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Abstract

A commonly employed measure of the signal amplification properties of an input/output system is its induced L2 norm, sometimes also
known as H∞ gain. In general, however, it is extremely difficult to compute the numerical value for this norm, or even to check that it is
finite, unless the system being studied is linear. This paper describes a class of systems for which it is possible to reduce this computation to
that of finding the norm of an associated linear system. In contrast to linearization approaches, a precise value, not an estimate, is obtained
for the full nonlinear model. The class of systems that we study arose from the modeling of certain biological intracellular signaling cascades,
but the results should be of wider applicability.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The analysis of signaling networks constitutes one of the cen-
tral questions in systems biology. There is a pressing need for
powerful mathematical tools to help understand and conceptu-
alize their information processing and dynamic properties. One
natural question is that of quantifying the amount of “signal
amplification” in such a network, meaning in some sense the
ratio between the size of a response or output and that of the
input that gave rise to it. See for instance, Heinrich, Neel, and
Rapoport (2002) for a recent paper in this line of work.

In control theory, a routine way to quantify amplification is
by means of the induced L2 norm or “H∞ gain” of a system.
Several aspects of general H∞ theory for nonlinear systems
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have been developed by van der Schaft (1992) and Ball,
Helton, and Walker (1993), oriented towards the problem of
stabilizing a nonlinear system through nonlinear state or out-
put feedback. A major difficulty when trying to apply these
techniques to signaling networks is that such systems are usu-
ally highly nonlinear. Thus, typically, mathematical results are
only given for small inputs or “weakly activated” systems, see
for instance, Heinrich et al. (2002) and Chaves, Sontag, and
Dinerstein (2004). For large signals, that is, when analyzing
the full nonlinear system, even deciding if the norm is finite or
not is usually a very hard question.

In this paper, motivated by the particular systems studied in
Heinrich et al. (2002) and Chaves et al. (2004), we introduce
a class of nonlinear systems, which includes all these motiva-
tional examples as well as many others, and we show finite-
ness and how to obtain precise values for norms, by reducing
the problem of norm estimation to the same problem for an
associated linear system. This associated system is sometimes
a linearization of the original system around an equilibrium
point, though it need not be. In any case, the techniques are
not at all related to linearization techniques, but instead borrow
from comparison theorems, ISS-like estimates, and the theory
of positive systems.
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2. Definitions and statements of results

We deal with systems of the following special form:

ẋ(t) = A(x(t))x(t) + B(x(t))u(t), x(0) = 0 (1)

(or just “ẋ=A(x)x+B(x)u”), where dot indicates time deriva-
tive, and states x(t) as well as input values u(t) are vectors with
nonnegative components: x(t) ∈ Rn

�0 and u(t) ∈ Rm
�0 for all

t �0, for some positive integers n and m. We view A and B as
matrix valued functions:

A : Rn
�0 → Rn×n, B : Rn

�0 → Rn×m,

where Rk
�0 = (R�0)

k , for any positive integer k, is the set

of vectors � ∈ Rk in Euclidean k-space with all coordinates
�i �0, i = 1, . . . , k. Associated to these systems we also have
an output or measurement

y(t) = h(x(t)) = C(x(t))x(t)

taking values y(t) ∈ Rp, for some integer p, where C : Rn
�0 →

Rp×n.

Assumptions. We make several assumptions concerning the
matrix functions A, B, and C, as follows.

Stability: The matrix A(0) is Hurwitz, that is, all eigenvalues
of A(0) have negative real parts.

Maximization at � = 0: For each � ∈ Rn
�0, A(�)�A(0),

B(�)�B(0), and C(�)�C(0), meaning that A(�)ij �A(0)ij
for each i, j ∈ {1, . . . , n}, B(�)ij �B(0)ij for each i ∈
{1, . . . , n} and j ∈ {1, . . . , m}, and C(�)ij �C(0)ij for each
i ∈ {1, . . . , p} and j ∈ {1, . . . , n}.

Positivity of system: For each � ∈ Rn
�0 and each i ∈

{1, . . . , n} such that �i = 0, it holds that: A(�)ij �0 for all
j �= i and B(�)ij �0 for all j. Also, for every � ∈ Rn

�0,
Cij (�)�0 for all i, j .

