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Abstract: As a discrete approach to genetic regulatory networks, Boolean models provide an
essential qualitative description of the structure of interactions among genes and proteins.
Boolean models generally assume only two possible states (expressed or not expressed) for each
gene or protein in the network, as well as a high level of synchronisation among the various regu-
latory processes. Two possible methods of adapting qualitative models to incorporate the
continuous-time character of regulatory networks, are discussed and compared. The first method
consists of introducing asynchronous updates in the Boolean model. In the second method, the
approach introduced by Glass is adopted to obtain a set of piecewise linear differential equations
that continuously describe the states of each gene or protein in the network. Both methods are
applied to a Boolean model of the segment polarity gene network of Drosophila melanogaster.
The dynamics of the model is analysed, and a theoretical characterisation of the model’s gene
pattern prediction is provided as a function of the timescales of the various processes.

1 Introduction

Genes and gene products interact on several levels. At the
genomic level, transcription factors can activate or inhibit
the transcription of genes to give mRNAs. As these tran-
scription factors are themselves products of genes, the ulti-
mate effect is that genes regulate each other’s expression as
part of gene regulatory networks. Similarly, proteins can
participate in diverse post-translational interactions that
lead to modified protein functions or to formation of
protein complexes that have new roles; the totality of
these processes is called a protein–protein interaction
network. In many cases, different levels of interactions
are integrated: for example, when the presence of an exter-
nal signal triggers a cascade of interactions that involve
biochemical reactions, protein–protein interactions and
transcriptional regulation.

During the last decade, genomics, transcriptomics and
proteomics have produced an incredible quantity of molecu-
lar interaction data, contributing to genome-scale maps of
protein interaction networks [1–3] and transcriptional regu-
latory networks [4]. Network analysis of these maps
revealed intriguing topological similarities [5]. At the
same time, it has been increasingly realised that cellular
interaction maps only represent a network of possibilities,
and not all edges are present and active in vivo in a given
condition or in a given cellular location [2, 6]. Therefore
only an integration of (time-dependent) interaction and

activity information will be able to give the correct
dynamical picture of a cellular network.

For many biological networks, and in particular genetic
control or regulatory networks, detailed information on
the kinetic rates of protein–protein or protein–DNA inter-
actions is rarely available. However, for many biological
systems, evidence shows that regulatory relationships can
be sigmoidal and be well approximated by step functions.
In this case, Boolean models, in which every variable has
only two states (ON/OFF) and the dynamics is given by a
set of logical rules, are frequently appropriate descriptions
of the network of interactions among genes and proteins.
Examples include models of genetic networks in the fruit
fly Drosophila melanogaster [7, 8] and the flowering
plant Arabidopsis thaliana [9, 10].

Although Boolean models introduce biologically unrea-
listic time constraints (typically, such models use synchro-
nous updates, which inherently assume that the various
biological processes have the same duration), they still
provide significant qualitative information on the under-
lying structure of the network. In contrast, continuous
models certainly have a more realistic time description of
a biological system. But, in the absence of information on
the kinetic rates, continuous models include many
unknown parameters, and analysis of the system involves
exploring the (often large) state space of parameters. An
important (continuous) model for D. melanogaster
segment polarity genes was first developed in the work of
von Dassow et al. [11], in which a thorough investigation
of the parameter space showed that the system is very
robust with respect to variations in the kinetic constants.
Both this continuous model and the discrete model [8]
agree in their overall conclusions regarding the robustness
of the segment polarity gene network.

In this paper, we propose two new approaches to the
analysis of Boolean models, which combine discrete
logical rules and structure with more realistic assumptions
regarding the relative timescales of the genetic processes.
The first method introduces asynchronous updates in the
Boolean model; as update times are randomly chosen, the
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model is now stochastic [12]. The second method associates
to the discrete variables a set of continuous variables, whose
dynamics is given by a piecewise linear system of differen-
tial equations, thus introducing a simple ‘hybrid’ model in
the manner first suggested by Glass and collaborators
[13–15]. These methods allow us to naturally probe the
system with respect to perturbations in the time dynamics
to analyse its performance. Both methods uncover the
robustness of the segment polarity gene model [8], and its
ability to correctly predict the final gene expression pattern.

2 Segment polarity gene network in
Drosophila

We will apply our analysis to a Boolean model of the inter-
actions among the D. melanogaster segment polarity genes.
This gene network represents the last step in the hierarchical
cascade of gene families initiating the segmented body
of the fruit fly. Whereas genes in preceding stages of dev-
elopment act transiently, the segment polarity genes are
expressed throughout the life of the fly. The best character-
ised segment polarity genes include engrailed (en), wingless
(wg), hedgehog (hh), patched (ptc), Cubitus interruptus (ci)
and sloppy paired (slp), coding for the corresponding pro-
teins, which we will represent by capital letters (EN, WG,
HH, PTC, CI and SLP). Two additional proteins, resulting
from transformations of the protein CI, also play important
roles: CI may be converted into a transcriptional activator,
CIA, or may be cleaved to form a transcriptional repressor
CIR.

The expression pattern of the Drosophila segment
polarity genes (Table 2) is maintained almost unmodified
for 3 h, during which time the embryo is divided into 14
parasegments. Each of these parasegments is composed of
about four cells, delimited by furrows positioned between
the wg and en-expressing cells [16].

The Boolean model that we will study was introduced and
developed in the work of Albert and Othmer [8]. (Further
robustness analysis was also developed in the work of
Chaves et al. [12].) In this model, a parasegment of four
cells is considered: the variables are the expression levels
of the segment polarity genes and proteins (listed earlier)
in each of the four cells (the total number of nodes in the
network is thus 4 � 13 ¼ 52). The expression level of
each gene or protein is assumed to be either 0 (OFF) or 1
(ON). The model successfully describes the transition from
the initial expression pattern (1) to a final pattern two or
three developmental stages later, when the embryo has
been clearly divided into parasegments (see first entry of
Table 2). As discussed by Albert and Othmer [8], the evol-
ution of these gene expression patterns is well described by a
set of logical rules, which are depicted in Table 1.

We adopt the notation ‘wg1
k’ or ‘wg1(k)’ to represent the

state of wingless mRNA in the first cell of the parasegment
at time k. Similar notations apply for other mRNAs and pro-
teins. Periodic boundary conditions are assumed, meaning
that: node4þ1 ¼ node1 and node121 ¼ node4. The wild-type
initial pattern corresponds to

wg0
4 ¼ 1; en0

1 ¼ 1; hh0
1 ¼ 1; ptc0

2;3;4 ¼ 1; ci0
2;3;4 ¼ 1 ð1Þ

with the remaining nodes zero.

2.1 Steady states of the Boolean model

A complete analysis of the steady states is found in the work
of Albert and Othmer [8]. Table 2 summarises these results,
indicating the expressed nodes in each of the six steady

states. We note that three of the four main steady states
agree perfectly with experimentally observed states
corresponding to wild type, to ptc knockout mutant
(broad stripes) and to en, wg or hh knockout mutant (non--
segmented) embryonic patterns ([17, 18]; refer to the work
of Albert and Othmer [8] for more references).

2.2 Regulatory function of the sloppy paired gene

The rule for SLP protein in Table 1 summarises in a simple
way the experimental observations on the expression and
regulatory activity of the sloppy paired gene in the
segment polarity network [19]. A more detailed rule for
the sloppy paired expression pattern can be created to incor-
porate recent evidence of engrailed protein inhibiting
slp transcription [20]. However, inhibition by en
accounts only partially for the experimentally observed
restriction of slp to the posterior half of the parasegment.

