2.

3.1. Steady-state response

We will now analyse the steady-state values and their
dependence on the initial conditions and other para-
meters. From Eq. (7) it is immediate to see that

%C1 ¼ v2s; %C2 ¼ v4s; ð10Þ

and then from the conservation equation (8) it follows
that

%L ¼ L0 � ðv2 þ v4Þs: ð11Þ

Substituting this expression for %L back into Eq. (7) we
have

%R1 ¼
s

L0 � ðv2 þ v4Þs
; %R2 ¼

v3s
L0 � ðv2 þ v4Þs

: ð12Þ

As we noted above, the factor s depends on the initial
conditions, and to compute this dependence we will use
the second conservation equation (9):

s
L0 � ðv2 þ v4Þs

þ
sv3

L0 � ðv2 þ v4Þs
þ v2sþ v4s ¼ R0:
This leads to a quadratic polynomial on s:

ðv2 þ v4Þ
2s2 � ½ðL0 þ R0Þðv2 þ v4Þ þ ð1þ v3Þ�s

þ R0L0 ¼ 0;

together with the fact that L0 � ðv2 þ v4Þs > 0 (since
%L > 0). There are two possible solutions for this
quadratic equation, but the correct one is found to be

s ¼
1

2ðv2 þ v4Þ
L0 þ R0 þ

1þ v3

v2 þ v4

2
4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0 þ R0 þ

1þ v3

v2 þ v4

� �2
�4R0L0

s 3
5: ð13Þ

We remark that the expression inside the square root
can be simplified to

ðL0 � R0Þ
2 þ

1þ v3

v2 þ v4

� �2

þ2ðR0 þ L0Þ
1þ v3

v2 þ v4

which is indeed a positive quantity, for all possible
L0X0; R0X0: The other solution, sþ ¼ ?þ

ffiffiffiffiffiffi
?

p
;

would violate the conservation laws of the total amount
of ligand and receptors. To see that this is so, we add up
Eqs. (8) and (9):

%L þ %R1 þ %R2 þ 2 %C1 þ 2 %C2 ¼ L0 þ R0;

then use Eqs. (10):

%L þ %R1 þ %R2 þ 2ðv2 þ v4Þs ¼ L0 þ R0

and finally substitute s ¼ sþ (note that the factors
2ðv2 þ v4Þ cancel out), to obtain

%L þ %R1 þ %R2 þ L0 þ R0 þ
1þ v3

v2 þ v4

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0 þ R0 þ

1þ v3

v2 þ v4

� �2
�4R0L0

s
¼ L0 þ R0:

This equation says that

L0 þ R0 þ positive quantity ¼ L0 þ R0;

which is obviously not true, and thus we conclude that
sþ cannot be the correct solution to the quadratic
equation.
In this fashion, we have now computed explicit

expressions for the steady-state values, in terms of
L0; R0 and the parameters kij : The dependence on the
kinetic constants kij is condensed into the three positive
constants v2; v3 and v4 (see Appendix A).
We are now interested in analysing the behavior of the

activityA as a function of L0: In order to do this, fix R0

and recall that v2; v3 and v4 are constant factors, as well
as a1; a2; a3; and a4: Define s ¼ sðL0Þ to be a function
of L0 as given by Eq. (13), and define another function

tðL0Þ :¼
sðL0Þ

L0 � ðv2 þ v4ÞsðL0Þ
ð14Þ
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and observe that

AðL0Þ ¼ ða1 þ a3v3ÞtðL0Þ þ ða2v2 þ a4v4ÞsðL0Þ:

For very small or very large amounts of L0; the
following limits may be computed:

lim
L0-0

sðL0Þ ¼ 0; lim
L0-þN

sðL0Þ ¼ R0
1

v2 þ v4
:

The limit as L0-0 is immediate. To compute the limit
as L0-þN write

Z ¼ L0 þ R0 þ
1þ v3

v2 þ v4
)

sðL0Þ ¼
1

2ðv2 þ v4Þ
Z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4R0L0

ph i

and then multiply and divide s by the quantity Z þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4R0L0

p
; use the identity ða � bÞða þ bÞ ¼ a2 � b2

which is true for every pair of real numbers a; b; to
obtain

lim
L0-þN

sðL0Þ ¼ lim
L0-þN

1

2ðv2 þ v4Þ
Z2 � ðZ2 � 4R0L0Þ

Z þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4R0L0

p
¼ lim

L0-þN

1

2ðv2 þ v4Þ
4R0L0

Z þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4R0L0

p
¼ lim

L0-þN

1

2ðv2 þ v4Þ

	
4R0

Z=L0 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZ=L0Þ

2 � 4R0=L0

q
¼

1

2ðv2 þ v4Þ
4R0

2
¼ R0

1

v2 þ v4
;

where we used the fact that limL0-þNZ=L0 ¼ 1:
Similarly, we have

lim
L0-0

tðL0Þ ¼ R0
1

1þ v3
; lim

L0-þN

tðL0Þ ¼ 0;

