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Weakly activated signaling cascades can be modeled as linear systems. The input-to-output transfer function
and the internal gain of a linear system provide natural measures for the propagation of the input signal down
the cascade and for the characterization of the final outcome. The most efficient design of a cascade for
generating sharp signals is obtained by choosing all the off rates equal and a “universal” finite optimal length.

1. Introduction

Protein kinase cascades are major functional modules used
by cells to translate signals generated by receptor activation into
diverse biochemical and physiological responses.1 Highly
conserved throughout evolution and across species, the kinase
cascade motif participates in the control of many processes,
including cell cycle regulation, gene expression, cellular me-
tabolism, stress responses, and T cell activation. For this reason,
control of kinase cascades by therapeutic intervention has
become an attractive area for drug discovery, particularly in
the areas of cancer and inflammation.2,3

Some four mitogen-activated protein kinase (MAPK) signal-
ing cascades have been found in yeast,4 and at least a dozen
MAPK cascades have been identified in mammalian cells.5 The
intensive study of MAPK pathways has prompted efforts to
characterize these systems theoretically (see, inter alia, refs
6-14). In this paper, we will utilize concepts and methods from
the theory of linear control systems to characterize kinase
signaling cascades, in particular the MAPK pathway, to
understand how the number of kinases in a cascade and their
individual enzymatic activities can affect the pathway in its role
as a signal-transducing module. For recent applications of con-
trol theory methods to biological systems, see refs 15 and 16.

Let R denote the input signal,X̃i, the inactive (nonphospho-
rylated) form of kinasei and Xi, the active (phosphorylated)
form of kinasei. The rate constant (or “on” rate) for theith
kinase phosphorylation will be denoted byR̃i, and the dephos-
phorylation rate constant (or “off” rate) will be denoted byâi.
The input signalR might represent, for example, the concentra-
tion of activated receptors, and the dynamics of the signal
transduction pathway may be modeled as follows (see ref 10)

Assuming that the total amount of kinasei remains constant,
that is, X̃i + Xi ) Xtot,i, the differential equations (1) can be
rewritten as

and

whereRi ) R̃iXtot,i. Throughout this paper, we will focus on
the case ofweakly actiVated pathways, by which we mean a
low level of kinase phosphorylation, that is

In this case, the equations (2) are simplified to a linear system
of the form

In section 2, we will describe how to compute the transfer
function and internal gain for this system, and then in section
3, we will define a set of measures for the output signal, which
closely follow those discussed in ref 10. In section 4, we prove
that the most efficient cascade design for generating sharp
signals has equal on rates and a finite length depending only
on the cascade’s internal gain. In section 5, positive feedback
from the last activated kinase to the first is added to the cascade,
and the optimal design is re-examined in this new context.
Finally, in section 6, we briefly discuss how to check the
cascade’s stability to random small perturbations.

2. Input-to-Output Transfer Function
We will consider the signaling cascade (4) as a system with

an input R, and anoutputwhich will be some function of the
concentration of the last kinaseXn. A typical function consists
of the total accumulated concentration ofXn or ∫ tXn(t′) dt′.
From the biological point of view, however, one should also
consider the degradation rate ofXn as well as the possibility
that some fraction ofXn is not active. We will assume that the
loss of accumulated kinase (due to degradation or inactivation,
for instance) is reflected by a constant ratel, and we introduce
the output as a new variable,Xn+1, given by
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dX1

dt
) R̃1RX̃1 - â1X1

dXi

dt
) R̃iXi-1X̃i - âiXi i ) 2, ...,n

(1)

dX1

dt
) R1R(1 -

X1

Xtot,1
) - â1X1

dXi

dt
) RiXi-1(1 -

Xi

Xtot,i
) - âiXi i ) 2, ...,n (2)

Xi , Xtot,i w 1 -
Xi

Xtot,i
≈ 1 (3)

dX1

dt
) R1R - â1X1

dXi

dt
) RiXi-1 - âiXi i ) 2, ...,n (4)
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(From the control theory point of view, this corresponds to
extending the cascade one more step to include a “leaky”
integrator.) The variableXn+1 expresses the effective concentra-
tion of the last kinase. Note that the casel ) 0 recovers the
total accumulated kinase, i.e.,Xn+1 ) ∫ tXn(t′) dt′.The model
for a weakly activated signal transduction cascade may then be
written in the more compact form

whereX ) (X1, X2, ..., Xn, Xn+1)′ is a column vector whose
elements are always nonzero, andA ∈ R(n+1)×(n+1), B ∈ R(n+1)×1,
andC ∈ R1×(n+1) are the matrices

and

It is well known (see refs 17 and 18, or any other book on
control systems) that, for a system such as 5, the output can be
computed directly as the convolution between the input signal
Rand the impulse response of the system. The impulse response
of the system is the output corresponding to a single input pulse.
If we let G denote the impulse response (and assuming that the
system starts at rest, with initial conditionX(0) ) 0), then

The impulse response,G, characterizes the action that the
internal structure of the system will have on any input, such as
the filtering of certain frequency components and the amplifica-
tion or dampening of the signal. Biological inputs may take
many different forms, such as single pulses, slowly decaying
signals, constant stimuli applied for a certain time interval, or
oscillatory signals. Thus, it is appropriate to have a model in
which the output signal is obtained as a convolution of the input
R (which may take many forms) and the transfer functionG
(which depends only on the intrinsic kinase activity parameters
and needs to be computed only once).

A very convenient way to analyze system 5 is to convert it
to thefrequency domain, by application of the Laplace transform
operator. The Laplace transform of the impulse response is call-
ed thetransfer functionof the system, and it provides a simple
linear relationship between the Laplace transforms of the input
and the output, as well as also providing a measure of ampli-
fication/dampening of the input signal. The transfer function is
given by a simple formula in terms of the matricesA, B, andC
as summarized in the Supporting Information. For this cascade
system, we will carry out the Laplace transforms in detail so as
to gain some insight into the internal structure of the system.

The Laplace transform ofX will be denoted byX̂, and is
defined as

wheres is a complex numbers ) sre + jω (j is the imaginary
numberx-1) and takes values in an appropriate region of
convergence.

Applying the Laplace transform operator to both sides of eq
4, assuming thatX(0) ) 0, and recalling the properties of the
Laplace transform, we have

which yields

and

In this way, we may view the cascade as a sequence ofn steps,
the output of the stepi - 1 becoming the input to stepi.For
eachsingle stepin the cascade, the input isX̂i-1 and the output
is X̂i, and they are related by a multiplicative factor, which is
in fact thetransfer function for the step i

For the whole cascade, the input isR and the output isX̂n+1,
and it is easy to see that the transfer function for the total system
is the product of the transfer functions at each step

Therefore

and the actual output may now be obtained by the inverse

dXn+1

dt
) Xn - lXn+1

dX
dt

(t) ) AX(t) + BR(t) Y(t) ) CX(t) (5)

A ) (-â1 0 0 ... 0 0 0
R2 -â2 0 ... 0 0 0
0 R3 -â3 ... 0 0 0
0 0 R4 ... 0 0 0

l ... l

0 0 0 ... Rn -ân 0
0 0 0 ... 0 1 -l

)B ) (R1

0
0
0
l
0
0

) (6)

C ) (0 ... 0 1 ) (7)

Y(t) ) (G*R)(t)

X̂i(s) ) ∫-∞

∞
e-stXi(t) dt R̂(s) ) ∫-∞

∞
e-stR(t) dt

Figure 1. A model of a MAPK cascade.