Local Lipschitz assumption: The matrix functions A(�),
B(�), and C(�) are locally Lipschitz in �.

2.1. Remarks about the form of the system

The special form assumed for the system is in itself not very
restrictive, since every (affine in controls) system ẋ = F(x) +
B(x)u may be written in this fashion, provided only that F
be a continuously differentiable vector field and F(0) = 0, for
instance by taking A(�) = ∫ 1

0 F ′(��) d�, where F ′ indicates
the Jacobian of F. This reduction to a “state-dependent linear
form” ẋ = A(x)x + B(x)u is often useful in control theory,
where it appears for instance in the context of “state-dependent
Riccati equation” approaches to optimal control. Of course, the
difficulty is in satisfying the above assumptions for A and B.

A special case in which these hypotheses are satisfied is that
of models of cell signaling cascades as in Heinrich et al. (2002)
and Chaves et al. (2004). These are systems whose equations

can be written as follows (with n arbitrary and m = 1):

ẋ1 = �1u(c1 − x1) − �1x1,

ẋi = �ixi−1(ci − xi) − �ixi , i = 2, . . . , n

and output y = xn, and the �i’s, �i’s, and ci’s are all positive
constants. We represent this system in the above form using:
A(�)1,1 = −�1, A(�)i,i−1 = �ici for i = 2, . . . , n, A(�)i,i =
−�i�i−1 − �i for i = 2, . . . , n, B(�)1,1 = �1c1 − �1�1, and all
other entries zero. Note that A(�)�A(0) and B(�)�B(0), for
all � ∈ Rn

�0, because −�i�i �0 for all i. The matrix A(0) is
lower triangular with negative diagonals, and hence is Hurwitz.
Positivity holds as well: if i = 1 and � is such that �1 = 0, then
A(�)1j =0 for all j �= 1 and B(�)11 =�1c1 > 0; if instead i > 1
and � is such that �i = 0, then A(�)ij = 0 for all j /∈ {i − 1, i},
A(�)i,i−1 = �ici > 0, and B(�)i1 = 0. Finally, the functions
A(·)and B(·) are linear, and hence Lipschitz. The matrix C(�)=
(0, 0, . . . , 0, 1) is constant and nonnegative. Thus all properties
hold for this example.

A linear one-dimensional system ẋn+1 = xn − �xn+1 may
be cascaded at the end, as in Chaves et al. (2004), and the
output is in that case redefined as y = xn+1; this may be again
modeled in the same way, and the assumptions still hold. For
such cellular signal transduction mechanisms, one would like
to have a measure of the input signal amplification at the end of
the cascade. Thus, it would be useful to have a method to easily
compute the L2-induced norm of the system. For systems of
the form (1), we will show that this norm is in fact equal to the
H∞ gain of a companion linear system.

2.2. Induced gains

Assume given a system (1). We consider the operator T that
assigns the solution function x to each input u. To be more
precise, we consider inputs u ∈ L2([0, ∞), Rm

�0), and define
x = T u as the unique solution of the initial value problem (1).
In principle, this solution is only defined on some maximal in-
terval [0,T), where T> 0 depends on u; however, we will
show below that T = +∞, and that x is again square inte-
grable (and nonnegative), so we may view x as an element of
L2([0, ∞), Rn

�0) and T as an (nonlinear) operator

T : L2([0, ∞), Rm
�0) → L2([0, ∞), Rn

�0).

We will write | · | for Euclidean norm, and use ‖ · ‖ to denote
L2 norm: ‖u‖2 = ∫ ∞

0 |u|2 dt . For the operator T, we consider
the usual induced operator norm:

‖T ‖ := sup
u�=0

‖T u‖
‖u‖ .