Table 1: Regulatory functions governing the states of
segment polarity gene products in the model

Node Boolean updating function (synchronous algorithm)

SLPi
SLPi ðk þ 1Þ ¼

0 if i [ f1; 2g
1 if i [ f3; 4g

�

wgi wgi (kþ 1) ¼ (CIAi (k) and SLPi (k) and not CIRi (k))

or [wgi(k) and (CIAi(k) or SLPi (k)) and not CIRi(k)]

WGi WGi (kþ 1) ¼ wgi (k)

eni eni (kþ 1) ¼ (WGi21(k) or WGiþ1(k)) and not SLPi (k)

ENi ENi(kþ 1) ¼ eni(k)

hhi hhi (kþ 1) ¼ ENi (k) and not CIRi (k)

HHi HHi(kþ 1) ¼ hhi(k)

ptci ptci (kþ 1) ¼ CIAi (k) and not ENi (k) and not CIRi (k)

PTCi PTCi(kþ 1) ¼ ptci(k) or (PTCi (k) and not HHi21(k)

and not HHiþ1(k))

cii cii (kþ 1) ¼

not ENi (k)

CIi CIi (kþ 1) ¼ cii (k)

CIAi CIAi (kþ 1) ¼ CIi(k) and [not PTCi(k) or HHi21(k) or

HHiþ1(k) or hhi21(k) or hhiþ1(k)]

CIRi CIRi(kþ 1) ¼ CIi (k) and PTCi (k) and not HHi21(k)

and not HHiþ1(k) and not hhi21(k) and not hhiþ1(k)

Each node is labelled by its biochemical symbol and subscripts
signify cell number

Table 2: Complete characterisation of the model’s
steady states

Steady state Expressed nodes

Wild type wg4, WG4, en1, EN1, hh1, HH1, ptc2,4,

PTC2,3,4, ci2,3,4, CI2,3,4, CIA2,4, CIR3

Broad-stripes wg3,4, WG3,4, en1,2, EN1,2, hh1,2, HH1,2,

ptc3,4, PTC3,4, ci3,4, CI3,4, CIA3,4

No segmentation ci1,2,3,4, CI1,2,3,4, PTC1,2,3,4, CIR1,2,3,4

Wild-type variant wg4, WG4, en1, EN1, hh1, HH1, ptc2,4,

PTC1,2,3,4, ci2,3,4 CI2,3,4, CIA2,4, CIR3

Ectopic wg3, WG3, en2, EN2, hh2, HH2, ptc1,3,

PTC1,3,4, ci1,3,4, CI1,3,4, CIA1,3, CIR4

Ectopic variant wg3, WG3, en2, EN2, hh2, HH2, ptc1,3,

PTC1,2,3,4, ci1,3,4, CI1,3,4, CIA1,3, CIR4
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Thus, we need to invoke an additional regulatory effect,
which we denote by RX. RX probably represents a
combination of regulation by the pair-rule genes responsible
for the establishment of slp, namely runt, opa and Factor
X [21] and of slp autoregulation.

Therefore SLP expression in Table 1 can be replaced by
the following set of equations

RXiðk þ 1Þ ¼
0; if i [ f1; 2g

1; if i [ f3; 4g

�

slpiðk þ 1Þ ¼ RXiðkÞ and not ENiðkÞ

SLPiðk þ 1Þ ¼ slpiðkÞ

ð2Þ

The sloppy paired initial conditions would then be

slp0
3;4 ¼ 1; SLP0

3;4 ¼ 1 ð3Þ

This generalisation of the segment polarity network
model introduces additional steady states, such as a
two-stripe en pattern characterised by slp4 ¼ SLP4 ¼ 1,
wg4 ¼ WG4 ¼ 1, en1,3 ¼ EN1,3 ¼ 1, hh1,3 ¼ HH1,3 ¼ 1,
ptc2,4 ¼ PTC2,4 ¼ 1 and ci2,4 ¼ CI2,4 ¼ CIA2,4 ¼ 1 (this
pattern was also found in the work of Albert and Othmer,
[8] as a result of slp mutation). This expression pattern is
non-viable as it has two en–wg borders and would lead to
an ectopic parasegment structure. In contrast, it is not diffi-
cult to see that, starting from conditions (1) and (3), none of
the ‘new’ steady states are reachable, as these initial con-
ditions imply that neither slp nor SLP can change their
expression at any time. Indeed, we have the following
result.

Lemma 1: Consider the extended model of Table 1 together
with (2). Assume that initial conditions are given by (1) and
(3). Then slpi(t) ¼ slpi

0 and SLPi(t) ¼ SLPi
0 for all times.

A sketch of proof is as follows. Note first that
slp1,2(t) ¼ SLP1,2(t) ; 0 follows from RX1,2(t) ¼ 0 for all
t. Next, observe that

slp4ðt1Þ ¼ 0) EN4ðt2Þ ¼ 1) en4ðt3Þ ¼ 1

) SLP4ðt4Þ ¼ 0) slp4ðt5Þ ¼ 0

where t1 � t2 � t3 � t4 � t5 � 0. Thus, in order for slp4 to
become zero at any time, it had to be so at some previous
instant (t5 � t1). If slp4(0) ¼ 1, and if T . 0 is the first
instant such that slp4(T ) ¼ 0 then we have a contradiction.
Hence slp4(t) ¼ 1 for all times. (Note that this argument is
independent of the order in which the nodes are updated.)
Similar arguments show that slp3(t) ¼ slp3(0) ¼ 1 and
SLP3,4(t) ¼ 1, for all t.

Thus the extended model leads to the same results as
assuming a constant SLP pattern. For this reason, and
lacking more specific biological evidence on the regulation
of sloppy paired, our present analysis is focused on the
simpler biologically relevant model of Table 1.

3 Asynchronous algorithms

In general, for a network of N gene products (denoted
x1, . . . , xN), the dynamics of a Boolean model is typically
studied by simultaneously updating the state of all the
nodes in the network, according to

X kþ1
i ¼ FiðX

k
1 ;X k

2 ; . . . ;X k
N Þ; i ¼ 1; . . . ;N

where Fi is the regulating function for mRNA or protein Xi.
An underlying hypothesis is the existence of perfect syn-
chronisation among the various regulatory processes.

However, it is well known that the timescales of transcrip-
tion, translation and degradation processes can vary widely
from gene to gene and can be anywhere from minutes to
hours.

In analogy with task coordination and data communi-
cation procedures in the context of parallel computation
systems [22], we have previously developed several
methods that introduce different timescales for the different
regulatory processes within the network [12]. These include
algorithms that randomly choose the order in which the
nodes are updated (this random-order algorithm is summar-
ised in Section 3.1 and in Section 6), and a totally asynchro-
nous algorithm, where the next updating times for each
node are randomly chosen at each instant.

We now introduce a more intuitive asynchronous algor-
ithm, where each node is updated according to its own
specific time unit. The time units for the nodes are randomly
chosen from a uniform distribution in an interval [1 2 1,
1þ 1], where 1 [ (0, 1). The updating times of ith node
are then pre-specified as

T 1
i ; T2

i ; . . . ; Tk
i ; . . . k [ N

with

Tkþ1
i ¼ Tk

i þ gi ¼ kgi; k [ N ð4Þ

For instance, gWG4
, gwg4

means that wingless protein in
the fourth cell is translated at a faster rate (shorter time
intervals) then wingless mRNA is produced. At any given
time t, the next node(s) to be updated is(are) i such that
Ti

k ¼ minj,‘fTj
‘
� tg, for some k. The variables Xi are

updated according to

XiðT
k
i Þ ¼ FiðX1ðt

k
1iÞ; . . . ;XN ðt

k
NiÞÞ ð5Þ

where t k
ji defines the most recent instant when node j was

updated, that is

t k
ji ¼ max

‘
fT ‘j : T ‘j , Tk

i g ð6Þ

By ordering all the time sequences fT k
i : i ¼ 1, . . . , N,

k ¼ 1, 2, . . .g, into a single non-decreasing sequence, say
ft1, t2, . . .g, the asynchronous model can also be written in
the form

Xiðtkþ1Þ ¼

FiðX1ðtkÞ;X2ðtkÞ; . . . ;XN ðtkÞÞ;
if tk ¼ ‘gi for some ‘

XiðtkÞ; otherwise

8<
:

It is clear that the steady states of this model must satisfy
Xi (tkþ1) ¼ Xi (tk) ¼ Fi(X(tk)), and therefore are the same
as those of the synchronous Boolean model in Table 2.