Figure 2. Transfer functions at each step.

sX̂1(s) ) R1R̂(s) - â1X̂1(s)

sX̂i(s) ) RiX̂i-1(s) - âiX̂i(s) i ) 2, ...,n

sX̂n+1(s) ) X̂n(s) - lX̂n+1(s)

X̂1(s) )
R1

s + â1
R̂(s) X̂i(s) )

Ri

s + âi
X̂i-1(s) i ) 2, ...,n

X̂n+1(s) ) 1
s + l

X̂n(s)

Ĝi(s) )
Ri

s + âi
i ) 2, ...,n

Ĝ(s) ) Ĝ1(s)‚‚‚Ĝn+1(s) ) 1
s + l

R1‚‚‚Rn

(s + â1)‚‚‚(s + ân)
(8)

Ŷ(s) ) X̂n+1(s) ) 1
s + l

R1‚‚‚Rn

(s + â1)‚‚‚(s + ân)
R̂(s)
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Laplace transform. Alternatively, even without knowing the
exact form of the output, that is, the functionY(t), it is still
possible to further characterize the properties of the system,
through the 2-norm of the functionsŶandR̂. Define the 2-norm
of the functionY and the 2-norm of the Laplace transformŶ by

with similar expressions holding forRandR̂. (Note: from now
on, we will assume that the signals are defined only for positive
times, that is,Y(t) ) 0 for t < 0.) The 2-norm||Y||2 provides a
measure of thestrengthof the signals (in analogy to the energy
of a mechanical system.) Indeed, these norms provide a very
convenient way to relate the input and output because, from
Parseval’s Theorem,the 2-norm of a function equals the 2-norm
of its Laplace transform, and therefore

without the need to compute inverse transforms (a very helpful
fact, since in general the inverse transforms may not be simple
to compute).

Another useful measure is theinfinity norm of the transfer
function, that selects the least upper bound of the absolute value
of Ĝ

A very useful estimate for characterizing the relative strength
of the input and output signals is (see, for instance, refs 17 and
19)

where it is immediately apparent that the infinity norm of the
transfer function gives an upper bound for the amplification of
the input signal throughout the cascade. Moreover, the infinity
norm ||Ĝ||∞ is in fact the smallest number that satisfies eq 9,
for all input/output pairs (that is, pairs (R,Y), whereY is the
output corresponding to the inputR).

To compute the infinity norm of the transfer function for the
whole cascade, note that

and the equality holds forω ) 0. Therefore

A necessary condition for amplification of the signal to occur
is that||Ĝ||∞ > 1. Moreover, sincel is essentially an independent
parameter, introduced for the purpose of defining a reasonable
measure of the output, we can say that amplification of the input
signal occurs only if

Recall thatRi ≡ R̃iXtot,i, whereXtot,i is the total concentration of
the ith kinase andR̃i is the (true) rate of phosphorylation.
Therefore, we still expect thatR̃i < âi, i ) 1, ...,n, as should
be the case for a weakly activated pathway.

The norm||Ĝ||∞ is often called theinternal gain of the system
which, through expression 9, provides a useful and easy way
to compute the input-to-output strength relation. For example,
if a MAPK cascade has a “5-fold amplification”, then its internal
gain is ||Ĝ||∞ ) 5.

Note that, in the case wherel ) 0, the internal gain||Ĝ||∞ is
infinite, meaning that in at least one step (Xn f Xn+1) there is
no degradation term. Then the estimate 9 contains no useful
information. However, forl ) 0, we have

and we also have an estimate for the “strength” of the signal
Xn, since

3. Signaling Time, Signal Duration, and Signal Amplitude
Some basic quantities which serve to characterize a signal

transduction system are the overall amplification from the input
to the ouput, the duration of the output signal, and the time it
takes the input signal to traverse the cascade. There are several
possible definitions and estimates of these quantities; here we
extend the definitions given by ref 10, embedding them in the
context of frequency-domain analysis and generalizing them to
arbitrary inputs.

To be concise, let us identify the cascade 5 by its parameters
and associate with it the following (2n + 1)-tuple

where it is assumed thatn ∈ N andRi andâi are positive real
numbers, fori ) 1, ...,n.

We will also introduce the notationU for denoting the set of
inputs.

Definition 3.1. For system 5, with parametersC and a leak
factor l > 0, for each inputR, the signaling time, τ, and the
output signal duration, σ, are given by

Thesignaling time to step iand thesignal duration at step i, i
e n, are given by

To understand the significance of these definitions, recall the
properties of the Laplace transform and compute (withY(t) )
0 for t e 0)

and thus we recover expressions 4 and 5 of ref 10

||Y||2: ) [∫-∞

+∞ |Y(t)|2 dt]1/2

||Ŷ||2: ) [ 1
2π ∫-∞

+∞ |Ŷ(jω)|2dω]1/2

||Ŷ||2 ) ||Y||2, ||R̂||2 ) ||R||2

||Ĝ||∞: ) sup
ω∈R

|Ĝ(jω)|

||Y||2 e ||Ĝ||∞||R||2 (9)

|Ĝi(jω)|2 )
|Ri|2

|jω + âi|2
≡ Ri

2

ω2 + âi
2

e
Ri

2

âi
2

for ω ∈ (-∞,∞)

||Ĝ||∞ ) 1
l

R1‚‚‚Rn

â1‚‚‚ân
(10)

R1‚‚‚Rn > â1‚‚‚ân (11)

Y(t) ) Xn+1(t) ) ∫0

t
Xn(t′) dt′

||Xn||2 e
R1‚‚‚Rn

â1‚‚‚ân
||R||2

C: ) (n, R1, ...,Rn, â1, ...,ân)

τ(C,l,R): ) - d lnŶ
ds

(s)s)0 σ(C,l,R): ) (d2 lnŶ

ds2
(s)s)0)1/2

τi(C,R): ) -
d lnX̂i

ds
(s)s)0 σi(C,R): ) (d2 lnX̂i

ds2
(s)s)0)1/2

Ŷ(0) ) ∫0

∞
Y(t) dt

dŶ
ds

(0) ) - ∫0

∞
tY(t) dt

d2 Ŷ

ds2
(0) ) ∫0

∞
t2Y(t) dt

τ )
∫0

∞
tY(t) dt

∫0

∞
Y(t) dt

σ2 )
∫0

∞
t2Y(t) dt

∫0

∞
Y(t) dt

- (∫0

∞
tY(t) dt

∫0

∞
Y(t) dt )2

Transduction Cascades J. Phys. Chem. B, Vol. 108, No. 39, 200415313



whereτ can be regarded as the expected value (of the time to
traverse the pathway) andσ as the corresponding variance.

An estimate of the amplitude of the output signal, as given
in eq 6 of ref 10, is the valueS, such that 2σS ) ∫0

∞ Y(t) dt.
Again, we propose a more generalized notion, suggested by the
input-to-output estimate (eq 9), that takes advantage of the easily
computed internal gain of the system, and also incorporates the
strength of the signal.

Definition 3.2. For system 5, with parameterC and a leak
factor l > 0, for each inputR, thesignal amplitudeis given by

where ĜC is the transfer function of eq 8.A may also be
regarded as the amplitude of a constant signal of durationσ,
but Definition 3.2 differs from the definition of amplitude given
in 10 in essentially three points:

1. The meaningful quantity for measuring the amplitude is
not the integral∫ Y(t) dt (which computes the area under the
curveY(t)) but rather the 2-norm (∫ |Y(t)|2 dt)1/2, which computes
the strength of the signal.