where the limit of tðL0Þ as L0-þN follows from the
limit of sðL0Þ; and the limit as L0-0 may be computed
using the same technique as above:

lim
L0-0

tðL0Þ

¼ lim
L0-0

1

2ðv2 þ v4Þ
Z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4R0L0

p
L0 � 1

2
Z þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4R0L0

p
¼ lim

L0-0

1

2ðv2 þ v4Þ
	
Z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4R0L0

ph i
L0 � 1

2
Z � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4R0L0

ph i
ðL0 � 1

2
ZÞ2 � 1

4
ðZ2 � 4R0L0Þ

¼ lim
L0-0

1

2ðv2 þ v4Þ

	
L0 Z �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4R0L0

ph i
� 1

2
ðZ2 � ðZ2 � 4R0L0ÞÞ

L2
0 � ZL0 þ R0L0

¼ lim
L0-0

1

2ðv2 þ v4Þ

L0 Z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 � 4R0L0

p
� 2R0

h i
L0½L0 � Z þ R0�

¼
1

2ðv2 þ v4Þ
�2R0

� 1þv3
v2þv4

¼ R0
1

1þ v3
:

Therefore,

lim
L0-0

AðL0Þ ¼ R0
a1 þ a3v3

1þ v3
;

lim
L0-þN

AðL0Þ ¼ R0
a2v2 þ a4v4

v2 þ v4
:

We can define the affinity quotient as

q ¼
AðNÞ
Að0Þ

¼
a2v2 þ a4v4

a1 þ a3v3

1þ v3

v2 þ v4
: ð15Þ

The affinity quotient, q; is well defined for each set of
activity coefficients, as long as a1a0 or a3a0: The
numerator of q will be strictly positive, since, typically,
either a2a0 or a4a0: Then, we postulate that in the case
a1 ¼ a3 ¼ 0 (a situation when no free receptor in any
state contributes to the final steady-state activity), the
affinity quotient takes the value þN: The main results
are summarized next.

Theorem 1. Let R0 be a fixed constant. Let

a1; a2; a3; a4 be arbitrary nonnegative constants, with

a2 þ a4a0: The following statements hold:
(i)
 sðL0Þ is a strictly increasing function of L0;

(ii)
 tðL0Þ is a strictly decreasing function of L0;

(iii)
 as a function of L0; AðL0Þ is
3
 strictly decreasing whenever qo1;

3
 strictly increasing whenever q > 1;

3
 constant whenever q ¼ 1:
The proof of this theorem follows essentially by
computing the derivatives of the functions s and t; and
analyzing their signs, as a function of L0: The details can
be found in Appendix B.
The affinity quotient can be interpreted in terms of the

notion of weighted average. In general, the weighted
average of a set of values X1;y;Xp; with respect to a set
of weight factors w1;y;wp is defined by

/XSw :¼
X1w1 þ X2w2 þ?þ Xpwp

w1 þ w2 þ?þ wp

;
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and if the weights are all equal, then the weighted
average coincides with the usual notion of the average
value. Observe that q may be written as

q ¼
a2v2 þ a4v4

v2 þ v4

a1 þ a3v3

1þ v3

�

and then, multiplying and dividing be the quantity s;
and recalling from Eq. (7) that s ¼ %R1 %L; v2s ¼
%C1; v3s ¼ %R1 %L and v4s ¼ %C2; we have

q ¼
a2v2sþ a4v4s

v2sþ v4s

�
a1sþ a3v3s
1sþ v3s

¼
a2 %C1 þ a4 %C2

%C1 þ %C2

�
a1 %R1 %L þ a3 %R2 %L

%R1 %L þ %R2 %L
:

In the second factor, the quantity %L cancels out, so we
finally obtain

q ¼
a2 %C1 þ a4 %C2

%C1 þ %C2

�
a1 %R1 þ a3 %R2

%R1 þ %R2

¼
/activity of bound receptorsSv

/activity of free receptorsSv

;

so we may view the affinity quotient as the ratio between
the weighted average of the activity of bound receptors

and the weighted average of the activity of free receptors.
The equilibrium constants vi play the role of weight
factors for the activity coefficients ai; thus ‘‘choosing’’
the level of contribution from each species to the final
activity. For example, if a1 ¼ a2 ¼ 0 and a3 ¼ a4 ¼ 1
then

q ¼
%C2

%C1 þ %C2

�
%R2

%R1 þ %R2

: ð16Þ

The results of Theorem 1 hold for any two-state
receptor model formulated according to the framework
described in Section 2. Specifically, for a network
consisting of the four elemental events R1 þ L; R2 þ L;
C1 and C2; possible formulations of a two-state receptor
model are:
0.5

v
3
 / (1+v

3
) 
(a)
0.35

0.4

0.45
(b) 

(c) 

[R
2+

C
2]

/R
0

a cycle,

R1 þ L - R2 þ L

m k

C1 ’ C2;
0.3
(b)
0.25

v
4
 / (v

2
+v

4
)

a (reversible) acyclic network

C1!R1 þ L!R2 þ L!C2;
-3 -2 -1 0 1 2 3
0.2
(c)

log L0
any such representation that maintains the con-
nectivity of the network.
Fig. 3. Graphs of AðL0=R0Þ vs. log L0; when a1 ¼ a2 ¼ 0 and a3 ¼
a4 ¼ 1: Examples of: (a) an agonist ðq ¼ 1:21Þ; (b) a neutral agonist

ðq ¼ 1:0Þ; and (c) an inverse agonist ðq ¼ 0:5217Þ:
Each of these models is characterized by a different
matrix K ; and hence the corresponding parameters vi
also have different values, but all the conclusions of
Theorem 1 are unchanged.