Note that the case 1 ¼ 0 reduces to the synchronous
model, where every node is updated simultaneously
(gi ¼ 1), at the same time instants: Ti

k ¼ k, for all
i ¼ 1, . . . , N. This algorithm allows great variability in
each process’ duration, exploring the gene expression pat-
terns as a result of all possible combinations of individual
timescales. Implementation of this asynchronous algorithm
shows that, if started from the initial wild-type state (1), any
of the steady states of the model (Table 2) may occur with a
certain probability. The probability of occurrence of each
pattern depends on the range over which the individual
time units gi are allowed to vary (Fig. 2). For 1 ¼ 0, the
wild-type steady state is attained with probability 100%
(corresponding to the synchronous Boolean model). As 1
increases to 0.01 (resp. 0.1) this value decreases to 60%
(resp. 44%). However, further increase in 1 (hence larger
time intervals) unexpectedly leads to an increase in the
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occurrence of the wild-type state, up to 51% for 1 ¼ 0.9.
Other final states observed are the broad-striped pattern
(25–38%) observed in heat-shock experiments and ptc
mutants [17] and the pattern with no segmentation (12–
15%) observed in en, hh or wg mutants [18], the latter
two corresponding to embryonic lethal phenotypes [17].
Each of the other three steady states occurs with frequencies
less than 5%. (These values were obtained from 10 000
numerical experiments.)

A possible extension of this algorithm would be to con-
sider a discrete model with a finite number of logical
levels describing ON, OFF as well as other intermediate
states of the system [7]. This would involve decisions
about the number of intermediate states, their values and
development of new transition rules. Instead, in this
paper, we will focus on a ‘hybrid’ model, that takes into
account the continuous nature of the biological processes,
while still using Boolean rules to describe ON/OFF
transitions (Section 4).

3.1 Random-order algorithm

For comparison purposes, we briefly summarise an alterna-
tive asynchronous algorithm that guarantees that every node
is updated exactly once during each unit time interval [12].
A random order of updates for the N nodes is generated as a
permutation fk of f1, . . . , Ng. This permutation is randomly
chosen out of a uniform distribution over the set of all N!
possible permutations, at the beginning of the time unit k.
The updating times for each node are now written as

T k
i ¼ N ðk � 1Þ þ fkðiÞ; k [ N

so that fk( j) , fk(i) implies Tj
k , Ti

k, and node j is updated
before node i at the kth iteration. The results of this algor-
ithm are qualitatively similar to those of the asynchronous
algorithm (Table 2).

4 Glass-type networks

The asynchronous algorithm defined by (4)–(6) allows the
introduction of distinct timescales for each regulation
process in a Boolean model. We next propose an alternative
method that provides a bridge between discrete and continu-
ous approaches, resulting in a more realistic model, but
without the necessity of specifying any kinetic or binding
parameters (which are typically unknown). In this method,
the gene and protein levels are represented as continuous
variables, and their time evolution is described by differen-
tial equations, but the interactions among nodes are still
modelled by Boolean functions [13–15, 23]. Glass [13]
introduced a class of piecewise linear differential equations
that combine logical rules for the synthesis of gene products
with linear (free) decay by describing each node with two
variables, one discrete and one continuous. For simplicity
of notation, in what follows we will let bX i denote the con-
tinuous variable associated with node i, its discrete variable
Xi and the discrete variable’s Boolean rule by Fi. The
Glass-type model is then

dbXi

dt
¼ �bXi þ FiðX1; X2; . . . ;XN Þ; i ¼ 1; . . . ;N ð7Þ

At each instant t, the discrete variable Xi is defined as a
function of the continuous variable according to a threshold
value

XiðtÞ ¼
0; bXiðtÞ � u

1; bXiðtÞ . u

(
ð8Þ

where u [ (0, 1). The discrete variables Xi represent the
ON and OFF levels of the nodes in the Boolean model.
The underlying assumption in this Glass model is that
the decay rate and activation threshold of each gene
product is identical. As the initial condition for the
piecewise linear system (7) is also (1) (i.e. X(0) ¼ bX (0))
and Fi [ f0, 1g, it is easy to see that solutions of (7)
evolve in the hypercube [0, 1]N. Under these conditions,
the limiting values ‘0’ and ‘1’ of the continuous variablebX i represent, respectively, ‘absence of species i’ and
‘maximal concentration of species i’, thus we can view
the bX i as dimensionless variables, scaled to attain
their maximal values at 1. The continuous dynamics is
translated into a Boolean ON/OFF response, according to
u: as soon as bX i increases above u, species i is considered
to be in the ON state; otherwise it remains in the
OFF state [23]. Thus the parameter u defines the fraction
of ‘maximal concentration’ necessary for a protein or
mRNA to effectively perform its biological function.
This method allows us to study the continuous evolution
of the genetic network simply by specifying u, the fraction
of maximal concentration that is effective as ON level,
avoiding the need to specify any kinetic parameters. In
what follows and in Section 6.4, we will see that system
(7) exhibits distinct dynamics in the two regions u � 1/2
and u . 1/2. It is easy to see that the steady states of the
piecewise linear equation (7) are still those of the Boolean
model, as

dbXi

dt
¼ 0()bXi ¼ Fi ðX1; X2; . . . ;XN Þ; i ¼ 1; . . . ;N

independently of u. Applying this method to the Drosophila
segment polarity gene network, we find an exact conver-
gence to the wild-type steady state when started from
the wild-type initial condition (Fig. 1), independently of
the ON/OFF threshold value u. This result supports the
Boolean model as a suitable description of the underlying
network of gene interactions.

Fig. 1 Solution to the system of piecewise linear equation (7)
(dashed lines)

Each column represents one cell, and each of the 13 rectangles
represents the continuous-time variable for proteins or mRNAs (as
labelled at left)
In each rectangle, the y-axis ranges from 0 to 2 units
Nodes for which the trajectories converge to 1 (middle of the rec-
tangle) are exactly those expressed in the wild-type steady state
Time units are arbitrary

IEE Proc.-Syst. Biol., Vol. 153, No. 4, July 2006 157



4.1 Introducing distinct timescales

The assumption of equal decay rates and activation
thresholds for all nodes is an oversimplification similar to
that made in synchronous Boolean models. However, for
further robustness analysis, one may introduce different
timescales for the different processes, by scaling the time
units in each differential equation according to

dbXi

dt
¼ aið�bXi þ FiðX1;X2; . . . ;XN ÞÞ ð9Þ

with ai � 1 for some fixed 1 . 0, i ¼ 1, . . . , N. Each Xi is a
discrete variable defined as before (note that steady states of
this new system are still those of the Boolean model) [Note 1].

This method represents a continuous equivalent to the
asynchronous algorithm described in Section 3. Here, the
(inverse) scaling factors ai

21 may be viewed as half-lives
of mRNA or proteins. These may be directly compared
with the individual time units gi as follows. Using Euler’s
method to discretise system (9) one obtains

bXiðt þ DtÞ ¼ bXiðtÞ þ aiDtð�bXiðtÞ þ FiðX ðtÞÞÞ

Note that choosing the integrating time interval to be such
that aiDt ¼ 1 recovers the discrete asynchronous algorithm
with specific time units

gi ¼ Dt ¼ a�1
i

For comparison to the discrete algorithm, we choose both
the scale factors ai

21 and the time units gi randomly from
a uniform distribution in intervals of the form [1 2 1,
1þ 1], 1 [ (0, 1). The numerical experiments are reported
in Fig. 2, where the threshold value u (8) was set to 1/2. We
again observed that, starting from wild-type initial con-
ditions (1), all steady states may occur with a certain fre-
quency (Table 3). But, in contrast to the asynchronous
Boolean model, the wild-type pattern occurs with frequen-
cies that decrease monotonically with 1, down to 89% for
1 ¼ 0.9 (Fig. 2). The next more frequently achieved pat-
terns are the broad-stripes (Fig. 3), with probability 6%
for 1 ¼ 0.9, the no segmentation (Fig. 4), with probability
3%, and the wild-type variant, with probability 1%.

The three methods we have described (Table 3) produce
qualitatively compatible results, in the sense that the wild-
type pattern is always the most frequently occurring
steady state, followed by the broad stripes, no segmentation
and wild-type variant patterns.

4.2 Fraction of maximal concentration that
defines an ON state

The piecewise linear system (9) follows the threshold (8) to
decide whether a given node is ON or OFF. While this value
u did not affect the dynamics of the system in the case
a1 ¼ a2 ¼ . . . ¼ aN, it plays a significant role in the
general case. In Fig. 5, it is immediate to see that the
effect of u depends on the length of the interval allowed
for the timescales. Indeed, there is a marked difference
between narrow (1 � 0.5) and wide (1 � 0.6) intervals.
For narrow intervals, numerical experiments indicate that,

starting from initial condition (1), system (9) converges to
wild-type steady state with probability around 90% or
more, whereas for wider intervals, this probability may
decrease down to 68% (1 ¼ 0.9, u ¼ 0.9).