2. The amplitude is proportional to the product of the internal
gain of the system and the 2-norm of the input. This simplifies
calculations since, for each cascade, the||Ĝ|| is computed only
once and||R||2 is computed for each input signal.

3. The product||Ĝ||∞||R||2 is used as an estimate for||Y||2,
but we know that||Ĝ||∞ is the least factor that satisfies the
inequality||Y||2 e �||R||2. In fact, ref 19 shows how to construct
examples of inputs for which the equality is approximated. For
instance, for any� > 0, the input depicted in Figure 3

has unit norm, i.e.,||R||2 ) 1, and satisfies||Y||2 ≈ ||Ĝ||∞, for
� small enough, as shown in Supporting Information. (One can
also show the existence of positive-valued inputs satisfying
this.24)

We remark that these definitions are valid not only for the
special case whenA, B, andC are of the form specified in eqs
6 and 7, but in fact they are valid for any linear system of the
form 5. For instance, in section 5, we compute these quantities
for the case when there is positive feedback from the last to the
first kinase. We next explicitly compute these quantities for the
special case whenA, B, andC are of the forms of eqs 6 and 7
and l ) 0

whereq(R) ) d2 ln R̂/ds2s)0, and

In the casel ) 0, the quantitiesτ, σ, andA may be computed
for Y ≡ Xn. The expressions are very similar, except that all
the terms inl vanish.

Example 3.3.A typical input is a decaying exponentialR(t)
) R0 e-λt, with

A “peak”-like input may be represented byR(t) ) R0t e-λt,
with

For a constant signal, of magnitudeR0, applied for an interval
of time T0, we have

4. Cascade Design Optimization

From the analysis of the quantitiesτ, σ, andA, defined in
section 3, we can explore the signaling efficiency of kinase
cascades. The definition of an “efficient” response may depend
on the particular biological context, but it typically involves
the relationship between the length of the cascade, the amplitude
of the signal, and its duration. A question posed in ref 10 is
whether cascades can respond with sharp signals, i.e., simul-
taneously of short duration and high amplitude. Our model
provides a definite answer to this question.

As we have seen, our linear model has a gain that depends
on the length of the cascade and the values of the on/off rate
constants but does not depend on the input. As a starting point,
we may think of the family of cascades that have the same value
for the internal gain, sayK, and examine their length, the
distribution of the “on/off” rates, and signal amplitude and
duration. The problem we would like to study is then:

(P) For each fixed internal gain,||Ĝ||∞ ) K, find the optimal
combination of the on/off rates and the length of the cascade
that maximizes the signal amplitude,A, for any inputR.

To formulate this problem, first define the family of cascades
that have the same internal gainK

For each inputR, and each leak factorl, define the set of
“optimal” cascades, that is, those cascades which exhibit
maximal signal amplitude

Figure 3. An input that satisfies||R||2 ) 1 and||Y||2 ≈ ||Ĝ||∞, with �

) 0.2.

σ(C,l,R) ) x1

l2
+ ∑

i)1

n 1

âi
2

+ q(R) (15)

A(C,l,R) )
1

x1

l2
+ ∑

i)1

n 1

âi
2

+ q(R)

R1‚‚‚Rn

lâ1‚‚‚ân

||R||2 (16)

||R||2 )
R0

2λ
R̂(s) )

R0

s + λ
d lnR̂

ds
(0) ) - 1

λ
q(R) ) 1

λ2

||R||2 )
R0

4λ3
R̂(s) )

R0

(s + λ)2

d lnR̂
ds

(0) ) - 2
λ

q(R) ) 2

λ2

||R||2 ) R0xT0 R̂(s) ) R0
1 - e-sT0

s

d ln R̂
ds

(0) ) -
T0

2
q(R) )

T0
2

12

CK,l: ) {C ) (n, R1, ...,Rn, â1, ...,ân):
R1‚‚‚Rn

lâ1‚‚‚ân
) K}

A(C,l,R): )
||ĜC||∞
σ(C,l,R)

||R||2 (12)

R(t) ) 2
r

πt
sin �t with r ) (π/�)1/2 for t g 0 (13)

τ(C,l,R) )
1

l
+ ∑

i)1

n 1

âi

+
d lnR̂

ds
s)0 (14)
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Then define the function

and observe that it satisfies

Finally, define the set of cascades that minimizeσ0 over the
family CK,l

Our first result states that in fact the setsC*(l,R) andCmax(l,R)
are equal or, in other words, that an optimal cascade will
simultaneously maximize the signal amplitude and minimize the
signal duration.

Lemma 4.1.In the notation defined above,Cmax(l,R) ) C*-
(l,R), for all inputsR ∈ U and leak factorsl > 0.

The proof is provided in the Supporting Information. An
immediate conclusion from this Lemma is that

so that, for any fixed internal gain, maximal amplitude is
achieved simultaneously with minimal signal duration. This is
consistent with the notion that the most efficient cascade would
respond with sharp (high-peaked and fast) output signals. In
the limit, this notion can be regarded as an “instantaneous
response” (σ ≈ 0) coupled with “infinite signal amplitude” (A
≈ ∞), which is, of course, not biologically viable. A realistic
solution to problem (P) does exist and is stated in Theorem 1.

Since the signal duration depends only on the cascade length
and the “off” rates,âi, (besides the input term), we expect the
“on” rates,Ri, to play a small role in maximizing the efficiency
of the output response. So, for addressing the problem (P), we
will consider two different assumptions on the available
knowledge ofRi: either (a) all theRi have an equal, fixed value,
R; or (b) the product of theRi is known, at some fixedRP. We
will also assume that the “leak” factorl is fixed, since this
parameter was added artificially and may be adjusted indepen-
dently.

Before stating the main Theorem, we need to introduce some
notation. Define the functionf:(1, ∞) f (0, ∞) to be

Some properties of this function are stated in the Supporting
Information. For any real numberM g 1, define

which are also known as, respectively, the “floor” and “ceiling”
functions ofM. Observing that any real numberM g 1 can be
written as the sum of its integral and fractional parts

whereδM ∈ [0,1), define the functionΨ:(-∞,∞) f N, which
is plotted in Figure 4

This is a step function where the “jump” between steps always
occurs in an interval between two integers, sayk andk + 1, at
a point that depends on the numberk. In particular, since the
function f is strictly increasing and takes values in the interval
(2 ln 2 - 1, 1/2) (see Supporting Information), it follows that in
some cases only the fractional part of the numberM affects the
location of the “jump” discontinuity

while for the other cases, 2 ln 2- 1 < δM < 0.5, the choice
depends also on the integral part ofM.

Theorem 1.Let K > 0 andl > 0 be fixed real numbers. Let
Ck,l be the set of all cascades (eq 5) with internal gainK, as
defined above. Then:

1. For each fixedn ) N ∈ N, the elementsC )
(N,R1,...,RN,â1,...,âN) ∈ C*(l, R) satisfyâi ) â, for all i ) 1, ...,
N, where

2 (a). Any elementC ∈ C*(l,R) of the form C )
(n,R,...,R,â1,...,ân) satisfies

2 (b). Any element C ∈ C*(l,R) of the form C )
(n,R1,...,Rn,â1,...,ân) ∈ C*(l,R) with R1‚‚‚Rn ) Rp satisfies

Before presenting the proof of the Theorem, some remarks on
the interpretation of points 1, 2a, and 2b. The first part of the
result is consistent with the observation that the ordering of the
amplification or dampening single steps within the cascade does
not influence the final output signal (also observed in ref 10).