3.2. Ligand affinity characterization

Part (iii) in Theorem 1 provides a complete character-
ization of the responses according to the values of the
kinetic constants and activity coefficients. The different
qualitative responses for the model can now be related
to the ligand affinity classes mentioned earlier. For each
set of kinetic constants kij ; the affinity quotient q

characterizes the affinity class in the following way
(a)
 Agonists: q > 1:

(b)
 Neutral Agonists (or antagonists): q ¼ 1:

(c)
 Inverse Agonists: qo1:
Thus, different agonist behavior is obtained depend-
ing on the relative values of the scaling factors v2; v3 and
v4 (for the meaning of these parameters, see Section 3.3
below), and also on the activity coefficients a1; a2; a3;
and a4: These classes, when represented graphically,
have the features of typical receptor–ligand binding
curves (Bywater et al., 2002; Lauffenburger and Linder-
man, 1993; Shea et al., 2000; Woolf et al., 2001).
As an example, we consider the case already

mentioned above when A ¼ %R2 þ %C2 (see Bywater
et al., 2001; Devreotes and Sherring, 1985). In this case,
the quotient takes value (16), where the activity of free
and bound receptors is measured, respectively, by a3 (or
%R2) and a4 (or %C2).
In Fig. 3 it is immediate to see that
(1)
 As L0-0: the concentration–response curve tends
to a value which reflects the partition of receptors
between the two possible states in the absence of
ligand ða1 þ a3v3Þ=ð1þ v3Þ (as the amount of ligand
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decreases to zero, the amount of receptor–ligand
complexes also decreases to zero).
(2)
 As L0-þN: the concentration–response curve
reflects the capacity of the ligand to saturate the
receptors, ða2v2 þ a4v4Þ=ðv2 þ v4Þ (for large amounts
of ligand, all the receptors tend to be bound).
Furthermore, the affinity quotient q relates to the
following ratio (see Kenakin, 2002):

fraction of R2ðL0-þNÞ
fraction of R2ðL0-0Þ

¼
Zð1þ kÞ
1þ Zk

: ð17Þ

According to Kenakin (2002), in the case when a
receptor exists only in two conformations (say R1 and
R2), the effect of a ligand on changing the ratio between
the two conformations is given by Eq. (17), where Z
measures the affinity of ligand L for the conformation
R2; and k is an allosteric constant

Z ¼
affinity of L for R2

affinity of L for R1
; k ¼

active receptors

inactive receptors
:

When ratio (17) is > 1 the presence of ligand enriches the
conformation R2; and when it is o1; the presence of
ligand leads to depletion of the conformation R2: In this
sense, ratio (17) is equivalent to our affinity quotient q

and one can make the correspondence

q ¼
½v4=v2v3�ð1þ v3Þ

1þ v4=v2

with

k*v3 ¼
%R2 %L

s
¼

%R2 %L

%R1 %L
¼

%R2

%R1

and

Z*
v4

v2v3
¼

C2=s
C1=s

1

v3
¼

%C2

%C1

%R1

%R2

:

3.3. Biochemical significance of the scalars v2; v3; v4

The constants v2; v3; v4 can be regarded as a concise
parametrization of the biochemical networks being
considered. Consider the case where the reactions

R1 þ L"C1; with dissociation constant KD12

and

R2 þ L"C2; with dissociation constant KD34

are uncoupled. Remembering that v1 is set to unity, the
constants v2; v3 and v4 satisfy (from Appendix A)

KD12 ¼
v1

v2
¼

1

v2
; and KD34 ¼

v3

v4
:

Using the experimental evidence (see Lauffenburger and
Linderman, 1993, Chapter 2) that the forward binding
constants (such as k21 and k43 in Fig. 1) are much larger
(of order 106; 107) than comparable dissociation con-
stants (of order 10�1; 10�2), we can obtain estimates for
the vi: The equation for dR1=dt; at steady-state, is

�ðk21 þ k31Þ %R1 %L þ k12 %C1 þ k13 %R2 %L ¼ 0; ð18Þ

and using the fact that k21bk31 we obtain

�k21 %R1 %L þ k12 %C1 þ k13 %R2 %LE0:

Since the model is symmetric with respect to R1;R2;
without loss of generality, we can assume that %R1X %R2;
and again using k21bk13:

k21 %R1 %Lbk13 %R2 %L:

So, Eq. (18) is reduced to

�k21 %R1 %L þ k12 %C1E0;

and yields

%C1

%R1 %L
E

k21

k12
¼

1

KD12
:

We also have, from Eq. (7), that

v2 ¼
%C1

%R1 %L
E

k21

k12
:

Next, using the equations that provide the nullspace of
K (see Appendix A), we may obtain expressions for v3
and v4 from v2:

� ðk21 þ k31Þ þ k12v2 þ k13v3 ¼ 0;

� ðk21 þ k31Þ þ k21 þ k13v3 ¼ 0 ) v3 ¼
k31

k13

and

k21 � ðk12 þ k42Þv2 þ k24v4 ¼ 0;

k21 � k21 � k42
k21

k12
þ k24v4 ¼ 0 ) v4 ¼

k42

k24

k21

k12
:

So the constants vi may be estimated from dissociation

constants as

1

KD12
¼

k21

k12
¼ v2;

1

KD13
¼

k31

k13
¼ v3

and
1

KD24KD12
¼ v4;

which can be measured.
Under these circumstances (namely, (a) the order of

magnitude of k21 and k43 is much larger than the order
of magnitude of the other kinetic constants, and (b)
%R1X %R2; meaning that KD12 is the dissociation constant
associated to the more abundant conformation of R1),
the affinity quotient q; associated with the final activity
A ¼ %R2 þ %C2; becomes:

q ¼
v4

v3

1þ v3

v2 þ v4
E
1=ðKD12KD24Þ

1=KD13

	
1þ 1=KD13

1=KD12 þ 1=ðKD12KD24Þ

¼
KD13 þ 1

KD24 þ 1
:
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Fig. 4. The model studied in Segel et al. (1986).
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This expression indicates that the affinity class of the
ligand is ultimately decided by the balance between
the final distribution of free and bound receptors among
the two states, since

KD13E
%R1

%R2

and KD24E
%C1

%C2

:

An inverse agonist is characterized by KD24 > KD13;
or equivalently %C1= %C2 > %R1= %R2; while an agonist is
characterized by %C1= %C2o %R1= %R2: For instance, the
inverse agonist in Fig. 3 was obtained with k43 ¼ k21 ¼
5; k24 ¼ 4; k31 ¼ 3 and all other kinetic constants equal
to 1, corresponding to KD12 ¼ 0:2;KD13 ¼ 0:33 and
KD24 ¼ 4; while the agonist was obtained with k43 ¼
k21 ¼ 5; k42 ¼ 2; k13 ¼ 1:99 and all other kinetic con-
stants equal to 1, corresponding to KD12 ¼ 0:2;KD13 ¼
1:99 and KD24 ¼ 0:5:
Thus, the scalars vi can be seen to generalize the

concept of the equilibrium constants in the context of
biochemical networks. They capture, in addition to
direct reversibility between reactants and their products,
all other network routes that achieve the same outcome
and are present in the stoichiometry.

3.4. Comparison with experimental data

Devreotes and Sherring (1985) identify two receptor
conformations for the cAMP receptor of Dictyostelium.
Assuming that the interactions between cAMP (ligand)
and its receptors can be described by the model depicted
in Fig. 1, and that the concentration–response curve is
determined as ½ %R2 þ %C2�; as a function of L0; the authors
measured the dissociation constants:

KD12 ¼
k12

k21
¼ 15	 10�9M ;

KD34 ¼
k34

k43
¼ 30	 10�9M ;

k31 ¼ 0:012 min�1; k13 ¼ 0:104 min�1;

k42 ¼ 0:222 min�1; k24 ¼ 0:055 min�1:

Also from the experimental concentration–response
curve, the values

½ %R2 þ %C2�
R0

ð0ÞE0:15;
½ %R2 þ %C2�

R0
ðNÞE0:804 ð19Þ

can be obtained. We may now compute the values of our
constants v2; v3; v4 (as estimated in Section 3.3) from the
kij obtained in this experiment, and then compare the
ratios v3=ð1þ v3Þ and v4=ðv2 þ v4Þ with values (19). We
have

v2 ¼ 6:67	 107M�1; v3 ¼ 0:115;

v4 ¼ 2:69	 108M�1
and

v3

1þ v3
¼ 0:103;

v4

v2 þ v4
¼ 0:806;

which are in agreement with values (19).
4. Application of HJF networks to a classical model

As further illustration of the flexibility of the theory
described in Section 2, we now apply the HJF networks
formalism to analyse a classical model in the literature, a
model that was studied in great detail by Segel et al.
(1986), and is depicted in Fig. 4.
There are two essential differences between the

models of Figs. 1 and 4:

1. In the model of Fig. 4, the amount of ligand L is

assumed to be constant, i.e.

L � L0 � %L;

and thus L is a parameter, but not a variable of
the system, while in our two-state model (Fig. 1) the
amount of ligand is allowed to change, as it binds to
the cell receptors, and therefore L is a variable of the
system.