We will show that ‖T ‖ < ∞ for the systems that we are con-
sidering. In order to see this, we first consider the linear system

ż = A(0)z + B(0)u, z(0) = 0 (2)

with output v = �(z) = C(0)z, and its associated operator

L : L2([0, ∞), Rm
�0) → L2([0, ∞), Rn

�0) : u �→ z.
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Since A(0) is a Hurwitz matrix, z(t) is defined for all t �0,
and L indeed maps L2 into L2. Furthermore, its induced
norm ‖L‖, the “H∞ gain” of the system with output y = z,
is finite; see for instance, Doyle, Francis, and Tannenbaum
(1992). (The H∞ gain is defined for arbitrary-valued inputs u ∈
L2([0, ∞), Rm); we will remark below, cf. Section 5, that the
same norm is obtained when only nonnegative inputs are used
in the maximization.) Moreover, the L2 → L∞ (or “H2”)
induced gain is also finite. Therefore, using ‖ · ‖∞ to denote
supremum norm ‖z‖∞ = supt �0|z(t)|, we can pick a common
constant c�0 such that

‖Lu‖�c‖u‖ and ‖Lu‖∞ �c‖u‖
for all u ∈ L2([0, ∞), Rm

�0), (3)

where c upper bounds both ‖L‖ and ‖L‖∞ (we use ‖L‖∞ for
operators to denote induced L2 → L∞ norm).

Our object of study are the compositions with the output
maps, i.e. the input/output (i/o) operators:

To : L2([0, ∞), Rm
�0) → L2([0, ∞), R

p
�0)

: u �→ y = C(x)x = C(T u)T u

and

Lo : L2([0, ∞), Rm
�0) → L2([0, ∞), R

p
�0)

: u �→ v = C(0)z = C(0)Lu

and their corresponding induced norms. Our main result is as
follows:

Theorem 1. The norm of To is finite, and ‖To‖ = ‖Lo‖.

3. Preliminary results

We start our proof by remarking that the solutions of (1)
remain in Rn

�0. To see this, we need to verify the following
property (this is a standard invariance fact; see for instance,
Angeli & Sontag, 2003 for a discussion in a related context):

for each i = 1, . . . , n, each � ∈ Rn
�0 such that �i = 0, and

each � ∈ Rm
�0,

(A(�)� + B(�)�)i �0.

Since �i = 0, we need to prove that
∑

j �=iA(�)ij�j +∑
jB(�)ij�j is nonnegative, but this is implied by the positiv-

ity assumption.
Similarly, solutions of (1) remain in Rn

�0, as also
(A(0)� + B(0)�)i �0 if �i = 0.

The next observation is a key one:

Lemma 3.1. Every solution of (1), with u ∈ L2, is defined
for all t �0. Moreover, for any two solutions x of (1) and (2)
with the same input u, it holds that 0�xi(t)�zi(t) for each
coordinate i = 1, . . . , n and each t �0.

Proof. We use the following comparison principle for differ-
ential equations. Suppose that f (t, �) and g(t, �) are such that

fi(t, �)�gi(t, �) for all i = 1, . . . , n and all � ∈ Rn
�0, and

that we consider the solutions of ẋ = f (t, x) and ż = g(t, z)

with the same initial condition (or, more generally, initial con-
ditions x(0)�z(0)). Then, provided that g is quasi-monotone
(and suitable regularity conditions hold, as here), we may con-
clude that x(t)�z(t) (componentwise) for all t �0 for which
both solutions are defined. See for instance, Smith (1995) and
Lakshmikantham and Leela (1969). Quasi-monotonicity means
that �gi/��j �0 for all i �= j .

Let us now take any fixed control and let f (t, �) =
A(�)� + B(�)u(t), g(t, �) = A(0)� + B(0)u(t). We have that
f (t, �)�g(t, �) coordinatewise, because A(�)�A(0) and
B(�)�B(0) by assumption. To see that g is quasi-monotone,
one needs to verify that A(0)ij �0 for all i �= j . but this
follows from the positivity assumption on (A, B). Thus the
comparison principle tells us that x(t)�z(t) for all t �0 for
which the solution x is defined (the solution z is defined
for all t, since (2) is linear and A(0) is a Hurwitz matrix).
We already observed that x is bounded below by zero; thus,
the maximal solution x is bounded on any finite interval,
and hence it is indeed defined for all t, and the Lemma
follows. �

Corollary 3.2. For each u ∈ L2, the solution Tu of (1) is in
L2, and the operator T has finite norm. Moreover,

‖T u‖�‖Lu‖�c‖u‖ and ‖T u‖∞ �‖Lu‖∞ �c‖u‖,

where c is any constant as in (3), so in particular ‖T ‖�‖L‖�c

and ‖T ‖∞ �‖L‖∞ �c. Similarly, the i/o operator To also has
finite norm, ‖Tou‖�‖Lou‖ and ‖Tou‖∞ �‖Lou‖∞ for all u ∈
L2, and ‖To‖�‖Lo‖, ‖To‖∞ �‖Lo‖∞.