The second part of the Theorem shows that indefinitely
increasing the cascade’s length will not increase amplification.
In fact, there is an optimal length for the cascade that provides
both maximum signal amplitude and minimum duration. A
similar observation was mentioned in ref 10, and our Lemma
4.1 and Theorem 1 characterize the conditions for achieving
this optimization. For each gainK and leak factorl, this optimal
length is easily read out from Figure 4. For instance, a cascade
with a 6-9-fold gain (andl ) 1) is seen to have an optimal
length of 4 steps. Figure 5 illustrates Theorem 1, for an 8-fold
cascade gain. The Figure shows the results of two simulations
of system 5, both with inputR(t) ) 5t e-2t but different lengths
of the cascade. The various curves representR, the concentra-
tions of each kinaseXi, i ) 1, ...,n, and the outputXn+1. It is
clear that, for the nonoptimaln ) 7, the output’s amplitude

Cmax(l,R): ) {C ∈ CK,l: A(C,l,R) g A(C′,l,R) for

C′ ∈ CK,l}

σ0(n,â1,...,ân): ) ∑
i)1

n 1

âi
2

σ(C,l,R) ) (1

l2
+ σ0(n,â1,...,ân) + q(R))1/2

C*(l,R): ) {C ∈ CK,l: σ0(n,â1,...,ân) e σ0(n′,â′1,...,â′n) for

C′ ∈ CK,l}

maximizeA(C,l,R) overCK,l

S minimizeσ0(n,â1,...,ân) overCK,l

f(k) ) k2[(1 + 1
k) ln(1 + 1

k) - 1
k]

M ) largest integer less than or equal toM

M ) least integer greater thanM

M ) M + δM

Ψ(M) ) {1, M e 1
M, M > 1, andδM e f (M)
M M > 1, andδM > f (M)

0 e δM < 2 ln 2 - 1 Ψ(M) ) M

1
2

< δM < 1 Ψ(M) ) M

â ) (R1‚‚‚RN

Kl )1/N

n ) Ψ(2 ln Kl) and âi ) â ) R( 1
Kl)

1/n

n ) Ψ(2 ln
Kl
Rp

) and âi ) â ) (Rp

Kl)
1/n
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decreases and the signal duration increases. Note that the output
curveX8 is more spread out across time and its maximum value
is lower, than for the optimal case.

Theorem 1 can be proved by successively solving the two
optimization problems:

(P1) For each fixedn, minimizeσ0, over all possible choices
of â1, ..., ân ∈ (0,∞), subject to||Ĝ||∞ ) K, and

(P2) Minimizeσ0, over all possible choices ofn ∈ N andâ1,
...,ân ∈ (0,∞), subject to||Ĝ||∞ ) K. Recall that we are assuming
that either (a) all theRi have an equal, fixed value,R, or (b) the
product of theRi value is known, at some fixedRP. The solution
of (P1) is equal for both cases, but the solution of (P2) is slightly
different for a or b. Thus, problem (P1) is part 1 and (P2) is the
part 2 of the Theorem. As we will see, the solution of (P1)
greatly simplifies the proof of (P2).

4.1. Solving (P1): Proof of Part 1 of Theorem 1.Given a
cascade of lengthn, this problem consists of finding a set ofn
parametersâh1, ...,âhn such that the functionσ0 attains a minimum
value atâh i, i ) 1, ...,n, i.e.

for everyâ1, ..., ân such that||Ĝ||∞ ) K

For simplicity, rescale the values toBi ) 1/âi
2, and observe

that

Then, the problem consists of minimizing the function

over all possible choices ofBi > 0, i ) 1, ...,n - 1, where

In the Supporting Information, we show that the solution to
this optimization problem is

which also implies

So, the choice of the “off” rate constants that minimizesσ0 is
to haveâ1 ) â2 ) ‚‚‚ ) ân ) âh, with

Figure 4. Left: the functionΨ(M). Right: the functionΨ(2 ln Kl). Note that, for a given gainK and leak factorl, the optimal length is given by
the integer platform corresponding to the productKl.

Figure 5. Signal transduction cascade withR(t) ) 5t e-2t, with K ) 8, l ) 1, Ri ) 1.2. The horizontal lines representA. Left (optimal case):n
) 4, âi ≈ 0.714,i ) 1, ...,n, A ) 0.409, andσ0 ) 3.059. Right: n ) 7, âi ≈ 0.892,i ) 1, ...,n, A ) 0.389, andσ0 ) 3.210.

1

âh1
2
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âh2
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+ ‚‚‚ + 1

âhn-1
2

e
1

â1
2

+ 1

â2
2

+ ‚‚‚ + 1

ân-1
2

||Ĝ||∞ ) 1
l

R1‚‚‚Rn

â1‚‚‚ân
) K S Klâ1‚‚‚ân - R1‚‚‚Rn ) 0

1
B1‚‚‚Bn

) (â1‚‚‚ân)
2 ) (R1‚‚‚Rn

Kl )2

F(B1, ...,Bn-1) ) B1 + ‚‚‚ + Bn-1 + Q
B1‚‚‚Bn-1

Q ) ( Kl
R1‚‚‚Rn

)2

Bi ) Q(1/n) i ) 1, ...,n - 1

Bn ) Q

Q(1-1/n)
) Q(1/n)
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as we wanted to show.
4.2. Solving (P2): Proof of Part 2 of Theorem 1.To solve

the more general problem, we first show how its statement can
be simplified. Given the value ofR (respectively,RP), suppose
that we have found a solution of (P2), i.e., an integern* and a
set of constantsâi

/, i ) 1, ...,n* satisfying

for any other cascadeC ) (n, R1, ..., Rn, â1, ..., ân) with Ri )
R, i ) 1, ...,n (respectively,R1‚‚‚Rn ) RP).

We have already showed that

with

and we know this choice yields the unique minimum ofσ0 for
a fixed lengthn. So, it follows that the solution of (P2) must
also satisfy

This observation allows us to simplify the statement of problem
P2 and look only for solutions where allâi values are equal:
(P2)′ Minimize σ0(n,â,...,â) ) n/â2, overn ∈ N andâ ∈ (0,∞),
subject to (R/â)n ) Kl.

From the constraint||Ĝ||∞ ) K, we have

In either case, to solve the problem, it is enough to minimize
the function ln[σ0(n,â(n))]

over n ∈ N, whereM is a positive constant with value either

For a fixedM, let the minimizer ofF(n,M) over n ∈N be

which is given by (see the Supporting Information for a proof)

Thus, for part 2a of the Theorem, we haven ) n*(2 ln Kl)
) Ψ(2 ln Kl), and for part 2b, we haven ) Ψ(2 ln Kl/RP). The
valueâ is given according to part 1.

As shown in the example of Figure 6, evaluation ofσ0 at
n*(M) yields a value which is actually quite close to the “true”
σ0(M, â(M)).

5. Cascades with Positive Feedback

In this section, we investigate the behavior of cascades under
positive feedback (for a computational study of feedback effects
see, for instance, ref 6). Assume that the last kinase,Xn, also
contributes to the activation of the first kinase; then the
differential equation forX1 includes one more term and becomes

We will assume that� is small enough

This guarantees that the cascade is stable with respect to small
perturbations (that is, all the eigenvalues of the system’s matrix
A have negative real parts, see section 6).