The threshold value also divides the dynamics into two
regions. For u � 0.5, the probability that initial condition
(1) leads to the wild-type steady state is above 90%,
independently of 1. For u � 0.5 it is less probable to
reach the non-segmented (around 1%) than the broad
stripes pattern (around 10%). For higher u � 0.6, the
probability of reaching the wild-type steady state [from
initial condition (1)] decreases very significantly, and in
addition, it becomes more probable to reach the non-
segmented (around 20%) than the broad stripes pattern
(around 7%).

In our Glass-type model, u represents the fraction of
maximal concentration above which an mRNA or protein
is considered ON, or biologically effective. Our results indi-
cate that quite small fractions of the maximal concentration
can (and should) be interpreted as sufficient amounts for an
mRNA or protein to be in the ON state. Namely, when the
concentration of mRNAs or proteins has increased to a frac-
tion up to half its maximum possible value, it is already
present in a sufficient amount to perform its function. This
follows from observation of Fig. 5: 0 , u � 0.5 leads to a
good (realistic) performance of the model, with 90%

Fig. 2 Probability of occurrence of the three most frequent pat-
terns: wild-type (WT), broad-stripes (BS) and no segmentation
(NS), under variable range of timescales

Dashed lines/squares represent asynchronous algorithm results,
whereas solid lines/circles represent Glass-type model results (out
of 1000 runs)
Results were obtained with u ¼ 0.5

Table 3: Frequencies of the six steady states observed
with the three different methods when starting from the
wild-type initial condition

Steady state

pattern

Asynchronous

algorithm, %

Random-order

algorithm, %

Glass-type

model, %

Wild-type 44–51 56 89–100

Broad-stripes 25–38 24 0–6

No segmentation 12–15 15 0–3

Wild-type variant 4–5.6 4.2 0–1

Ectopic 0.4–1 0.98 0

Ectopic variant 0.1–0.5 0.68 0

Note 1: We will analyse the behaviours of trajectories of systems of the form
(7), assuming that trajectories are well-defined. As the right-hand sides of
equations of these type are discontinuous, it is very difficult to give general
existence and uniqueness theorems for solutions of initial-value problems.
One must impose additional assumptions, ensuring that only a finite number
of switches can take place on any finite time interval and often tools from the
theory of differential inclusions must be applied. For more discussion, refer to
the work of de Jong et al. [23] and Gedeon [24].
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convergence to wild-type pattern. Our results also indicate
that a higher threshold is, on the contrary, not very realistic.
For instance, setting u � 0.6 leads to a fairly high incidence
of the mutant patterns. But by letting u � 0.6 one is assum-
ing that an mRNA or protein is not present in a sufficient
amount to perform its function until it reaches at least
60% of its maximal value. Typically such high thresholds
are not observed: indeed, in the work of von Dassow
et al. (supplementary material), where continuous dynamics
are also transformed into an ON/OFF response, a threshold
of 10% is used and considered very reasonable. In our
numerical simulations, unless otherwise indicated, we
have used u ¼ 0.5.

To further generalise system (9), it is natural to allow
each variable to respond to its own threshold and consider
distinct ui values. We will address this problem in Section
6.3, and see that the system’s dynamics is preserved in
each u region. In fact, our simulations with distinct ui

recover many of the theoretical results we obtained for a
species-independent u (Section 6.4).

5 Pre-patterning errors and knockout mutant
situations

We identified some sufficient or necessary initial conditions
for obtaining the wild-type steady state (minimal pre-
patterns) [8, 12]. We now analyse how mutant patterns
arise from gene ‘knockout’ experiments or delay in estab-
lishing the initial pre-pattern.

Gene knockout experiments consist of completely
supressing the expression of a given gene in all cells. In
our models, this is equivalent to setting the corresponding
mRNA permanently zero in all equations. Thus a wingless
knockout can be analysed by setting wgi ¼ 0 for all i ¼ 1,
2, 3, 4, and in every equation of the Boolean rules in
Table 1. The steady states of the resulting system can
now be computed from

X � ¼ F�ðX �Þ ð10Þ

where the vector X� and functions F� include all but the
knockout variables. For example, for the wingless knockout,
we drop the functions Fwgi

and for the other mRNAs and
proteins we have

WGi ¼ F�WGi
¼ 0; i ¼ 1; 2; 3; 4

node ¼ F�node ¼ Fnode; for nodes en; hh; ci; ptc;EN ;

HH;PTC;CI;CIA;CIR

because wg appears explicitly only in the rules FWGi
. So, it

follows immediately that WGi ¼ 0, and the remaining nodes
are then also easy to compute. It is easy to check [8] that
knockouts of wg, en, hh or ptc exhibit only one steady
state, whereas knockouts of ci exhibit three steady states
(summarised in Table 4) in both asynchronous and
Glass-type models.

From another point of view, one may consider a delay in
the establishment of the pre-pattern [i.e. the full initial
condition (1)]. If expression of a given gene is delayed,

Fig. 3 Solution to the system of piecewise linear equation (9)
(dashed lines), in an example where the steady state corresponds
to the broad stripes pattern

In each rectangle, the y-axis ranges from 0 to 2 units
Notice that wingless is expressed in two adjacent cells, as opposed to
the wild-type pattern, in which wingless is expressed in only one cell
(similarly for engrailed and hedgehog)

Fig. 4 Solution to the system of piecewise linear equation (9)
(dashed lines), in an example where the steady state corresponds
to the no segmentation pattern

In each rectangle, the y-axis ranges from 0 to 2 units
Notice that wingless, engrailed and hedgehog are not expressed in any
cell, thus no segments are visibly detected in the embryo

Fig. 5 Effect of effective ON concentration, u, on the probability
of occurrence of the three most frequent patterns: wild-type (WT),
broad stripes (BS) and no segmentation (NS)

Results are for the Glass-type model with ai
21 randomly chosen in an

interval [1 2 1, 1þ 1]
Solid lines represent the case 1 ¼ 0.5, dotted lines represent the case
1 ¼ 0.1 and dash-dotted lines represent the case 1 ¼ 0.9 (results out
of 1000 runs)
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does the system recover, and how soon? To answer this
question, we simulated a delay in expression of gene X,
by setting the corresponding discrete variable X(t) ¼ 0 in
all cells, for all t � Tdelay. We then varied Tdelay between
0 and 7 time units, and measured the frequency of occur-
rence of each steady state, both for the asynchronous and
Glass-type models. (In the latter, we set the concentration
threshold u equal to 1/2 for all nodes.)

The results are shown in Figs. 6 and 7. We can see that,
for short Tdelay, both models recover their original frequen-
cies of occurrence of each steady state, whereas for long
Tdelay both models converge to the corresponding mutant
steady state. A curious exception is the case of ci, where
long delays in its initial expression do not significantly
change the probability that the wild-type steady state is
achieved (and even slightly increase it in the asynchronous
model). This agrees with the conclusion of Albert and
Othmer [8] that ci knockout coupled with an otherwise
wild-type initial condition converges to a state close to

the wild-type steady state. Remarkably, delays in both
cubitus interruptus transcription factors (CIA, CIR) have
a lesser effect than an imbalance in their expression [12].
This leads us to predict that, during the pre-segmentation
stage of embryo development, the cubitus interruptus
proteins’ expression is the last to be established.

Another noteworthy observation is the fact that small
delays in wg expression have much more drastic effects
on the system than the same delay in en or hh. This phenom-
enon reflects the one-way signalling cascade starting with
expression of wg, which induces en, which in turn induces
hh. We see that a total disruption in the system is caused
by a delay of only three time units in wg or en expression,
which cause the system to fail to reproduce the wild-type
pattern, and settle into a non-segmented pattern. However,
if only hh is delayed, the system is disrupted only after a
delay of five time units. In other words, recovery of the
system back to the ‘good’ developmental process is more
probable in the event of a hh expression delay, than a wg
or en expression delay.