Proof. Pick any u, and let x =T u and z=Lu. By Lemma 3.1,
0�xi(t)�zi(t) for all t, so

‖x‖2 =
∫ ∞

0

n∑
i=1

xi(s)
2 ds�

∫ ∞

0

n∑
i=1

zi(s)
2 ds = ‖z‖2.

So ‖T u‖�‖Lu‖�c‖u‖, and since u was arbitrary it follows
that ‖T ‖�‖L‖. Similarly,

‖x‖∞ = sup
t �0

|x(t)|� sup
t �0

|z(t)| = ‖z‖∞

leads to ‖T u‖∞ �‖Lu‖∞ and ‖T ‖∞ �‖L‖∞.
The positivity and the maximization properties for C

imply that, for each coordinate i of the outputs y(t) =
C(x(t))x(t) and v(t) = C(0)z(t), we have 0�yi(t) =∑n

j=1Cij (x(t))xj (t)�
∑n

j=1Cij (0)zj (t) = vi(t), so the in-
equalities for To and Lo follow by an analogous reasoning. �

Note that the inequality ‖To‖�‖Lo‖ gives the finiteness
statement as well as one-half of the equality in the main
theorem.

For any matrix Q, we denote by |Q| its induced operator
norm as an operator in Euclidean space, that is, the smallest
constant d such that |Q�|�d|�| for all �.
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Lemma 3.3. There is a nondecreasing and continuous function
M : R�0 → R�0 such that

|A(�) − A(0)|�M(|�|)|�|,
|B(�) − B(0)|�M(|�|)|�|,
|C(�) − C(0)|�M(|�|)|�|
for all � ∈ Rn

�0.

Proof. This is a simple consequence of the local Lipschitz
property. On each ball B(R)={� | |�|�R}, we pick the smallest
common Lipschitz constant M0(R) for A(·), B(·), and C(·). The
function M0 is nondecreasing, and hence can be majorized by
a continuous and nondecreasing function M. Since � ∈ B(|�|),
we have that |A(�) − A(0)|�M(|�|)|�|, and similarly for B
and C. �

Corollary 3.4. For each function x ∈ L2 ∩ L∞:

‖A(x(·)) − A(0)‖�M(‖x‖∞)‖x‖,

‖B(x(·)) − B(0)‖�M(‖x‖∞)‖x‖,

‖C(x(·)) − C(0)‖�M(‖x‖∞)‖x‖,

where M is as in Lemma 3.3.

Proof. We have:

‖A(x(·)) − A(0)‖2 =
∫ ∞

0
|A(x(s)) − A(0)|2 ds

�
∫ ∞

0
M(|x(s)|)2|x(s)|2 ds

�
∫ ∞

0
M(‖x‖∞)2|x(s)|2 ds

= M(‖x‖∞)2‖x‖2

and similarly for B and C. �

4. Proof of the main result

Pick any input u ∈ L2 and consider once again the respective
solutions x = T u and z = Lu. By Corollary 3.2, we know that
both ‖x‖�c‖u‖ and ‖x‖∞ �c‖u‖. Therefore, using Corollary
3.4, we also have that

‖A(x(·)) − A(0)‖�cM(c‖u‖)‖u‖,

‖B(x(·)) − B(0)‖�cM(c‖u‖)‖u‖,

‖C(x(·)) − C(0)‖�cM(c‖u‖)‖u‖,

where M is as in Lemma 3.3. Let � : R�0 → Rn
�0 be the

function:

�(t) := (A(0) − A(x(t)))x(t) + (B(0) − B(x(t)))u(t).