We can compute the transfer function for the system with
feedback (� > 0), just as we did in section 2, for a given cascade
C ) (n,R1,...,Rn,â1,...,ân) and any inputR and leak factorl > 0.
We obtain

The infinity norm is again obtained for the caseω ) 0 (s )
jω) (see below, at the end of this section)

Computing the signaling time (τ) and the signal duration (σ)
and amplitude (A), we have

Comparison of these quantities for the models with and without
feedback leads to the following conclusions:

1. The system with feedback exhibits higher internal gain.
2. The system with feedback exhibits larger signaling time

and signal durationτfb > τ andσfb > σ.
So, for an arbitrary cascade, the existence of a positive

feedback leads to a less sharp output signal; the signal
transduction down the cascade takes a longer time, and the
output signal has greater duration.

On the other hand, the existence of feedback may be used to
great advantage in the design of an optimal cascade: positive
feedback (at a constant rate�) allows the cascade to be of shorter

âh ) 1
xBn

) (R1‚‚‚Rn

Kl )(1/n)

σ0(n*,â1
/,...,ân*

/ ) e σ0(n,â1, ...,ân) (17)

σ0(n*,âh*,...,âh*) e σ0(n*,â1
/,...,ân*

/ ) (18)

âh* ) (R1‚‚‚Rn*

Kl )(1/n*)

âi
/ ) âh* i ) 1,...,n*

Case 2a:

(Râ)n
) Kl S â ) R( 1

Kl)
(1/n)

w σ0(n,â(n)) ) 1

R2
n(Kl)(2/n)

Case 2b:
RP

ân
) Kl S â ) (RP

Kl)
(1/n)

w σ0(n,â(n)) ) n(Kl
RP

)(2/n)

F(n,M) ) ln n + 1
n

M

M ) 2 ln Kl, for case 2a (19)

M ) 2 ln
Kl
RP

, for case 2b (20)

n*(M): ) {n ∈ N:F(n,M) e F(n′,M) for n′ ∈ N}

n*(M) ) Ψ(M)

dX1

dt
) R1R(t) + �Xn - â1X1

â1‚‚‚ân > �R2‚‚‚Rn

Ĝ(s) ) 1
s + l

R1‚‚‚Rn

(s + â1)‚‚‚(s + ân) - �R2‚‚‚Rn

(21)

||Ĝ||∞ ) 1
l

R1‚‚‚Rn

â1‚‚‚ân - �R2‚‚‚Rn

τfb(C,l,R) )
1

l
+

â1‚‚‚ân ∑
i)1

n 1

âi

â1‚‚‚ân - �R2‚‚‚Rn

+
d ln R̂

ds
s)0 (22)

σfb(C,l,R) )

(1

l2
+

(â1‚‚‚ân)
2[∑i)1

n 1

âi
2

+ �R2‚‚‚Rn ∑
i*j

1

âiâj]
(â1‚‚‚ân - �R2‚‚‚Rn)

2
+ q(R))1/2

(23)

Afb(C,l,R) ) 1
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length and still have the same maximal amplitude/minimal
duration. The results in Theorem 1 are valid just as before, with
suitable adjustments to some of the constants. Thus, we now
have

and now, similarly to the proof in section 4.1, we set

which leads to the optimal value forâi ) âfb, i ) 1, ...,n

To find the optimal length of the cascade with feedback, note
that

Since Mfb e M, then alsonfb
/ (Mfb) e n*(M). Therefore, we

conclude that, for the cascade with feedback:
3. For each fixedn, the value of the off rates that maximizes

A (minimizesσ0) over C*(l,R) is larger,âfb > â.
4. The length of the cascade that maximizesA (minimizes

σ0) over C*(l,R) is smaller,nfb
/ < n*.

These results agree with what would be expected from a
signaling pathway: indeed, the existence of positive feedback
enhances the activation at each step, so a larger amount of the
phosphorylated kinase will be produced; to keep this amount
at a “weak” level, the phosphatases should increase their activity.
On the other hand, since the amount of phosphorylated kinases
increased, a smaller number of steps is required to produce the
same signal amplitude as in the cascade with no feedback.

To compute the infinity norm||Ĝ||∞, we first note that the
denominator ofĜ(jω), which we will denote by den(Ĝ(jω)),
satisfies (by the triangle inequality)

Also

for everyω ∈R, where the equality holds if and only ifω ) 0.
Thus

where the last inequality follows from the assumptionâ1‚‚‚ân

> �R2‚‚‚Rn. Therefore, if the expression|den(Ĝ(jω))| is mini-
mized atω ) 0, then the function|Ĝ(jω)| is maximized atω )
0, as we wanted to show.

6. Stability of Cascades

A signaling pathway is consideredstable(see ref 10) if small
and random perturbations (those that do not consist of biologi-
cally relevant inputs) are not amplified. So, in the presence of
small perturbations, the amount of phosphorylated kinases
should not be allowed to grow very large and should return to
the stable state, withXi ≈ 0, for all i ) 1, ..., n. Thus, the
behavior of a signaling pathway in the absence of a relevant
input always satisfies expression 3, that is,Xi , Xtot,i for each
i ) 1, ...,n, and hence its stability may be established by analysis
of model 5.

In the absence of an input (R(t) ≡ 0), the point (X1, X2, ...,
Xn+1) ) (0, 0, ..., 0): ) 0 is an equilibrium point of system 5,
and the stability of this equilibrium determines the stability of
the pathway. The equilibrium point0 is stable if all the
eigenvalues of the matrixA have negative real parts. This is
indeed the case for the system described by eq 5. We know
that, after a perturbation, the system will always return to0.
Moreover, we can estimate that a small perturbation will also
generate a small response, since

where� is a constant, equal to||Ĝ||∞.
For signaling cascades that exhibit a lower degree of kinase

specificity, the problem of stability of the cascade (see ref 10)
becomes significant. If a kinaseXi affects both the downstream
kinases and some upstream kinase, then the eigenvalues ofA
change, and stability is not guaranteed. Allowing for kinase non-
specificity, a resulting matrixA could be of the form

Figure 6. The functionσ0(n,â(n)), for Kl ) 8 andR ) 1.2, and the points (M,σ0(M,â(M))) (circle) and (n*, σ0(n*, â(n*))) (star).

||Ĝ||∞ ) K S â1‚‚‚ân )
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Kl )(1/n)

σ0(n,â(n)) ) nMfb
(1/n) with

Mfb ) 2 ln( Kl
(R1 + �Kl)R2‚‚‚Rn

)(1/n)

|den(Ĝ(jω))| g |jω + l|[|jω + ân|‚‚‚|jω + ân| - �R2‚‚‚Rn]

|jω + ân|‚‚‚|jω + ân| )

((ω2 + â1
2)‚‚‚(ω2 + ân

2))1/2 g â1‚‚‚ân

|den(Ĝ(jω))| g l[â1‚‚‚ân - �R2‚‚‚Rn] ) den(Ĝ(0)) > 0

||Ypert||2 e �||Rpert||2

A� ) (-â1 �12 0 ‚‚‚ 0 �1n 0
R2 -â2 0 ‚‚‚ 0 0 0
� R3 -â3 ‚‚‚ 0 0 0
� � R4 ‚‚‚ 0 0 0

l ... l
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15318 J. Phys. Chem. B, Vol. 108, No. 39, 2004 Chaves et al.



and the signaling pathway is stable if all the eigenvalues of A�

have negative real parts.
Some relevant easy-to-compute examples are:
(1) Suppose that each kinasei is only allowed to activate its

downstream kinases (�1n ) 0, �12 ) 0, and� * 0); in this case,
it is not surprising that stability is not affected at all, because
this situation corresponds to a lower triangular matrix, again
with eigenvalues- âi;

(2) Suppose that there exists feedback from the last activated
kinase to the first kinase (�1n ) �0, �12 ) 0, and� ) 0); in this
case, if�0 satisfies

then the eigenvalues of the matrixA� all have negative real parts
and the new cascade is stable. To prove this, suppose that there
exists an eigenvalue ofA� with positive real part, that is, a
complex numberλ such that

and

Then eq 25 implies|λ + âi| g âi, for i ) 1, ...,n and so

which contradicts eq 26.