6 Robustness of the model under timescale
separation

In the previous algorithms, the space of all possible time-
scales for protein/mRNA regulatory processes was
explored, with no assumptions on the characteristic duration
of translational or post-translational processes. As a conse-
quence, the robustness analysis shows that the model
diverges from the wild-type pattern very often, with the
biologically inviable states occurring with a noticeable
frequency. However, it is also well known that

Table 4: Steady states corresponding to gene
knockouts in the segment polarity network model,
calculated according to (10)

Knockouts Mutant steady states

wg, en, hh no segmentation

ptc broad-stripes

ci wild-type, broad-stripes, ectopic

Here, for the ci knockout, the ‘wild-type’ state is interpreted as
the wild-type pattern in all but the ci, CI, CIA, CIR mRNA/proteins

Fig. 6 Effect of initially delayed expression in occurrence of steady-state patterns

Left: delay in wingless expression
Middle: delay in engrailed expression
Right: delay in hedgehog expression
Results out of 1000 runs
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post-translational processes such as protein conformational
changes or complex formation, usually have shorter
durations than transcription, translation or mRNA decay.
This fact justifies the introduction of a distinct timescale
separation among processes, by choosing to update proteins
first and mRNAs later.

6.1 Timescale separation in the random-order
algorithm

Timescale separation is straightforwardly implemented in
the random-order algorithm presented in Section 3. At the
kth updating step, we generate two random permutations,
fk

Prot and fk
mRNA, within the set of proteins and

mRNAs, respectively. Then the N nodes are updated in
the order given by

fk ¼ ðfk
Prot; f

k
mRNAÞ

This method again shows that the Boolean model is very
robust, in the sense that when started from the wild type
initial condition, the wild-type pattern occurs with a fre-
quency of 87.5% and only one other steady state is
observed, the broad-stripes pattern, with a frequency of
12.5%. Furthermore, these frequencies are exact as we
show in Chaves et al. [12], where we also completely
characterise the model resulting from incorporation of a
protein/mRNA timescale separation into the random
order algorithm. We show that the wild-type state is in
fact an attractor for the system, whereas the pathway to
the broad stripes state may exhibit oscillatory cycles. We
summarise this and other results in the next theorem,

stated without proof, and refer to the work of Chaves
et al. [12] for more details.

Theorem 1: In the random-order algorithm with timescale
separation, let wg3

0 ¼ 0, ptc3
0 ¼ 1, hh2,4

0 ¼ 0 and ci3
0 ¼ 1

[as satisfied by the initial pattern (1)]. Then the system
diverges from the wild-type pattern if and only if the permu-
tation f1 satisfies the following sequence among the pro-
teins CI, CIA, CIR and PTC

CIR3 CI3 CIA3 PTC3

CI3 CIR3 CIA3 PTC3

CI3 CIA3 CIR3 PTC3

ð11Þ

and the other proteins may appear in any of the remaining
slots.

Thus, we can compute the exact probability with which
the random-order algorithm (with timescale separation)
leads to either the wild-type or broad-stripes pattern: the
latter is simply the fraction of sequences of the form (11),
and equals 12.5% [12].

6.2 Timescale separation in the Glass-type and
asynchronous algorithms

As shown in Section 4, the (discrete) asynchronous algor-
ithm and the (piecewise continuous) Glass-type system
provide equivalent representations of a gene expression
network. Indeed, the ‘specific time units’ gi and the
inverse ‘scaling factors’ ai

21, both represent the rate of
dynamical evolution of each individual node. For these
two models, we implement time separation among pro-
cesses by using two non-overlapping intervals for the

Fig. 7 Effect of initially delayed expression in occurrence of steady-state patterns

Left: delay in patched expression
Right: delay in cubitus interruptus expression
Results out of 1000 runs
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scaling factors

g�1
i ; ai [ AmRNA; if Xi [ fwg;en;hh;ptc;cig

g�1
i ; ai [ AProt; if Xi [ fWG;EN ;HH;PTC;CI;

CIA;CIRg

with, for instance, AmRNA ¼ [0.2, 0.6] and AProt ¼ [1.4,
1.8]. Under these conditions, choosing the factors ai from
a uniform distribution in these intervals, numerical exper-
iments indicate that the two methods respond in mostly
similar ways, with only two patterns occurring at steady
state when the systems start from (wild-type) initial con-
dition (1). The two possible steady states are the wild-type
and broad-stripes patterns.

For the asynchronous algorithm, the probabilities of con-
vergence to each of the steady states clearly depend on the
distance between the two intervals: convergence to wild
type is 93% in the case where intervals AmRNA, AProt

are consecutive, and up to 100% for the case 2a , b,
a [ AmRNA, b [ AProt.

For the Glass-type model, two cases can be distinguished:
u � 0.5 and u . 0.5. For u � 0.5, numerical simulations
show that the model reaches wild-type pattern with prob-
ability near 100%, even when there is some overlap
between AmRNA and AProt (Fig. 8). In fact, we next theoreti-
cally prove that the wild-type pattern is indeed the unique
possible steady state of the hybrid system (9) and initial
condition (1), as indicated by the simulations, when there
is a suitable distance between the intervals, and a lower
bound on u (Theorem 2, Section 6.4). For u . 0.5, we
have found no condition that guarantees convergence to
the wild-type steady state, and indeed numerical simu-
lations show that, even for large interval separation, the
system may converge to one of the mutant patterns.

A comparison of Theorems 1 and 2 emphasises differ-
ences and similarities between discrete and continuous
models: intuitively, the single discrete event described
by Theorem 1 cannot take place in a continuous model.
Therefore wg3 remains ‘0’ (OFF) for all times, ruling out
the possibility that the broad-stripes pattern is reached.

Indeed, Theorem 1 establishes that (in the discrete case,
with the random order algorithm) divergence from wild-
type pattern occurs if and only if wg3

1 ¼ 1. This fact
involves a jump in wg3 from ‘0’ to ‘1’ at precisely the
first iteration. In contrast, in the Glass-type model, the con-
tinuous variable cwg3 cannot instantaneously jump from ‘0’
to ‘1’. As the discrete ON/OFF levels are defined by a
threshold on cwg3, there will necessarily be a smoothing
effect on any transition between ‘0’ and ‘1’. This is what
happens in case (a) of Theorem 2.

The second (sufficient) condition of theorem 2 guarantees
convergence to the wild-type steady state for all
0 , u � 0.5 [while condition (a) is only for
0.382 � u � 0.5], but assumes that aPTC3

. aCI3
. This

is an analogue to theorem 1: if aPTC3
. aCI3

, then
(starting from PTC3(0) ¼ CI3(0) ¼ 0 and assuming
FPTC3

¼FCI3
¼ 1) dPTC3 increases faster than cCI3, implying

that PTC3 becomes ON faster than cCI3. Such response pre-
vents the events listed in Theorem 1, which would lead to a
mutant state. Thus, both discrete and piecewise linear
models predict that the sequence of PTC, CI expression in
the third cell is one of the fundamental pieces in establish-
ing the correct development of embryo segmentation.

It is also worth pointing out that the three methods provide
qualitatively similar results under timescales separation, all
predicting that only wild-type and broad-striped patterns to
occur, the latter with considerably smaller frequency.

6.3 Distinct concentration thresholds for
ON state

A natural question arising in the analysis of (9) concerns the
dynamics of the system under more general concentration
thresholds. We have seen that u (even when equal for all
species) plays an important role in establishing basins of
attraction to each of the steady states of the model.

We have, in particular, identified three distinct regions of
behaviour

Region 1: 0 , u ,
3�

ffiffiffi
5
p

2

Region 2:
3�

ffiffiffi
5
p

2
� u �

1

2

Region 3:
1

2
, u � 1

When u is equal for all nodes, the probability that the
system evolves into the wild-type pattern is above 90% in
regions 1 and 2, but may be as low as 68% in region
3. Furthermore, for region 2, we theoretically prove that
probability is exactly 100% under the timescale separation
assumption.

We now associate to each node a specific ui, so that (8) is
modified to

XiðtÞ ¼
0; bXiðtÞ � ui

1; bXiðtÞ . ui

(
ð12Þ

To test the performance of the system and compare it with
previous results, we considered two timescale situations:
ai [ [0.5, 1.5] for all i, or the timescale separation
AmRNA ¼ [0.2, 0.6], AProt ¼ [1.4, 1.8]. In each case, we ran-
domly assigned values to ui from uniform distributions in
the intervals (0, 1), (0, 0.5) and (0.4, 0.5). (Note that 0.4
is close to (3 2

p
5)/2.) The numerical results with

varying ui extend and confirm our previous observations
for ui ¼ u, i ¼ 1, . . . , N.

