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Structure and Stability of Certain Chemical Networks
and Applications to the Kinetic Proofreading Model

of T-Cell Receptor Signal Transduction
Eduardo D. Sontag, Fellow, IEEE

Abstract—This paper deals with the theory of structure, sta-
bility, robustness, and stabilization for an appealing class of non-
linear systems which arises in the analysis of chemical networks.
The results given here extend, but are also heavily based upon,
certain previous work by Feinberg, Horn, and Jackson, of which
a self-contained and streamlined exposition is included. The the-
oretical conclusions are illustrated through an application to the
kinetic proofreading model proposed by McKeithan for T-cell re-
ceptor signal transduction.

Index Terms—Chemical networks, feedback, immunology, ki-
netic proofreading, stability, system structure.

I. INTRODUCTION

T HIS paper was originally motivated by the study of the
following system of first-order ordinary differential equa-

tions:

...

...

where the subscripteds, as well as and , are arbitrary
positive constants; the s are nonnegative functions of time,
and dots indicate derivatives with respect to. These equations
arise in immunology, and describe a possible mechanism, due
to McKeithan, cf. [20], that may explain the selectivity of T-cell
interactions (some more details are provided below). McKei-
than analyzed the equilibria of these equations, which represent
steady-state regimes, mostly under the simplifying assumptions
that and for some fixed and .
During Carla Wofsy’s series of talks [25] on the topic, a number
of questions arose: what can be said about the structure of equi-
libria? are the equilibria stable? Stability is a natural mathemat-
ical requirement, with clear biological significance.
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Under the simplifying assumptions mentioned above, it is not
difficult to see that there is only one equilibrium, whose coor-
dinates depend, of course, on the given constants. We will see
that in fact even in the general case of the constants being dis-
tinct, there is aunique equilibrium. Far more interestingly, how-
ever, we will prove that the equilibrium isglobally asymptoti-
cally stable: every solution, for any choice of initial (nonneg-
ative) values s, converges to the unique equilibrium. This
conclusion rules out, in particular, periodic orbits and, of course,
chaotic behaviors, and shows the “determinism” of the process
described by McKeithan. Moreover, we will also establish the
robustnessof stability with respect to a quantifiable class of per-
turbations in the dynamics.

Going further, and approaching now the equations from the
point of view of a control theorist, one may pose questions of a
very different nature as well, questions ofdesign. The equilibria
depend, in particular, on the value of the constantsand ,
which represent total concentrations (of intermediate complexes
plus T-cell receptors, and intermediates plus peptide-major his-
tocompatibility complex, respectively). If these concentrations
are allowed to vary, and are seen as additional state variables,
multiple attracting equilibria exist. So one may ask: if we are
allowed to manipulate some of the variables, can we change the
equilibria at will (and preserve stability)? How many variables
need to be manipulated? Such questions might eventually im-
pact approaches to therapy and rational drug design. We will
provide a global feedback stabilization result as an answer.

As it turns out, the system of interest can be viewed as a very
special instance of a very large class of nonlinear systems, for
which the above-mentioned results can be established in gen-
eral. In this paper, we describe a theory of structure, stability,
and stabilization for that general class of systems. Thus, this
paper can be read totally independently of the above-mentioned
motivating example from immunology. By providing a general
theory, one expects that other applications of the theorems given
here will be possible.

The class of systems which we consider is, basically, that of
“deficiency zero chemical reaction networks with mass-action
kinetics (and one linkage class)” in the language of the beau-
tiful and powerful theory developed by Feinberg, Horn, and
Jackson, cf. [10]–[13], [17]. (the mass-action kinetics assump-
tion is weakened in several of the results, however). As a matter
of fact, our stability (but not the robustness nor the feedback)
results are basically contained in that previous work. The ex-
istence and uniqueness of equilibria, and local asymptotic sta-
bility, are already proved in the papers by Feinberg, Horn, and
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Jackson, and we claim no originality whatsoever in that regard.
And although theglobalstability results may not be readily ap-
parent from a casual reading of that literature, our proofs of
them consist basically of a careful repackaging of the discus-
sion found in Feinberg’s paper [10]. (One should point out that
an alternative approach to global stability, which would apply to
a somewhat smaller class of systems, could use ideas from [21],
which, in turn, was based on [24]. Also somewhat related, but
far more restrictive, are the results described in the book [15],
which apply to systems which satisfy a “conservation of energy”
constraint.)