7. Discussion and Conclusions

By modeling weakly activated signal transduction cascades
as linear systems and applying techniques from control systems
theory, one can identify the cascade’s input-to-output transfer
function and internal gain. On the basis of these properties, the
concepts of signal duration, signaling time, and signal amplitude
may be defined in an intuitive and general form for any input
signal.

Our analysis shows that, for linear cascades, signal amplitude
and duration are, respectively, maximized and minimized
simultaneously. So, a cascade can respond with signals that are
both fast and exhibit high amplification. To achieve the highest
amplification and the shortest duration response, the cascade
should have all off rates equal to some valueâ.

We also show that, for each fixed internal gain, there are
finite Valuesfor the length of the cascade and the off constants
that simultaneously maximize (minimize) the signal amplitude
(signal duration). To achieve these optimal conditions, the
optimal length should be given by the well-defined step function
Ψ. This functionΨ depends only on, and increases logarithmi-
cally with, the internal gain of the system. The off constants
should all have the same valueâ. This optimal valueâ depends
on the internal gain and the length of the system.

In addition, our analysis shows that a positive feedback term
on the cascade enhances the optimal design, by allowing the
same signal amplitude and duration to be achieved with a shorter
length and higher off rates.

Other issues, such delay at each phosphorylation step, and
the stability of the signaling pathway when there is a high degree
of nonspecificity among the kinases, are also naturally examined
within this framework. We have seen that the stability of the
zero steady-state of the cascade with respect to small perturba-
tions is established by checking that the eigenvalues of the
matrix A all have negative real parts. Supposing that, at each
step, there is a delayδi in the transmission of the signal the
dynamics at stepi becomes (dXi(t)/dt) ) RiXi-1(t - δi-1) -
âiXi(t - δi). The Laplace transform ofXi(t - δi) is e-sδiX̂i so
that the transfer function becomes

But, for an imaginary numberjω, |e-jωδi| ) 1, so the norm||Ĝ||∞
is unchanged, and since e-sδi ) 1 when evaluated ats ) 0, the
signal duration and amplitude are also unchanged. This is not
surprising, because in a linear system, delay simply causes a
temporal translation of the signal, by a fixed amount, without
affecting amplitudes.

Our analysis has been entirely linear, since we considered
only the weakly activated case. The key tool for our analysis
was the “H∞ norm” ||Ĝ||∞ of the transfer function of the system.
Defined in this fashion, this notion only makes sense for linear
systems. However, an equivalent definition of||Ĝ||∞ is obtained
(see Supporting Information) by considering the smallest
constantc > 0 such that||Y||2 e c||R||2, that is to say, the
induced operatorL2 norm of the system. This latter characteriza-
tion is valid for arbitrary nonlinear systems. Recall that we have
the following set of equations

and we had simplified (changing notations to use “Y” for future
reference) in the case of weakly activated pathways to

From the form of the equations, it is clear that, ifR(t) g 0 for
all t and if initial conditions are nonnegative, then solutions of
both systems remain nonnegative.

Lemma 7.1.Pick any non-negative input functionR(t) and
consider any solution of theX-system with a nonnegative initial
conditionX(0) and the solution of theY system with the same
initial condition Y(0) ) X(0). Then,Xi(t) e Yi(t) for all t g 0
and all i.

Proof. By induction oni, it is enough to show the following
fact: if p is a non-negative constant and 0e u(t) e V(t) for all
t g 0, then the solution of

â1‚‚‚ân > �0R2‚‚‚Rn S �0 <
â1‚‚‚ân

R2‚‚‚Rn

λ ) λre + jλim λre g 0 (25)

det(A� - λI) ) (-1)nl[(λ + â1)‚‚‚(λ + ân) - �0R2‚‚‚Rn] ) 0
(26)

|(λ + â1)‚‚‚(λ + ân) - �0R2‚‚‚Rn|
g |(λ + â1)‚‚‚(λ + ân)| - �0R2‚‚‚Rn

g â1‚‚‚â2 - �0R2‚‚‚Rn > 0

Ĝ(s) ) 1
s + l

R1‚‚‚Rn

(s + â1)‚‚‚(s + ân)
e-sδ1 esδn+1

dX1

dt
) R1R(1 -

X1

Xtot,1
) - â1X1

dXi

dt
) RiXi-1(1 -

Xi

Xtot,i
) - âiXi i ) 2, ...,n

dXn+1

dt
) Xn - lXn+1

dY1

dt
) R1R - â1Y1

dYi

dt
) RiYi-1 - âiYi i ) 2, ...,n

dYn+1

dt
) Yn - lYn+1
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with any initial conditionsx(0) ) y(0) g 0 satisfiesx(t) e y(t)
for all t g 0. Let us prove this next. We observe that

because-puxe 0 andu e V. The standard comparison lemma
(see, e.g., ref 20, Lemma 2.5) for scalar differential equations
says that ify is a solution of a differential equation dy/dt )
f(t,y) and if x satisfies dx/dt e f (t,x(t)) andx(0) e y(0), then
x(t) e y(t) for all t; we simply apply this comparison lemma
with f(t, a) ) RV - âa.

Remark 7.2. Instead of using induction on the cascade, the
same result could be proved as a consequence of comparison
theorems for “monotone” systems with inputs.21

As a corollary of the Lemma, we conclude that, for zero initial
conditions on theXi values, theL2 norm of Xn+1 satisfies

as well. In other words, unless further information is provided
regarding the total amountsXtot,i, the calculated gain is also the
best possible estimate of the gain for the fully nonlinear system.
Of course, if one knows the value ofXtot,i, then the calculation
of the exact value of the inducedL2 gain (smaller than the
estimate given by the linearized system) is a harder problem.
Another paper24 deals with that study, based upon techniques
from “nonlinearH∞” theory22 and more generally, input to state
stability theory.23

To give a specific example, consider the simplest case of a
one step cascade

For inputs of the formR(t) ) R0 for 0 e t e T, andR(t) ) 0
for t > T, one can compute the exact value of theL2 gain, for
which we will try to produce a suitable lower bound. Some
algebra shows that

The largest value of this quotient is obtained for smallR0. The
limiting value asR0 f 0 provides a lower bound for theL2 gain

On the other hand, the upper bound onc is, using Lemma 7.1,
||Ĝ||∞ ) R1/(lâ1) (as may be recalled from eq 10). Therefore,
we conclude that for thenonlinearone-step cascade, theL2 gain

is still ||Ĝ||∞. The generalization to a cascade of lengthn may
be found in ref 24.
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1 Proof of the equality Cmax(`, R) = C∗(`, R)