Fig. 8 Probability of occurrence of the three most frequent pat-
terns: wild-type (WT), broad-stripes (BS) and no segmentation
(NS), with separation of timescales

Dashed lines/squares represent asynchronous algorithm results, and
solid lines/circles represent Glass-type model results
x-axis represents the level of separation, computed by minfb [ AProtg/
maxfa [ AmRNAg (out of 1000 runs)
Results were obtained with u ¼ 0.5
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Table 5 summarises the results for all combinations of ui

and ai regions. The most general case, allowing a large
degree of freedom in both timescales and concentration
thresholds, indicates the vulnerability of the network, with
a very high incidence on mutant patterns [ui [ (0, 1),
ai [ [0.5, 1.5]]. Again we see that there is a marked differ-
ence in the ui regions below or above 0.5. Comparing the
reasonable results obtained for ui � 0.5 with the bad per-
formance for 0.5 , ui , 1, we conclude that the optimal
ON concentration for proteins or mRNA is below 50% of
maximal concentration.

Restricting ui even further to one of the conditions given
in Theorem 2 (Section 6.4; conditions developed for the
case ui ¼ u, i ¼ 1, . . . , N ) dramatically increases the prob-
ability that the system develops in the correct way.

These simulations suggest, moreover, that some of the
theoretical results obtained for each of the three regions
may extend to the case of distinct ui. Indeed, note that,
under timescale separation, when ui are chosen from
region 2, convergence to wild-type steady state is 100%
[compare with part (a) of Theorem 2].

These simulations further confirm the role of aPTC3
and

aCI3
in the segmentation network. Requiring aPTC3

. aCI3

decreases the probability of formation of the broad stripes
pattern (any timescales), but does not influence the prob-
ability of a non-segmented embryo. The latter mutant is pre-
vented only by a complete separation of timescales of the
regulatory processes.

6.4 Glass-type model provides exact
convergence to wild-type pattern

In this section, we will require that the intervals AmRNA and
AProt do not overlap, by satisfying the following assumption

For all a [ AmRNA and b [ AProt: 0 , 2a , b ð13Þ

A second assumption is that the effective maximal concen-
tration is equal for all nodes and satisfies u � 1/2, which is
equivalent to

ln
1

1� u
� ln

1

u
ð14Þ

Theorem 2: Consider system (9) with initial condition (1).
Assume that the scaling factors ai satisfy (13). Assume
also that one of the following conditions holds.

(a) u � 1/2 and (1 2 u)2
� u or equivalently 0.382 ’

(3 2
p

5)/2 � u � 1/2;

(b) u � 1/2 and aPTC3
. aCI3

;

then wg3(t) ¼ 0 for all t.

This shows that the steady state representing the broad-
stripes pattern cannot ever be reached in system (9) from
the initial condition (1), when u � 1/2 and either of the
extra conditions holds.

Theorem 3: Consider system (9) with initial condition (1).
Assume that the scaling factors ai satisfy (13), and that
u � 1/2. Then wg4(t) ¼ 1 and PTC1(t) ¼ 0 for all t.

This shows that the steady states represented by the no seg-
mentation, wild-type variant or the two ectopic patterns also
cannot ever be reached in system (9) from the initial con-
dition (1). From Theorems 2 and 3, we conclude that,
under the timescale separation assumption, the Glass-type
model (9) can only converge to the wild-type pattern,
when starting from the initial condition (1), and for
appropriate u values (Table 6).

We first summarise some useful observations. Let X
denote any of the nodes in the network, and a its time
rate. As (9) is either of the form dbX/dt ¼ a(2bX þ 1) or
dbX/dt ¼ 2abX , its solutions are continous functions, piece-
wise combinations of

bX 1ðtÞ ¼ 1� ð1� bX 1ðt0ÞÞ e
�aðt�t0Þ ð15Þ

bX 0ðtÞ ¼ bX 0ðt0Þ e
�aðt�t0Þ ð16Þ

bX 1(t) (resp. bX 0(t)) is monotonically increasing (resp.
decreasing). In addition, note that discrete variables X can
only switch between 0 and 1 at those instants when

Table 5: Probabilities of convergence to a given steady state, with distinct concentration thresholds ui and distinct
timescales ai, in the Glass-type model

aPTC3
. aCI3

Steady-state pattern ui [ (0, 1) ui [ (0.5, 1) ui [ (0, 0.5] ui [ (0, 0.5] ui [ [0.4, 0.5] ui [ 0.5 ai

Wild-type, % 45.6 57.1 84.1 90 92.6 94.2 AmRNA ¼ AProt ¼ [0.5, 1.5]

Broad-stripes, % 27.8 15.1 12 6.2 7.3 4.5

No segmentation, % 24.4 25.8 0.9 0.9 0.05 1.3

Wild-type variant, % 2.1 1.9 2.9 2.9 0 0

Wild-type, % 74.1 52.7 96.6 97.1 100 100 AmRNA ¼ [0.2, 0.6]

Broad-stripes, % 10.8 3.3 3.3 2.8 0 0

No segmentation, % 14.1 43.9 0 0 0 0 AProt ¼ [1.4, 1.8]

Wild-type variant, % 1.0 0 0.1 0.1 0 0

Probabilities computed out of 1000 simulations for each case

Table 6: Probabilities of convergence to a given steady
state, under the separation of timescales assumption

Steady state

pattern

Random-order

algorithm, %

Asynchronous

algorithm, %

Glass-type

model, %

Wild-type 87.5 93.7–100 100

Broad-stripes 12.5 0–6.3 0

Other 0 0 0

These values are theoretically exact for both the random order
algorithm and Glass-type model

IEE Proc.-Syst. Biol., Vol. 153, No. 4, July 2006 163



bX (tswitch) ¼ u, that is

t1
switch ¼ t0 þ

1

a
ln
ð1�bX ðt0ÞÞ

1� u
ð17Þ

t0
switch ¼ t0 þ

1

a
ln
bX ðt0Þ
u

ð18Þ

From the initial conditions, together with the constant
values of SLPi (i ¼ 1, 2, 3, 4), we can immediately conclude

cwg1;2ðtÞ ¼ WG1;2ðtÞ ¼ 0 ð19Þ

ben3;4ðtÞ ¼ cEN3;4ðtÞ ¼ 0

bhh3;4ðtÞ ¼dHH3;4ðtÞ ¼ 0 ð20Þ

for all t � 0. Then, because ci3,4(0) ¼ 1 and Fci3,4
¼ not EN3,4

bci3;4ðtÞ ¼ 1 and bCI3;4ðtÞ ¼ 1� e�aCI3;4
t

ð21Þ

Lemma 2: Let 0 � t0 , t3 � t1 and 0 � t2 , t3. Define
d ¼ ln(1/(1 2 u))/max1, . . . , N ai. Assume CIA3(t) ¼ 0 for
t [ (t2, t3), and wg3(t) ¼ 0 for t [ [0, t3). Then

(a) wg3(t) ¼ 0 for t [ [0, t3þ d);
(b) WG3(t) ¼ 0 for t [ [0, t3þ d);
(c) en2(t) ¼ EN2(t) ¼ 0 for t [ [0, t3þ d);
(d) hh2(t) ¼ HH2(t) ¼ 0 for t [ [0, t3þ d).

Assume further that PTC3(t) ¼ 1 for t [ (t0, t1). Then

(e) PTC3(t) ¼ 1 for all t [ (t0, t3þ d);
(f ) CIA3(t) ¼ 0 for all t [ (t2, t3þ d).

Proof: Part (a) follows directly from the fact that Fwg3
(t) ¼ 0

on [0, t3), and from (17).
To prove parts (b), (c) and (d), first note that initial con-

ditions together with wg3(t) ¼ 0 for t [ [0, t3) imply

dWG3ðtÞ ¼ 0; ben2ðtÞ ¼ cEN2ðtÞ ¼ 0

bhh2ðtÞ ¼dHH2ðtÞ ¼ 0

for t [ [0, t3]. Then, from (15) to (18), we conclude that the
corresponding discrete variables cannot switch from 0 to 1
during an interval of the form [0, t3þ (1/aj) ln(1/(1 2 u))).
Taking the largest common interval yields the desired
results.