The reliance upon the Feinberg/Horn/Jackson theory
notwithstanding, we provide here a totally self-contained and
streamlined exposition even of those results that are known
for these systems (deep theories for other classes of systems
have also been developed by these authors). We do this in
order to present things in a terminology and formalism more
standard in control and dynamical systems, and also because it
is not obvious how to put together the necessary pieces from
the various sources in a way that allows us to refer to them
efficiently. In any case, it is our hope that this exposition will
serve to make a wider audience in the dynamical systems and
control theory communities aware of their work.

In addition to the stability results, we also prove a robustness
and a feedback stabilization result, and we show the existence
of a global change of coordinates, which brings the systems in
question into a canonical form which exhibits a particularly el-
egant structure. We develop a formalism, and present explicit
estimates for stability margins, with a view toward further the-
oretical developments. Indeed, in a recent follow-up joint paper
[6] with Madalena Chaves, we have been able to derive, using
these techniques, various input-to-state stability results and, in
particular, a design of globally convergent Luenberger-like ob-
servers for systems of the type studied here. As new results, we
also include partial generalizations tononmass action kinetics
(cf. Remark V.6 and the stability section).

There is an extensive literature regarding applications of con-
trol theory to chemical engineering, and, in particular, to biore-
actors. Among many references, one may mention the textbook
[2] and the more recent survey articles [4] and [1], and the refer-
ences given there, as well as the well-known theory of compart-
mental systems (see, e.g., [19]). More specifically, results based
on Feinberg–Horn–Jackson theory have appeared in the control
literature, see [9], [5]. Other reactor biocontrol work deals with
reachability and controllability issues, see for instance [3]. A
preliminary version of this paper was posted electronically in
[23].

The organization of this paper is as follows. In the rest of
this Introduction, we motivate the formalism and results to
follow by reviewing some basic facts concerning chemical
reaction networks and working through an example. This
section can be skipped with no loss of continuity by readers
interested in the mathematical developments. The paper starts
in Section II, where we introduce the class of dynamical
systems being studied, and the main theorems are also stated.
In Section III, we specialize to McKeithan’s system, inter-
preting the results in that special case. Section IV discusses
some basic coordinatization facts, as well as some useful

alternative system descriptions. Section V deals with the main
proofs regarding interior equilibria, Section VI with boundary
equilibria, Section VII with technical invariance results, and,
finally, Section VIII with the proofs of the stability theorems.

A. Chemical Networks

Let us motivate the formalism and results to follow by
reviewing some basic facts concerning chemical reaction
networks. We will restrict attention to “mass action kinetics”;
however, it is important to remark that variations such as
Michaelis–Menten reactions, obtained through singular per-
turbation analysis when starting from mass-action models, are
routinely used to model many enzymatic reactions in biology
and, in fact, most of our results apply to them as well (see
Remark V.6 and the stability section).

In chemical network studies, one analyzes systems of
differential equations which describe the time-evolution of
the concentrations of given “chemical
species” ; the s might denote anything from
small molecules to large complexes. The equations are derived
from a consideration of the reactions that are known to occur
among the substances, perhaps helped by other molecules
which are not explicitly considered in the equations (such as
catalysts or energy sources).

As an extremely simple illustration, suppose that each mole-
cule of a certain species can react with one molecule of
to produce a molecule of , and that, conversely, each mole-
cule of may dissociate (through a different process, typically
with different time constants), into and . This is indicated
graphically by

and

or just by

An example of this reaction is provided by the synthesis of ethyl
tert-butyl ether ( C H O) from isobutene ( C H )
and ethanol ( C H O). For studies of the ethyl tert-butyl
ether reaction in the control theory literature, see [9], and [14].
Assuming that the reactor is well-mixed, particle-collision theo-
ries or quantum-mechanical potential energy methods are often
used to justify the statement that the probability of such a reac-
tion occurring, in a small time interval around time, is propor-
tional to the product of the concentrations at time,
and to the length of the interval, that is to say, to the probability
of two molecules in this bimolecular reaction colliding by virtue
of being “in the same place at the same time.” Since we gain a
single molecule of for each such reaction, we arrive at a for-
mula for the rate of increase of the concentration ofdue to
the first reaction :

(1)

In addition, as one molecule of and each are eliminated
at the same rate, we also have the following two differential
equations:

(2)
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Here, is a suitable constant of proportionality, the “reaction
rate constant,” which is often taken to be (Arrhenius law) pro-
portional to the Boltzmann factor and is the temper-
ature. One also writes graphically:

We also assumed for our example that there is a dissociation
reaction, that is,

where is another rate constant, and this reaction is also mod-
eled by rate equations: decays at a rate proportional to its
concentration, , and each of and grow at this
rate. Incorporating these into the previous equations gives the
final set of differential equations:

(3)

which describe the evolution of all the concentrations .
A very convenient and systematic formalism to describe the

complete system of equations is as follows. The entire reaction
is represented by a graph, whose nodes are the “complexes”
which appear in the reactions, such as and in the
example given above, and whose edges are labeled by the re-
action rate constants. So, in the example shown above, there
is an edge labeled (where is an actual positive number)
starting at the node in the graph corresponding to ,
and pointing to the node corresponding to, and there is like-
wise an edge labeled from the second node to the first. We
associate to this graph its incidence (connectivity) ma-
trix matrix , listing all the edge labels (for instance,

, to indicate a reaction with rate constant, from
the first node to the second node). More generally, the size
of is , if there are a total of complexes. One of
the hypotheses to be made is that the matrixis irreducible,
meaning that the graph is strongly connected, that is, there is
some path, typically through several stages of intermediate re-
actions, linking any two given complexes (in fact, results hold
under a weaker, block-irreducibility, property). Next, one intro-
duces a set of column-vectors , one for each com-
plex (in our simple example, ). This is done by spec-
ifying the contributions from each type of molecule. For ex-
ample, gives rise to the vector , and

to the vector .
The “mass action” dynamics are then summarized by the

system

(4)

(where each has entries ), which the reader
may easily verify reduces to (3) in the above example, for which

Note that, for instance, the term corresponding to and
in the summation in (4) gives us

which provides precisely the contributions to, , and
represented by (1) and (2). [Higher-order polynomial equations
may result as well. For example, suppose that each molecule of
species can react with four molecules of to produce two
molecules of , that is, . This would give us
equations , , and ,
and the vectors and would become ,

.]
A fundamental role is played by the linear subspaceof

which is spanned by all the differences . This is thesto-
ichiometric subspaceassociated to the reaction, and each inter-
section between a parallel translate ofand the positive or-
thant is called aclass,or more properly a stoichiometric com-
patibility class [“stoicheion” (Gk.) element]. The significance
of classes is that, since , trajectories remain in classes, that
is, classes are positive-time invariant manifolds for the dynam-
ical system. (The positive orthant is itself forward invariant, as
is easily shown.) In the example discussed above,is the line
spanned by . This line can also be de-
scribed as the set of solutions of , so each
class is given by the positive points in

, for different constants and . Of course, it is clear from
the equations (3) that
along solutions.

One of the basic facts about the systems studied here is that
there is a unique equilibrium in each class, and, under mild con-
ditions, this equilibrium is globally asymptotically stable with
respect to positive initial conditions. Continuing with the above
example, the set of possible equilibria consists of the points in
the hyperbolic paraboloid . Let’s now take
for simplicity and analyze the stability of the equi-
librium . As the ray is
forward invariant, where ranges over the interval (the
intersection of the corresponding line and the positive orthant),
we may parameterize motions by. One obtains the scalar dif-
ferential equation , which has, as claimed, the
point as an asymptotically stable state with a basin of
attraction which includes all of .

If we start at a point which is not in the above line, the equi-
librium approached will not be . If this equilibrium is de-
sirable, we may want to design a feedback law to drive the so-
lutions from every other (positive orthant) initial state into.
Suppose that we can control the inflows and outflows of, let us
say, and . This situation is represented by the following
control system:

Stabilization of can be achieved for instance by
a simple feedback linearization, taking
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and . Then, and as
, and thus, by a cascade argument, we see that also

as , as wanted. We will provide a general
result on stabilization (but using linear feedback), as well as
results on robustness of stability and on global decompositions
of dynamics, for systems (4). These results will be illustrated
again for the above simple example, now viewed as a particular
case of McKeithan’s system, in Section III.

II. DEFINITIONS AND STATEMENTS OFMAIN RESULTS

Some standard notations to be used are the following:

• (resp., ) nonnegative (resp., positive) real num-
bers;

• (resp., ) -column vectors (resp.,
matrices) with entries on ; similarly for ;

• boundary of , set of vectors such that
for at least one ;

• transpose of vector or matrix;
• Euclidean norm of vector in ;
• , inner product of two vectors;
• .