Fix any ` > 0, and any R ∈ U . Recall the notation C = (n, α1, . . . , αn, β1, . . . , βn). Given any
C, C′ ∈ CK, `, the following equivalences hold:

σ0(n, β1, . . . , βn) ≤ σ0(n′, β′1, . . . , β
′
n),

⇔
√

1

`2
+ σ0(n, β1, . . . , βn) + q(R) ≤

√
1

`2
+ σ0(n′, β′1, . . . , β

′
n) + q(R),

⇔ σ(C, `, R) ≤ σ(C ′, `, R) (1)

and also

σ(C, `, R) ≤ σ(C ′, `, R) ⇔ K ‖R‖2
σ(C, `, R)

≥ K ‖R‖2
σ(C′, `, R)

⇔ A(C, `, R) ≥ A(C ′, `, R). (2)

Therefore, (1) and (2) imply that, for any two cascades C, C ′ ∈ CK, `,

σ0(n, β1, . . . , βn) ≤ σ0(n′, β′1, . . . , β
′
n) ⇔ A(C, `, R) ≥ A(C ′, `, R). (3)

To show that C∗(`, R) is contained in Cmax(`, R), pick any C ∈ C∗(`, R). Then

σ0(n, β1, . . . , βn) ≤ σ0(n′, β′1, . . . , β
′
n), for all C ′ ∈ CK, `.

By (3), this is equivalent to A(C, `, R) ≥ A(C ′, `, R), for all C ′ ∈ CK, `, and so C ∈ Cmax(`, R).
Conversely, we need to show that Cmax(`, R) is contained in C∗(`, R). So, pick any C ∈

Cmax(`, R). It satisfies:

A(C, `, R) ≥ A(C ′, `, R), for all C ′ ∈ CK, `.

Again by (3), this is equivalent to σ0(n, β1, . . . , βn) ≤ σ0(n′, β′1, . . . , β
′
n) for all C′ ∈ CK, `. We

conclude that C ∈ C∗(`, R), as we wanted to show.

2 Properties of function f(k)

The function f : (1,∞)→ (0,∞)

f(k) = k2

[(
1 +

1

k

)
ln

(
1 +

1

k

)
− 1

k

]

has the following properties:
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1. f is strictly increasing;

2. f(1) = 2 ln 2− 1 ≈ 0.386 and limk→∞ f(k) = 1/2.

To prove property 1, notice that another expression for f is f(k) = k[(k+ 1) ln (k+ 1)/k − 1],
and compute the first and second derivatives:

d f

dk
= (2k + 1) ln

k + 1

k
− 2

d2 f

dk2
= (2k + 1) ln

k + 1

k
+

2k + 1

k(k + 1)
.

It is clear that the second derivative is always positive, and hence the first derivative is strictly
increasing. Since df/dk(1) = 3 ln 2 − 1 > 0, it follows that the first derivative is also always
positive and therefore the function f is strictly increasing.

To prove property 2, the value f(1) is straightfoward, and for the limit as k → ∞, it is
easier to consider x = 1/k and compute:

lim
k→∞

f(k) = lim
x→0

f(1/x) = lim
x→0

(1 + x) ln(1 + x)− x
x2

=
0

0
.

This indeterminacy can be solved by twice applying L’Hôpital’s rule:

...first time:
ln(1 + x) + (1 + x) 1

1+x − 1

2x
→ 0

0
, as x→ 0

...second time:
1

1+x

2
→ 1

2
, as x→ 0.

0 5 10 15 20 25 30 35
0.35

0.4

0.45

0.5

k

f(
k)

2 ln 2 − 1

Figure 1: The function f(k).

3 Minimization of σ0

Let Q be a positive real number and n > 2 an integer. Consider the function F : (0,∞)n−1 →
(0,∞) given by

F (B1, . . . , Bn−1) = B1 + · · ·+Bn−1 +
Q

B1 · · ·Bn−1
.

2



Lemma 3.1 The choice of Bi > 0, i = 1, . . . , n−1 that minimizes the function F is: Bi = Q1/n,
i = 1, . . . , n− 1.

Proof. First, we claim that the search for a point (B1, . . . , Bn−1) where F is minimized can be
constrained to the compact set:

[
1

nn−1
Q1/n, n Q1/n

]n−1

. (4)

To justify the upper bound of the interval, observe that

F (Q1/n, . . . , Q1/n) = n Q1/n (5)

and that, for any j = 1, . . . , n− 1,

Bj ≥ n Q1/n ⇒ F (B1, . . . , Bn−1) > n Q1/n. (6)

So, it is enough to look for a minimum of F in the region Bi < n Q1/n, i = 1, . . . , n−1 (because
inside this region there is at least one point – equation (5) – where F has a lower value than
anywhere outside of this region).

To justify the lower bound, suppose that Bj ≤ 1
nn−1Q

1/n, for some j = 1, . . . , n − 1. Then
using the already established upper bounds

F (B1, . . . , Bn−1) >
Q

B1 · · ·Bj · · ·Bn−1
≥ Q

1
nn−1Q1/n [n Q1/n]n−2

= n Q1/n, (7)

and similarly we conclude that it is enough to look for a minimum of F in the region Bi >
1

nn−1Q
1/n, for i = 1, . . . , n− 1.

The function F is continuous, in fact differentiable, in the compact set (4), and so F has
(absolute) maximum and minimum values in this set. The maximum and minimum may be
attained either at a critical point of F , or at the boundary points of (4). Equations (6) and (7)
show that the minimum is not attained at any of the boundary points. So the minimum will
be attained at an interior point of the set (4), which must also be a critical point of F . The
critical points of F are given by:

dF

dBj
= 0 ⇔ 1− 1

Bj

Q

B1 · · ·Bn−1
, j = 1, . . . , n− 1,

or, equivalently,

Bj =
Q

B1 · · ·Bn−1
= B∗, j = 1, . . . , n− 1,

where B∗ satisfies

1− 1

B∗

Q

Bn−1
∗

= 0 ⇔ B∗ = Q1/n.

Thus, there exists a unique critical point of F , (B∗, . . . , B∗), which indeed belongs to the
compact set (4). By the discussion above, this point must be the minimizer of F , as we wanted
to show.
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4 Minimization of F (n,M)

For a fixed M , let the minimizer of F (n,M) over n ∈ N be

n∗(M) := {n ∈ N : F (n,M) ≤ F (n′,M), for every n′ ∈ N},

Lemma 4.1 Let M be any fixed real number. Then n∗(M) = Ψ(M).

Proof. Since n∗(M) is the minimizer of F (n,M) over the (positive) natural numbers, we start
by computing the derivative of F (n,M):

dF

dn
(n,M) =

1

n
− 1

n2
M =

1

n2
[n−M ].

We consider two distinct cases:

• Case M ≤ 0

dF

dn
(n,M) > 0, for all n ≥ 1,

so F (·,M) is a strictly increasing function and thus its minimizer over N is the smallest
natural number, i.e., n∗(M) = 1.

• Case M > 0

dF

dn
(n,M) = 0 ⇔ n = M,

and the derivative is negative for n < M and positive for n > M : in other words, the
function F has indeed a minimum at n = M . However, in general, M is not an integer,
so it cannot be a solution to our minimization problem. We should choose

n∗(M) =





1, M ≤ 1
bMc, M > 1, and F (dMe,M) ≥ F (bMc,M)
dMe, M > 1, and F (dMe,M) < F (bMc,M).