By the Cauchy–Schwartz inequality,

‖ (A(x(·)) − A(0)) x(·)‖�‖A(x(·)) − A(0)‖‖x‖
�c2M(c‖u‖)‖u‖2

and

‖(B(x(·)) − B(0))u(·)‖�‖B(x(·)) − B(0)‖‖u‖
�cM(c‖u‖)‖u‖2

from which we conclude that ‖�‖��(‖u‖)‖u‖ with �(r) =
(c2 +c)M(cr)r , and � is a function of class K, i.e. continuous,
strictly increasing, and with �(0) = 0.

Consider the difference w(t)=z(t)−x(t). Note that w(0)=
0. Evaluating ẇ = [A(0)z + B(0)u] − [A(x)x + B(x)u] and
rearranging terms,

ẇ(t) = A(0)w(t) + �(t).

Using once again that A(0) is a Hurwitz matrix, we know that,
for some constant d �0 which depends only on A(0) and not
on the particular input u being used, ‖w‖�d‖�‖, using, for
instance, input to state stability arguments, see Sontag (1998).
Therefore, ‖w‖��(‖u‖)‖u‖, after redefining �(r) := d�(r).

In terms of the outputs y=Tou=C(x)x and v=Lou=C(0)z,

‖v − y‖ = ‖C(0)z − C(x(·))x‖
�‖C(0)(z − x)‖ + ‖(C(0) − C(x(·)))x‖
� |C(0)|‖z − x‖ + ‖C(0) − C(x(·))‖‖x‖
� |C(0)|�(‖u‖)‖u‖ + c2M(c‖u‖)‖u‖2

and we can again write the last term as �(‖u‖)‖u‖ if we redefine
�(r) := |C(0)|�(r) + c2M(cr)r .

The triangle inequality gives us that ‖Lu‖ − ‖T u‖�‖Lu −
T u‖ and ‖Lou‖ − ‖Tou‖�‖Lou − Tou‖, and Corollary 3.2
gives ‖T u‖�‖Lu‖ and ‖Tou‖�‖Lou‖, so we may summarize
as follows:

Proposition 4.1. There is a function � ∈ K such that

0�‖Lu‖ − ‖T u‖��(‖u‖)‖u‖
and

0�‖Lou‖ − ‖Tou‖��(‖u‖)‖u‖
for any input u ∈ L2.

To conclude the proof of Theorem 1, we must show that
‖To‖�‖Lo‖. Let g = ‖Lo‖, and pick a minimizing sequence
un, n = 1, 2, . . . of nonzero inputs in L2, that is,

lim
n→∞

‖Loun‖
‖un‖ = g.

Pick a sequence of real numbers �n > 0 such that vn := �nun →
0 (for example, �n = (n‖un‖)−1). Since Lo is a linear op-
erator, ‖Lovn‖ = �n‖Loun‖, and since ‖vn‖ = �n‖un‖, also
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‖Lovn‖/‖vn‖=‖Loun‖/‖un‖. Applying the second inequality
in Proposition 4.1:

0� ‖Lovn‖
‖vn‖ − ‖Tovn‖

‖vn‖ ��(‖vn‖) → 0,

which gives that ‖Tovn‖/‖vn‖ → g, and therefore ‖To‖�g =
‖L0‖, as desired.

5. Positive vs. arbitrary inputs

We have shown that the norm of the nonlinear system (1)
can be exactly computed by finding the norm of the associated
linear system (2). The computation of induced L2 norms for
linear systems is a classical area of study, and amounts to the
maximization, over the imaginary axis, of the largest singular
value of the transfer matrix of the system (the Laplace trans-
form of the impulse response), the H∞ norm; see for instance,
Doyle et al. (1992). There is, however, a potential gap in the
application of this theory to our problem, namely, the usual
definition of H∞ norm corresponds to maximization over arbi-
trary inputs u ∈ L2([0, ∞), Rm), not necessarily inputs with
values in Rm

�0 as considered in this paper. We close this gap
now, by showing that the same result is obtained, for systems
(2), whether one optimizes over arbitrary or over nonnegative
inputs.