2. In the model of Segel et al. (1986) (and also other
references such as Lauffenburger and Linderman
1993, Chapter 2), the exchange between receptor
conformations occurs independently of the presence
of ligand, whereas in our model (Fig. 1), from the
discussion of elemental events, the exchange between
receptor conformations may occur only in the presence

of ligand. This leads to the appearance of nonlinear
terms ðR1ðtÞLðtÞ;R2ðtÞLðtÞÞ in the differential
equations (1).

The HJF networks formalism also allows the rigorous
analysis of the model in Fig. 4. The equations that
describe this model are (recall that L is assumed to
be constant, and thus dL=dt � 0; as opposed to our
model (1))

dR1

dt
¼ �k1R1 þ k�1R2 � krLR1 þ k�rC1;
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dR2

dt
¼ k1R1 � k�1R2 � kdLR2 þ k�dC2;

dC1

dt
¼ �k2C1 þ k�2C2 þ krLR1 � k�rC1;

dC2

dt
¼ k2C1 � k�2C2 þ kdLR2 � k�dC2:

(These are equations (1a–d) in Segel et al. (1986) and, in
their notation, R1*R;R2*D;C1*X and C2*Y :)
There is only one conservation equation:

%R1 þ %R2 þ %C1 þ %C2 ¼ R0:

Since the elemental events are simply R1;R2;C1 and C2;
the positive steady-states of the system are given by

%R1 ¼ s; %C1 ¼ s#v2; %R2 ¼ s#v3; %C2 ¼ s#v4:

One can solve for s; using the conservation equation, to
obtain

s ¼ R0
1

1þ #v2 þ #v3 þ #v4
:

Comparing Figs. 1 and 4, there is the following
correspondence between kinetic constants:

k12 ¼ k�r; k21 ¼ krL; k13 ¼ k�1; k31 ¼ k1;

k24 ¼ k�2; k42 ¼ k2; k34 ¼ k�d ; k43 ¼ kdL; ð20Þ

so in this case the scalars #vi depend on L:Nevertheless, we
may still define the steady-state activity and the affinity
quotient as before, by carefully computating the limits
AðL-0Þ and AðL-þNÞ: Following the expressions
in Appendix A and correspondence (20), the scalars #vi

have the form

#v3 ¼
k�rk1ðk�2 þ k�dÞ þ k�dk2ðkrL þ k1Þ

k�rk�2ðk�1 þ kdLÞ þ k�1k�dðk�r þ k2Þ

and

#v2 ¼ �
k�1

k�r

#v3 þ
krL þ k1

k�r

; #v4 ¼
k�1 þ kdL

k�d

#v3 �
k1

k�d

:

Then

AðLÞ ¼ R0
a1 þ a2 #v2 þ a3 #v3 þ a4 #v4

1þ #v2 þ #v3 þ #v4

¼ R0

a1 þ a2
krLþk1

k�r
� a4

k1
k�d

þ #v3 a3 � a2
k�1
k�r

þ a4
k�1þkd L

k�d

�  
1þ krLþk1

k�r
� k1

k�d
þ #v3 1� k�1

k�r
þ k�1þkd L

k�d

�  :
k21k12

k13

k31

k42

k24

k43k34

R  + L2

C2

k35

k53

k64

k46

k

R  + L1

C1

Fig. 5. A ‘‘ladder’’ receptor–ligand network,
Now, it is not difficult to see that

lim
L-0

#v3 ¼
k1

k�1
; lim

L-þN

#v3 ¼
krk2k�d

k�rk�2kd

;

and, upon substitution into AðLÞ; standard limit
computations yield

lim
L-0

AðLÞ ¼
a1 þ a3k1=k�1

1þ k1=k�1
and

lim
L-þN

AðLÞ ¼
a2 þ a4k2=k�2

1þ k2=k�2
:

Thus the affinity quotient for the model developed in
Segel et al. (1986) is

q ¼
a2K2 þ a4

K2 þ 1

�
a1K1 þ a3

K1 þ 1
; ð21Þ

where K1 ¼ k�1=k1 and K2 ¼ k�2=k2: As a final remark,
we point out that this affinity quotient in some sense
expresses the concept of ‘‘sensory adaptation’’ intro-
duced in Segel et al. (1986). This concept of adaptation
involves choosing the activity coefficients ai so that the
final steady-state activity is always equal to the basal
activity or, in other words, so that AðL1Þ ¼ AðL0Þ; for

every pair of values L0;L1: Equivalently, the choice of
coefficients should satisfy

Að0Þ ¼ AðNÞ 3q ¼ 1;

and, indeed, setting q ¼ 1 in Eq. (21), yields precisely
Eq. (26a) of Segel et al. (1986), for exact adaptation.
5. Extension to multi-state receptor models

The versatility of the approach summarized in Eq. (2),
where the receptor–ligand model is analyzed as an HJF
network, can be seen in its extension to more complex
systems. For example, consider the model in Fig. 5,
where a single ligand binds to multiple receptor states.
The results in Section 2 extend very naturally to the

model of Fig. 5. Now the vector of concentrations takes
the form x ¼ ðR1;R2;y;Rp;L;C1;C2;y;CpÞ

0: The two
conservation laws become

%L þ %C1 þ %C2 þyþ %Cp ¼ L0;

%R1 þ %R2 þ?þ %Rp þ %C1 þ %C2 þ?þ %Cp ¼ R0;
R  + L3

C3

k6556

R  + Lp

Cp

k2p, 2p-1k2p-1, 2p

......