Note that we pick n∗ = 1 whenever M ≤ 1, since a cascade of length zero is meaningless.

To further analyze this condition, observe that we can write, for M > 1,

M = k + δ, bMc = k, dMe = k + 1

where k ≥ 1 is the integral part of M and δ ∈ [0, 1) is the fractional part of M . Now, the point
δ for which n∗ “jumps” from bMc to dMe can be found by setting

0 = F (dMe,M)− F (bMc,M) = F (k + 1, k + δ)− F (k, k + δ)

= ln(k + 1) +
1

k + 1
(k + δ)− ln k − 1

k
(k + δ).

Simplifying this equation we obtain:

ln
k + 1

k
− k + δ

k(k + 1)
= 0 ⇔ δ = k(k + 1) ln

k + 1

k
− k

⇔ δ = k2

[
k + 1

k
ln
k + 1

k
− 1

k

]

⇔ δ = k2

[(
1 +

1

k

)
ln

(
1 +

1

k

)
− 1

k

]
= f(k).
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Analysis of this function (see Appendix 2), shows that f is positive and strictly increasing, so
we have

F (dMe,M)− F (bMc,M) ≥ 0 ⇔ f(dMe)− δ ≥ 0.

Therefore, we should choose

n∗(M) =





1, M ≤ 1
bMc, M > 1, and δ ≤ f(bMc)
dMe, M > 1, and δ > f(bMc).

This proves the Lemma.

5 Dictionary: Laplace transforms and transfer functions

For further details about these topics see, for instance, [2] and [1], [3], [4].

Laplace transforms

For a function X : (−∞,∞)→ Rn (with |X(t)| ≤ cekt, for all t, for some positive constants c,
k), the Laplace transform is another function X̂ : R → Cn defined as

X̂(s) :=

∫ ∞

−∞
e−stX(t)dt

where R ⊂ C is the region of convergence of the integral. For example, if X(t) = e−3t, for t ≥ 0
and X(t) = 0 otherwise, then X̂(s) = 1/(s+ 3), and R = {s = sre + sim : sre > −3} ( is the
imaginary number

√
−1).

Some of its properties are:

1. For any constant matrix A ∈ Rn×n

ÂX(s) = A X̂(s);

2. The Laplace transform of the derivative of X is

d̂X

dt
(s) = X(0) + s

∫ ∞

−∞
e−stX(t)dt = X(0) + s X̂(s) ;

3. If X(t+ δ) =: W (t) is a translation of X, then

Ŵ (s) = e−sδX̂(s) ;

4. The inverse Laplace transform is

X(t) =
1

2π

∫ sre+∞

sre−∞
estX̂(s)ds

with s = sre + sim, where sre is chosen so that sre + sim is in the region of convergence
R.
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Transfer function

Let A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n be matrices, and let X ∈ Rn, Y ∈ Rm, R ∈ Rp, and
consider the n-dimensional linear system with m inputs and p outputs:

dX

dt
= AX +BR, (8)

Y = C X. (9)

Applying the Laplace transform operator on both sides of the linear system (8)-(9) yields an
algebraic equation relating the new functions X̂(s), Ŷ (s) and R̂(s):

sX̂(s) = AX̂(s) +B R̂(s)

Ŷ (s) = C X̂(s).

Moreover, for every s for which the matrix sI −A is invertible (I is the identity matrix),

(sI −A) X̂(s) = B R̂(s) ⇒ X̂(s) = (sI −A)−1B R̂(s)

and thus, one can solve immediately for the output

Ŷ (s) = C(sI −A)−1B R̂(s). (10)

The transfer function of the system (8) is

Ĝ(s) := C(sI −A)−1B,

and depends only on the internal structure of the system (i.e., A, B and C).

Impulse response

A useful case is that of the impulse response:

R(t) = δ(t), ⇒ R̂(s) ≡ 1

and therefore:

Ŷ (s) ≡ Ĝ(s) ⇔ Y (t) ≡ G(t),

so that the transfer function of the system is the output corresponding to a single pulse of
input.

The gain ‖Ĝ‖∞
We have

‖Ŷ ‖22 =
1

2π

∫ ∞

−∞
|Ĝ(ω)R̂(ω)|2dω ≤ 1

2π
sup
ω
|Ĝ(ω)|2

∫ ∞

−∞
|R̂(ω)|2dω

which is equivalent to

‖Ŷ ‖2 ≤ ‖Ĝ‖∞‖R̂‖2 ⇔ ‖Y ‖2 ≤ ‖Ĝ‖∞‖R‖2.
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So, the infinity norm of the transfer function is an upper bound on the strength of the output.
To see that it is indeed the least upper bound, see for instance [3]: we can always choose a

frequency ω0 so that

‖Ĝ‖∞ = |Ĝ(ω0)|.
In our case, this is ω0 = 0. Then choose a control such that

|R̂(ω)| =
{
r, if |ω| < ε
0, otherwise,

(11)

where ε > 0 and r should be such that R̂ has unit 2-norm, for instance r =
√
π/ε. For very

small ε > 0, |R̂(ω)| is zero, except on a very small neighborhood of ω0 = 0 and we may
approximate:

1

2π

∫ ∞

−∞
|Ĝ(ω)|2|R̂(ω)|2 dω ≈ 1

2π

∫ ε

−ε
r2 |Ĝ(ω0)|2 dω

=
1

2π
|Ĝ(ω0)|2

∫ ε

−ε
r2 dω

= ‖Ĝ‖2∞
where the last equality follows from the definitions of ω0 and r. Therefore

‖Y ‖2 =

[
1

2π

∫ ∞

−∞
|Ĝ(ω)|2|R̂(ω)|2 dω

] 1
2

≈ ‖Ĝ‖∞.

As an example of an input that (approximately) satisfies (11), consider R(t) = 2 r
πt sin εt

(for t ≥ 0), the input plotted in main text. Computation of the Laplace transform yields
R̂(s) = r

π

[
π − 2Arctan sε

]
, where the function Arctan is the principal branch of the complex

inverse tangent function. It is possible to show that, for sufficiently small ε, the function R̂
approximately satisfies condition (11), except at the discontinuity points ω = ±ε.

More generally, in a system with m inputs and p outputs, one defines the internal gain of
the system ‖Ĝ‖∞ as the induced L2 operator norm of the map from the inputs to the outputs.
It is possible to prove that

‖Ĝ‖∞ = sup
ω∈R

θ̄[Ĝ(ω)]

where θ̄ denotes the largest singular value of the matrix Ĝ(ω).

Stability of the transfer function

As remarked above, expression (10) is valid if and only if the matrix sI − A is invertible, or
equivalently

s 6= λ, for every eigenvalue, λ, of A.

If λm = max{Re(λ) : λ is an eigenvalue of A}, then the region of definition of the transfer
function is included in the set R = {s = sre + sim : sre > λm}.

If all the eigenvalues of the matrix A have negative real parts, then the transfer function is
said to be stable. This is case for the matrix of the signaling cascade dX/dt(t) = AX(t)+BR(t),
Y (t) = CX(t), whose eigenvalues are: −β1, . . . ,−βn, so the transfer function Ĝ(s) is stable and
well defined on R = {s = sre + sim : sre > −minβi}.
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