The positivity assumptions imply that the operator Lo is a
nonnegative convolution operator:

(Lou)(t) =
∫ t

0
W(t − s)u(s) ds, (4)

W(t) ∈ (R�0)
p×m ∀t �0. (5)

Here W(t) = C(0)etA(0)B(0), and its nonnegativity follows
from the fact that etF has all entries nonnegative, provided that
Fij �0 for all i �= j . (This last fact is well known: it is clear for
small t from the expansion etF = I + tF + o(t), and for large
t by then writing etF as a product of matrices e(t/k)F with the
positive integer k large enough.) We next show that any opera-
tor as in (4)–(5) has the same norm whether viewed as an op-
erator on L2([0, ∞), Rm) or on L2([0, ∞), Rm

�0). Since the
norm as an operator on nonnegative inputs is, obviously, upper
bounded by the norm on arbitrary inputs, it will be enough to
show that, for each w ∈ L2([0, ∞), Rm), there is another input
w̃ ∈ L2([0, ∞), Rm

�0) with ‖w‖=‖w̃‖ and ‖Low‖�‖Low̃‖.
Given such a w, we start by writing w = u − v, where u and

v are picked in L2([0, ∞), Rm
�0) and orthogonal. (Such a de-

composition is always possible. We define coordinatewise, for
each i = 1, . . . , m, ui := max{wi, 0} and vi := max{−wi, 0};
clearly, w = u − v. The supports of ui and vi are disjoint, so
〈ui, vi〉=

∫ ∞
0 ui(t)vi(t) dt =0 for each i, and also then 〈u, v〉=∑m

i=1 〈ui, vi〉=0.) We now let w̃ := u+v. Since u and v (or −v)
are orthogonal, ‖w‖2 =‖u‖2 +‖−v‖2 =‖u‖2 +‖v‖2 =‖w̃‖2,
so ‖w‖ = ‖w̃‖. Because Lo is nonnegative, both x = Lou and
y = Lov are nonnegative. (So, indeed one has x, y ∈ Rn

�0.)

To finish the proof, we only need to see that ‖x −y‖�‖x +y‖:

‖x − y‖2 =
∫ ∞

0

p∑
i=1

(xi(t) − yi(t))
2 dt

=
∫ ∞

0

p∑
i=1

(xi(t)
2 + yi(t)

2 − 2xi(t)yi(t)) dt

�
∫ ∞

0

p∑
i=1

(xi(t)
2 + yi(t)

2 + 2xi(t)yi(t)) dt

=
∫ ∞

0

p∑
i=1

(xi(t) + yi(t))
2 dt

= ‖x + y‖2.

6. Cascades

Signaling systems are often built by cascading subsystems,
so it is interesting to verify that a cascade of any number of
systems which satisfy our properties again has the same form. It
is enough, by induction, to show this for two cascaded systems:

ẋ = A1(x)x + B1(x)u, v = C1(x)x,

ż = A2(z)z + B2(z)ũ, y = C2(z)z,

each of which satisfies our assumptions, under the series con-
nection obtained by setting ũ = v. The composite system can
be represented in terms of the following A(�, 	) and B(�, 	)
matrices:

A =
(

A1(�) 0

B2(	)C1(�) A2(	)

)
, B =

(
B1(�)

0

)

and output y.
It is easy to verify all the necessary properties. For example,

the only nontrivial part of the maximization property amounts
to checking that B2(	)C1(�)�B2(0)C1(0), which follows from
B2(	)C1(�)�B2(0)C1(�) (using the maximization property for
B2 and the positivity of C1) and B2(0)C1(�)�B2(0)C1(0) (us-
ing maximization for C1 and positivity of B2(0)). Similarly, the
only nontrivial part of the positivity property involves checking
that (B2(	)C1(�))ij �0 provided that 	i = 0, for all j. But, for
such a vector 	, we know that B2(	)ik �0 for all k, so indeed∑

kB2(	)ikC1(�)kj �0.

7. Remarks and conclusions

We provided a way to compute, for systems of a special form,
the induced L2 norm of the system. The special form includes
a variety of cellular signaling cascade systems. An even wider
class of systems can be included as well, provided that one ex-
tends our treatment to systems that are monotone with respect
to orders other than that given by the first quadrant. Such or-
ders have proven useful in analyzing, for example, MAPK cas-
cades, see for example, Angeli and Sontag (2003) and Angeli,
Ferrell, and Sontag (2004). The details of this extension will
be provided elsewhere.
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