......

incorporating p receptor conformations.
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Fig. 6. A ‘‘star’’ receptor–ligand network.
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while the matrix of reaction nodes B and the matrix of
kinetic constants K extend in the obvious way, and the
vector of elemental events becomes

yBðxÞ ¼

R1L

C1

R2L

C2

^

RpL

Cp

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

¼ s

1

v2

v3

v4

^

v2p�1

v2p

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
:

The nullspace of K is now the set

nullspaceðKÞ ¼ fsð1; v2; v3;y; v2pÞ : sARg;

where v2; v3;y; v2p are still positive scalars, given in
terms of the kij only. Solving the new equations for the
steady-state of the system, we find that, for each s > 0;

%C1 ¼ v2s; %C2 ¼ v4s;y; %Cp ¼ v2ps;

%L ¼ L0 � ðv2 þ v4 þ?þ v2pÞs;

%R1 ¼
s

L0 � ðv2 þ v4 þ?þ v2pÞs
;

%R2 ¼
v3s

L0 � ðv2 þ v4 þ?þ v2pÞs
;

%R3 ¼
v5s

L0 � ðv2 þ v4 þ?þ v2pÞs
;?;

%Rp ¼
v2p�1s

L0 � ðv2 þ v4 þ?þ v2pÞs
:

And finally, s satisfies a quadratic polynomial very
similar to the two state case (we only need to replace the
sums of odd indexed vi and even indexed vi):

1þ v3*So ¼ 1þ v3 þ v5 þ?þ v2p�1;

v2 þ v4*Se ¼ v2 þ v4 þ v6 þ?þ v2p;

so that

sðL0Þ ¼
1

2Se

	 L0 þ R0 þ
So

Se

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0 þ R0 þ

So

Se

� �2
�4R0L0

s2
4

3
5

and

tðL0Þ ¼
sðL0Þ

L0 � SesðL0Þ
:

For this extended model, the final steady-state activity
measurements would be given by

A ¼ a1 %R1 þ a2 %C1 þ?þ a2p�1 %Rp þ a2p %Cp

as a function of L0; and the affinity quotient is

q ¼
a2v2 þ?þ a2pv2p

a1 þ?þ a2p�1v2p�1

So

Se

: ð22Þ
Under these conditions, the results in Theorem 1 are
still valid, for any choice of constants aiX0; with a2 þ
a4 þ a2p > 0:
As before, the affinity classes are characterized by the

affinity quotient, which can again be interpreted as

q ¼
a2 %C1 þ?þ a2p %Cp

%C1 þ %C2 þ %C3 þ?þ %Cp

�
a1 %R1 þ?þ a2p�1 %Rp

%R1 þ %R2 þ %R3 þ?þ %Rp

¼/activity of bound receptorsSv=

/activity of free receptorsSv;

the ratio between the weighted averages of the activity of
bound and free receptors, where the vi’s play the role of
weight factors. Another interpretation for the affinity
quotient is in terms of the distribution of the receptor
conformation states (referred to as ‘‘allosteric con-
stants’’ in (Kenakin, 2002)):

ki ¼
receptors in state i

receptors in inactive state
¼

%L %Ri

%L %R1

¼
sv2i�1

sv1
¼ v2i�1

(note that k1 ¼ 1) and the relative affinity of ligand for
each conformation:

Zi ¼
v2i

v2ða1 þ a3v3 þ?þ a2p�1v2p�1Þ

¼
%Ci

%C1

%R1

a1 %R1 þ a3 %R2 þ?þ a2p�1 %Rp

:

Then

q ¼
ða2Z1 þ a4Z2 þ?þ a2pZpÞð1þ k2 þ k3 þ?þ kpÞ

1þ ðZ1 þ Z2 þ?þ ZpÞða1 þ a3k2 þ?þ a2p�1kpÞ

or, in a more compact notation,

q ¼
ð
P

a2iZiÞð1þ
P

kiÞ
1þ ð

P
ZiÞð
P

a2i�1kiÞ
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generalizes expression (17)

fraction of R2ðL0-þNÞ
fraction of R2ðL0-0Þ

¼
Zð1þ kÞ
ð1þ ZkÞ

;

which is indeed recovered for the particular case of the
two-state model, with Z � Z2;k � k2 and a1 ¼ a2 ¼
0; a3 ¼ a4 ¼ 1 (as we saw in Section 3.2).
As noted in Section 3, Theorem 1 implies that any