To prove parts (e) and (f), assume also that PTC3(t) ¼ 1
for t [ (t0, t1). From (20) and part (d), it follows that
function FPTC3

does not switch in the interval (t0, t3þ d)
and in fact PTC3(t) ¼ 1 for all t in this interval. This,
together with (20) and part (d) yield FCIA3

(t) ¼ 0 for
(t0, t3þ d), so that dCIA3 cannot increase in this interval
and the discrete level satisfies CIA3(t) ¼ 0 for all
t [ (t2, t3þ d), as we wanted to show. A

Corollary 1: Let 0 � t0 , t3 � t1 and 0 � t2 , t3. If
PTC3(t) ¼ 1 for t [ (t0, t1), CIA3(t) ¼ 0 for t [ (t2, t3),
and wg3(t) ¼ 0 for t [ [0, t3), then wg3(t) ¼ 0 for all t.

Proof: Applying Lemma 2, we conclude that, given
any k � 0

CIA3ðtÞ ¼ 0; for t [ ðt2; t3 þ kdÞ

wg3ðtÞ ¼ 0; for t [ ½0; t3 þ kdÞ

PTC3ðtÞ ¼ 1; for t [ ðt0; t3 þ kdÞ

imply

CIA3ðtÞ ¼ 0; for t [ ðt2; t3 þ ðk þ 1ÞdÞ

wg3ðtÞ ¼ 0; for t [ ½0; t3 þ ðk þ 1ÞdÞ

PTC3ðtÞ ¼ 1; for t [ ðt0; t3 þ ðk þ 1ÞdÞ A

Because d is finite, we conclude by induction on k that
wg3(t) ¼ 0 for all t.

Proof of Theorem 2: The rule for CIA3 may be simplified to
[by (20)]

FCIA3
¼ CI3 and ½not PTC3 or hh2 or HH2�

From (21), we have that

CI3ðtÞ ¼ 1; for all t .
1

aCI3

ln
1

1� u
ð22Þ

On the contrary, as ptc3(0) ¼ 1, by continuity of solutions
ptc3(t) ¼ 1 for all t , (1/aptc3

) ln(1/u). This implies that
the Patched protein satisfies

dPTC3ðtÞ ¼ 1� e�aPTC3
t; 0 � t �

1

aptc3

ln
1

u

and therefore

PTC3ðtÞ ¼

0; 0 � t �
1

aPTC3

ln
1

1� u

1;
1

aPTC3

ln
1

1� u
, t ,

1

aptc3

ln
1

u

8>><
>>:

ð23Þ

By assumption, aPTC3
. aptc3

and also ln(1/(1 2 u)) �
ln (1/u), defining a non-empty interval where PTC3 is
expressed. Now let tc ¼ (1/aCI3

) ln(1/(1 2 u)) and

tp ¼ (1/aPTC3
) ln(1/(1 2 u)). dCIA3(t) starts at zero and

must remain so while CI3 ¼ 0, so that

CIA3ðtÞ ¼ 0 for 0 , t , tc

In the case tc . tp, letting t0 ¼ tp, t1 ¼ (1/aptc3
) ln(1/u),

t2 ¼ 0 and t3 ¼ tc in Corollary 1, obtains wg3(t) ¼ 0 for
all t. This proves item (b) of the theorem, and part (a).

To finish the proof of item (a), we assume that
(1 2 u)2 , u and must now consider the case tc � tp. Then

dCIA3ðtÞ ¼

0; 0 � t � tc
1� e�aCIA3

ðt�tcÞ; tc , t � tp

dCIA3ðtpÞ e
�aCIA3

ðt�tpÞ; tp , t �
1

aptc3

ln
1

u

8>><
>>:

Following (17) with t0 ¼ tc and dCIA3(t0) ¼ 0, CIA3 might
become expressed at time tc , ta , tp

ta ¼ tc þ
1

aCIA3

ln
1

1� u

but it would then become zero again at ((18) with t0 ¼ tp)

tb ¼ tp þ
1

aCIA3

ln
dCIA3ðtpÞ

u

Finally, we show that, even if CIA3(t) ¼ 1 for t [ (ta, tb),
wg3 cannot become expressed in this interval. In this inter-
val, cwg3 evolves according to cwg3(t) ¼ 1 2 e2awg3(t2ta), and
wg3 can switch to 1 at time

tw ¼ ta þ
1

awg3

ln
1

1� u

We will show that tw . tb, so wg3(t) ¼ 0 in the interval
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[0, tb). Writing

ln
dCIA3ðtpÞ

u
¼ ln

dCIA3ðtpÞ

1� u

1� u

u

¼ ln
dCIA3ðtpÞ

1� u
þ ln

1� u

u

� ln
1

1� u
þ ln

1

1� u

where we have used dCIA3(tp) � 1 and the assumption on u:
(1 2 u)/u � (1/(1 2 u)). Therefore

tb � tp þ
2

aCIA3

ln
1

1� u

,
1

awg3

ln
1

1� u
þ

1

aCIA3

ln
1

1� u
, tw

where we have used the timescale separation assumption
(13). Letting t0 ¼ tp, t2 ¼ 0 and t1 ¼ t3 ¼ minftb, aptc3

21 ln
(1/u)g in the corollary, obtains wg3(t) ¼ 0 for all t. A

We will next show that if wg4(t) ¼ 1 in a given interval
[0, T ), then in fact wg4(t) remains expressed for a longer
time, up to Tþ d, with d . 0. This is mainly due to assump-
tion (13), which says that mRNAs take longer than proteins
to update their discrete values, because they have longer
half-lives: amRNA

21 . aProt
21 . This allows the initial signal

‘wg4 ¼ 1’ to travel down the network, sequencially affect-
ing the wingless protein, engrailed, hedgehog and CIA,
and feed back into wingless allowing wg4 to remain
expressed for a further time interval.

Lemma 3: Let T � (1/awg4
) ln (1/u) and define

d ¼
1

aWG4

ln
1� e�ðaWG4

=awg4
Þ lnð1=uÞ

u
ð24Þ

If wg4(t) ¼ 1 for 0 � t , T, then

(a) WG4(t) ¼ 1 for t [ ((1/aWG4
)ln(1/(1 2 u)), Tþ d);

(b) en1(t) ¼ 1 for t [ [0, Tþ d);
(c) cEN1(t) ¼ 1 2 e2aEN1

t for t [ [0, Tþ d), and EN1(t) ¼ 1
for ((1/aEN1

) ln(1/(1 2 u)), Tþ d);
(d) ci1(t) ¼ 0, CI1(t) ¼ 0, CIA1(t) ¼ 0 and CIR1(t) ¼ 0 for
t [ [0, Tþ d);
(e) hh1(t) ¼ 1, for t [ [0, Tþ d);
(f) CIA4(t) ¼ 1, for t [ ((1/aCI4

) ln(1/(1 2 u))þ (1/aCIA4
)

ln(1/(1 2 u)), Tþ d), and CIR4(t) ¼ 0, for t [ [0, Tþ d);
(g) wg4(t) ¼ 1 for t [ [0, Tþ d).

Proof: Let T � (1/awg4
) ln(1/u), and assume that wg4(t) ¼ 1

for 0 � t , T. To prove part (a), note that dWG4(t) is of
the form (15) [with t0 ¼ 0 and dWG4(0) ¼ 0] and the
corresponding discrete variable is WG4(t) ¼ 1, for
t [ ((1/aWG4

) ln(1/(1 2 u)), T ). Moreover, suppose that
wg4(t) ¼ 0 for t . T, then

dWG4ðtÞ ¼ ð1� e�aWG4
T Þ e�aWG4

ðt�TÞ; t . T

But WG4 remains 1 until the switching threshold is attained,

that is up to time

T þ
1

aWG4

ln
ð1� e�aWG4

T Þ

u

� T þ
1

aWG4

ln
1� e�aWG4

ð1=awg4
Þ lnð1=uÞ

� �
u

; T þ d

Thus, we conclude that WG4(t) ¼ 1 in the desired interval.
To prove part (b), observe that Fen1

(t) ¼ WG4(t) for all t,
from (19), and recall that en1(0) ¼ 1. From part (a),
Fen1

(t) ¼ 1 for t [ [(1/aWG4
) ln(1/(1 2 u)), Tþ d]. On the

contrary, en1 can only switch from 1 to 0 at
t ¼ a21

en1
ln(1/u), which is larger than a21

WG4
ln(1/(1 2 u)).