number of reactions among the nodes may be added or
removed (as long as the reversibility property of the
network is maintained), causing the values of the vi’s to
change, but the general results and conclusions
still hold. Consider, for instance a ‘‘star’’ network, as
in Fig. 6, in which only the ‘‘basic’’ receptor conforma-
tion ðR1Þ is allowed to change to other conformations
ðR2;R3;R4Þ: In this case, the nullspace of K is very
simple to compute and the following values are
obtained:

v2 ¼
k21

k12
; v3 ¼

k31

k13
; v4 ¼

k43

k34

k31

k13
; v5 ¼

k51

k15
;

v6 ¼
k65

k56

k51

k15
; v7 ¼

k71

k17
; v8 ¼

k87

k78

k71

k17
;

so, in this ‘‘star’’ example the vi are exactly given by
dissociating constants, which is consistent with the
notion that all receptors in the network are accessible
via R1:
6. Concluding remarks

Receptor–ligand interactions can be represented as
HJF biochemical networks, in the form of Eq. (2),
consisting of three essential objects (see also (Horn and
Jackson, 1972)): The vector yBðxÞ containing the
elemental events; The matrix K of kinetic constants;
And the matrix B that relates the nodes of the network
to the rate of change of the individual species’
concentrations. Formulated in this way, the conserva-
tion laws for this system are a consequence of the matrix
B and establish a set of invariant subspaces for the
system. The nullspace of the matrix K then identifies the
set of steady-state points in these subspaces, using a
minimal set of parameters. From our analysis, it
becomes clear that this minimal set of parameters
generalizes the role of the equilibrium constants in the
context of biochemical networks, by incorporating
the effect of the network as a whole (while it is often the
case that the network is decoupled, for the purpose of
computing the equilibrium constants of the
‘‘receptorþ ligand2complex’’ reactions). With this
minimal set of parameters, a detailed analysis of the
steady-state activity of the two-state model is achieved,
under general assumptions on the available biochemical
pathways (which are identified by the non-zero entries of
the matrix Kin).
Experimentally, steady-state measurements are a
linear combination, A; of contributing species, e.g. all
sources of a receptor, both free and bound to ligand (see
also (Segel et al., 1986)). This steady-state activity can
also be expressed in terms of the minimal set of
parameters, and depends on the activity coefficients
and on the total amount of ligand present. The quotient
concisely relating the final activity at the limiting
conditions of zero and infinite amounts of ligand,
summarizes the distribution of the species in the model.
This affinity quotient can also be interpreted as the ratio
of the weighted averages of, respectively, the activity of
bound receptors and the activity of free receptors. The
weight factors are, in fact, the set of minimal para-
meters, which are responsible for selecting the appro-
priate contribution from each species to the steady-state
activity. The classification of the ligand as agonist,
neutral agonist or inverse agonist is then readily
determined from the value of this affinity quotient.
And finally, the flexibility of this formalism can be
appreciated through its extension to multi-state receptor
systems. All of the concepts can be directly generalized,
and the characterizations of the steady-state activity
and the corresponding affinity quotient are similarly
preserved.
It is now well recognized that a simple mass action

interaction between ligand and receptor is not the
typical event initiating cell signaling. Rather, the
response to ligand activation is a complex process that
can eventuate in different receptor states and lead to a
variety of functional consequences. The economic use of
a single receptor type to initiate elaborate downstream
signaling can be seen, for example, in the selective and
sensitive response of cells to chemotactic factors and in
the shifting responses to growth factors during different
time points in development. Because of the potential for
complex biological systems to be represented by equally
complex sets of equations, significant progress in
mathematical descriptions of these elaborate signaling
processes will be best achieved with concise expressions
that still capture the dynamics of the essential biochem-
ical events taking place.
Despite their complexity, biochemical pathways still

operate under the principles of mass action and
stoichiometry. Additionally, metabolic networks and
signaling pathways have been intuitively, but not
formally, understood to be weakly reversible. Taken
together, these basic concepts can lead to the formalism
that has been presented here, in which brevity and
flexibility are achieved through a minimal set of
parameters that can ultimately be regarded as equili-
brium constants for the signaling network. This general-
ization leads to the characterization of multiple receptor
states in terms of weighted averages of its respective
activities, with the generalized parameters as weighting
factors. How these parameters can be further exploited
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to character drug receptor interactions and signaling in
more complex biochemical networks is the subject of
further investigations.
Appendix A. The nullspace of K

A.1. Computing the scalars v2; v3; v4

Consider the model in Fig. 1 and the corresponding
matrix K : The vectors in the nullspace of K satisfy
Kv ¼ 0: The vector v ¼ ð1; v2; v3v4Þ

0 can be determined
from the equations:

� ðk21 þ k31Þ þ k12v2 þ k13v3 ¼ 0;

k21 � ðk12 þ k42Þv2 þ k24v4 ¼ 0;

k31 � ðk13 þ k43Þv3 þ k34v4 ¼ 0;

which yield

v3 ¼
k31k12ðk24 þ k34Þ þ k34k42ðk21 þ k31Þ
k12k24ðk13 þ k43Þ þ k13k34ðk12 þ k42Þ

and from this expression both v2 and v4 can then be
computed by

v2 ¼ �
k13

k12
v3 þ

k21 þ k31

k12
and

v4 ¼
k13 þ k43

k34
v3 �

k31

k34
:

A.2. Characterization of the nullspace of K

We review here some standard facts about irreducible
matrices. By construction, K is irreducible and it has
negative entries only on its diagonal. So there is a
constant g > 0 such that M ¼ K þ gI has all entries
nonnegative. Thus MX0 and M is also irreducible. For
such matrices, the Perron-Frobenius Theorem states that
(1)
 the spectral radius of M; r; is an eigenvalue of M of
multiplicity one;
(2)
 an eigenvector, vr; corresponding to the eigenvalue
r (so that Mvr ¼ rvr) may be chosen with all entries
positive.
Recall that the spectral radius of M is defined as
the largest absolute value of all the eigenvalues
of Mðr ¼ max fjlj; l is an eigenvalue of MgÞ: In
addition,
(3)
 any vector in the nullspace of K is an eigenvector of
M; corresponding to the eigenvalue g:

Mv ¼ Kv þ gIv ¼ gv;
(4)
 the columns of K add up to zero, a fact that can be
written as %1K ¼ 0 where %1 ¼ ð1 1?1Þ:
Then we have

%1Mvr ¼ %1ðrvrÞ ¼ rð%1vrÞ; ðA:1Þ

where %1vr is a positive scalar, because all the entries of vr
are positive. On the other hand, because %1K ¼ 0;

%1Mvr ¼ %1Kvr þ gð%1vrÞ ¼ gð%1vrÞ: ðA:2Þ

Comparing Eqs. (A.1) and (A.2), it turns out that

rð%1vrÞ ¼ gð%1vrÞ3r ¼ g

Therefore,

rvr ¼ Mvr ¼ Kvr þ gvr ¼ Kvr þ rvr3Kvr ¼ 0;

meaning that vr is a vector in the nullspace of K :
Conversely, point (3) above shows that any element in
the nullspace of K must be an eigenvector of M ;
corresponding to the eigenvalue g ¼ r: This is exactly
what we wanted to conclude: the nullspace of K has
dimension one and is spanned by a positive vector ðvrÞ:
Appendix B. Proof of Theorem 1

To show that s is a strictly increasing function of L0;
we only need to compute its derivative and check that it
is always positive. From expression (13) we see that

ds
dL0

¼
1

2ðv2 þ v4Þ
1�

2½L0 þ R0 þ
1þv3
v2þv4

� � 4R0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0 þ R0 þ

1þv3
v2þv4

h i2
�4R0L0

r
2
664

3
775

¼
1

2ðv2 þ v4Þ

	 1�
L0 � R0 þ

1þv3
v2þv4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðL0 � R0Þ
2 þ 1þv3

v2þv4

�  2
þ2ðL0 þ R0Þ

1þv3
v2þv4

r
2
664

3
775:

If ðL0 � R0Þ þ ð1þ v3Þ=ðv2 þ v4Þp0; then ds=dL0 is
clearly a positive quantity. Otherwise, if ðL0 � R0Þ þ
ð1þ v3Þ=ðv2 þ v4Þ > 0; then notice that the negative term
is of the form ða þ bÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c

p
; with c > 2ab; and so

a þ bffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2 þ c

p
 !2

¼
a2 þ b2 þ 2ab

a2 þ b2 þ c
o1:

implying that ds=dL0 is a positive quantity. Therefore,
s is an increasing function of L0: Next, recall the
conservation equation (9), which may be written as

ð1þ v3ÞtðL0Þ þ ðv2 þ v4ÞsðL0Þ ¼ R0:

Note that v2; v3 and v4 are constant factors, and that the
left-hand side of this equation is to remain constantly
equal to R0: Taking derivatives with respect to L0 on
both sides of this equation yields

dt
dL0

¼ �
v2 þ v4

1þ v3

ds
dL0

:
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From (i) we know that ds=dL0 > 0 for all L0; so it
follows that dt=dL0o0 for all L0: This proves part (ii).
Finally, to prove part (iii), observe that

dA

dL0
¼ða1 þ a3v3Þ

dt
dL0

þ ða2v2 þ a4v4Þ
ds
dL0

¼ �ða1 þ a3v3Þ
v2 þ v4

1þ v3
þ ða2v2 þ a4v4Þ

� �
ds
dL0

:

Assume first that qo1: Then,
a1 þ a3v3

a2v2 þ a4v4

v2 þ v4

1þ v3
> 1 )

ða1 þ a3v3Þ
v2 þ v4

1þ v3
> ða2v2 þ a4v4Þ )

dA

dL0
o0

and therefore A is a strictly decreasing function of L0:
Assuming that q > 1; we can conclude by a similar
argument that dA=dL0 is positive and hence the
function is strictly increasing. Finally, whenever q ¼ 1;
it is clear that dA=dL0 � 0; and so the function is
constant.
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