So, in fact, en1(t) ¼ 1 for all 0 � t , Tþ d.
Part (c) follows immediately by integration of the cEN1

equation.
To prove part (d), first recall Fci1

¼ not EN1 and the initial
conditions ci1(0) ¼ 0 ¼ CI1(0) ¼ CIA1(0) ¼ CIR1(0).
Therefore bci1(t) increases up to t ¼ (1/aEN1

) ln(1/(1 2 u))
and then decreases in a21

EN1
ln(1/(1 2 u)) , t , Tþ d.

Now note that the discrete variable ci1(t) remains 0 in the
whole interval [0, Tþ d). This is because bci1 never
reaches the u threshold: this would be attained at some
t � a21

ci1
ln(1/(1 2 u)), but as a21

ci1
ln(1/(1 2 u)) .

a21
EN1

ln(1/(1 2 u)), the function bci1 starts decreasing
before it could reach the value u. Finally, from the rules
of the Cubitus proteins it is immediate to see that CI1(t) ¼
CIA1(t) ¼ CIR1(t) ¼ 0 for t [ [0, Tþ d).

To prove part (e), recall that Fhh1
¼ EN1 and not CIR1.

From part (a), it follows that Fhh1
(t) ¼ 0 in the interval

[0, a21
EN1

ln(1/(1 2 u))) and Fhh1
(t) ¼ 1 in the interval

(a21
EN1

ln(1/(1 2 u)), Tþ d). As hh1(0) ¼ 1, bhh1(t) decreases
in the interval [0, a21

EN1
ln(1/(1 2 u))) but increases in

(a21
EN1

ln(1/(1 2 u)), Tþ d). The discrete value is
hh1(t) ¼ 1 in the whole interval, as ĥh1(t) remains above
the u threshold. [The justification is similar to the case of
ci1(t) in part (d).]

To prove part (f ), note that part (e) and then the use of
(21), allows us to simplify FCIA4

FCIA4
ðtÞ ¼ CI4ðtÞ and hh1ðtÞ ¼ 1;

t [
1

aCI4

ln
1

1� u
; T þ d

� �

Thus

dCIA4ðtÞ ¼

0; 0� t �
1

aCI4

ln
1

1� u

1� e�aCIA4
t�ð1=aCI4

Þ lnð1=1�uÞð Þ;
1

aCI4

ln
1

1� u
, t � T þ d

8>><
>>:
and CIA4(t) ¼ 1 for t [ [(1/aCI4

) ln(1/(1 2 u))þ (1/aCIA4
)

ln(1/(1 2 u)), Tþ d). Observe that this interval is indeed
non-empty, by assumption (13). Finally, FCIR4

(t) ¼ CI4(t)
and not hh1(t) ¼ 0, and hence CIR4(t) ¼ 0 for t [ [0, Tþ d).

To prove part (g), we note that [from part (f)]

Fwg4
ðtÞ ¼ 1; t [

1

aCI4

ln
1

1� u
þ

1

aCIA4

ln
1

1� u
; T þ d

� �

implying that cwg4(t) increases in this interval. In contrast,
we know that cwg4(t) � u and wg4(t) ¼ 1 up to at least t ¼
(1/awg4

) ln(1/u) . (1/aCI4
)þ (1/aCIA4

) ln(1/(1 2 u)).
This shows that in fact wg4(t) ¼ 1 for all t [ [0, Tþ d). A
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Proof of theorem 3: As wg4(0) ¼ 1, from (17) and (18), we
know that the earliest possible switching time from 1 to 0 is
a21

wg4
ln(1/u). Applying lemma 3 with T ¼ a21

wg4
ln(1/u)

establishes that wg4(t)¼1 for t [ [0,Tþ d), with d given
by (24). Next, applying lemma 3 with T ¼ a21

wg4
ln(1/

u)þ kd, k [ N, shows that wg4(t) ¼ 1 for t [ [0,
Tþ (kþ 1)d). As d is finite, we can conclude by induction
that wg4(t) ¼ 1 for all t � 0.

To prove that PTC1(t) ; 0, note that CIA1(t) ; 0
(Lemma 3, with T ¼ þ1) implies ptc1(t) ; 0. As
PTC1(0) ¼ 0 and PTC1 cannot become expressed unless
ptc1 is first expressed, the desired result follows. A

7 Conclusions

We discussed two alternative methods for modelling
gene expression networks: purely discrete Boolean
methods and piecewise linear differential systems, which
combine continuous degradation with discrete synthesis.
For both methods, we introduced new techniques for a
deeper analysis of the networks with respect to pertur-
bations in the timescales of the system. For the piecewise
linear system, we also studied the effect of the ON
concentration thresholds.

We find that unrestricted variability in the duration of
the diverse processes present in the network may lead to
significant deviations from experimentally observed
results, thus suggesting the fragility of the developmental
process under severe perturbations (the asynchronous algor-
ithm fails to predict the correct pattern with probability
50%, and the Glass-type system fails with probability at
least 10%).

Another set of numerical experiments introduces a
separation between timescales of post-translational and
transcription/translation processes, and in practice
‘updates mRNAs later than proteins’. In this context, the
piecewise linear Glass-type system indicates a remarkable
robustness of the Boolean model in predicting the final
gene expression pattern. Indeed, we provide a theoretical
proof that the Glass-type system always correctly generates
the wild-type development (i.e. the convergence to the wild-
type steady state when started from the wild-type initial
state), under the separation of timescales assumption and
appropriate OFF/ON thresholds. The asynchronous
model’s predictions depend very much on the degree of sep-
aration between timescales. As the intervals AProt and
AmRNA become closer, the asynchronous algorithm increas-
ingly fails to generate the wild-type pattern. This leads us to
conclude that a strong separation between timescales of
post-translational and transcription/translation processes
is necessary for establishing the regular gene expression
pattern in the segment polarity network. From analysis of
the piecewise linear model, we conclude that the fraction
of maximal concentration above which a protein or
mRNA is effectively ON needs to be quite small, below
50%. Higher concentration thresholds may disrupt the
development process.

The comparison between discrete and continuous models
shows clearly that sudden transitions may happen in discrete
systems and lead to a false result; such sudden transitions are
smoothed out in continuous models, which prevent gener-
ation of false results [25]. Nevertheless, we conclude that
both models agree in predicting the fundamental sequences
of gene expression that irreversibly lead to a deviation in
the development towards a mutant state.

By combining continuous-time techniques with discrete
events, we can with great generality explore and sample
the space of all possible timescales as well as of effective

ON levels. Moreover, as information about the mRNA/
protein lifetimes, decay rates or activation thresholds
becomes available, it can be straightforwardly incorpor-
ated by fixing the corresponding inverse scaling factor
ai

21. The hybrid model retains the ease of Boolean
models in determining the steady states corresponding to
gene knockouts and perturbed initial conditions. It is
straightforward to calculate which mutant patterns result
from each gene knockout. Here we also studied the
effect of perturbations on the pre-pattern, by simulating
delay in initial expression of each gene. We find that the
system is vulnerable to large delays (larger than 2 time
units) in expression of any gene, except for ci, and, in
such delayed conditions, the mutant state characteristic
to that gene knockout is generated. For low-order delays,
the system typically recovers and proceeds through the
correct wild-type development.

The Glass-type system with time separation, as a model
of the segment polarity gene network, reflects the con-
clusion of von Dassow et al. [11] that the topology of the
network is more important than the fine-tuning of the
kinetic parameters, as its results are robust for a large
region of parameter (scaling factor, activation threshold)
space. Owing to its underlying Boolean structure, the
model also intrinsically incorporates the recent finding of
Ingolia [26] that parameter sets need to satisfy certain con-
straints, which ensure the bistability of certain genes, to lead
to correct solutions. Taken together, the results of the syn-
chronous [8], asynchronous [12] Boolean and hybrid
models convincingly demonstrate the Boolean models’
capability for effectively describing the basic structure
and functioning of gene control networks when detailed
kinetic information is unavailable.
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