Although we develop the theory for a somewhat wider class of
systems, we wish to emphasize thatall the results to be given are
valid, in particular, for the following general class of systems
evolving on :

(and, as appropriate, for those systems obtained by adding con-
trol inputs, as discussed below). Each column vector
has entries , which are nonnegative integers, and
the s are nonnegative numbers. The systems defined in
this fashion are described by polynomial dynamics. The only
assumptions required in order for the results to hold are that
the s be linearly independent and that the matrix

must beirreducible. Recall that this means that
or, equivalently, that the incidence graph

is strongly connected [where is the graph whose
nodes are the integers and for which there is an
edge , , if and only if ]. This assumption
amounts to a “weak reversibility” property in the application
to chemical reactors, as discussed briefly in Section III, and is
crucial to the validity of the results.

We now describe the underlying dynamics of the systems
to be studied, and leave for later the introduction of additional
terms in order to model the possibility of control actions. Our
systems are parametrized by two matricesand with non-
negative entries, as well as a collection of nonnegative functions

, , and have the following general form:

(5)

where denotes theth column of (notice that the diagonal
entries of are irrelevant, since ). Several restric-
tions on , , and the s are imposed below. The powers are
interpreted as follows, for any, : , if ,
and if and .

The main motivating example, arising from mass-action ki-
netics in chemistry, is obtained when for all and
is a matrix whose entries are nonnegative integers (so, for non-
negative vectors , we have polynomial equations). This is the
case mentioned in the first paragraph, and will be referred to as
the “standard setup” in this paper.

The hypotheses on thes, , and are as follows. Each map

is locally Lipschitz, has , satisfies
, and its restriction to is strictly increasing and onto.

[Most results hold without this last assumption; see (28)]. We
suppose that

is irreducible (6)

and, for , that

each entry of is either or (7)

[this last hypothesis insures that in (5) is a locally Lips-
chitz vector field, so we have uniqueness of solutions for the
differential equation],

has rank (8)

(so, its columns are linearly independent), and

no row of vanishes (9)

This last hypothesis is made mainly for convenience. Observe
that if some row, let us say theth one, were zero, then the same
dynamics would be obtained if all entries in roware replaced
by “1” (since the differences are still zero) and one
restricts the dynamics to those states satisfying , where

is the positive number such that .
From now on, we assume that all systems (5) considered sat-

isfy the above assumptions.
Our study will focus on those solutions of (5) which evolve in

the nonnegative orthant . Recall that a subset is said
to beforward invariantwith respect to the differential equation

provided that each solution with has
the property that for all positive in the domain of
definition of . It is routine to show (cf. Section VII) that the
nonnegative and positive orthants are forward invariant:

Lemma II.1: Both and are forward-invariant sets
with respect to the system (5).

[These properties are simple consequences of the fact that,
because of the assumptions made, theth component of a solu-
tion of (5) will satisfy whenever .) We will
also show in Section VIII-B4 that there are no finite explosion
times:

Lemma II.2: For each there is a (unique) solution
of (5) with , defined for all .
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In order to state concisely the main results for systems (5),
we need to introduce a few additional objects. The subspace

(10)

can be seen as a distribution in the tangent space of; it has
dimension because adding to the last-shown generating
set gives the column space of the rank-matrix . For each
vector , we may also consider the parallel translate of
that passes through, i.e., . A set
which arises as an intersection of such an affine subspace with
the nonnegative orthant:

(for some , without loss of generality in ) will be referred
to as aclass. If intersects the positive orthant , we say that

is apositive class. The significance of classes is given by the
fact that any solution of (5) must satisfy

(11)

, so
for all . In particular, see the following.

Lemma II.3: Each class is forward invariant for (5).
The introduction of control action, through additional feed-

back loops, may be used in order to overcome the constraints
imposed by (11). In order to formulate our control-theoretic re-
sults, we will suppose that external inputs can be used to
independently influence each ofstate coordinates, In other
words, we will also consider the following control system as-
sociated to the basic open-loop model (5):

(12)

[ is as in (5)], where is a positive integer, are the
canonical basis vectors in , and are distinct

elements of .
Of course, inputs might influence the system in manners

other than through independent action on some coordinates,
which represent what are sometimes (especially in compart-
mental models) calledinflow-controlled systems,see [1].
Bilinear control action, for instance, is arguably more inter-
esting in reaction systems. We will only study the above class
of control systems, but research is ongoing on generalizations
to other formulations, see [7].

We will first state the main results for autonomous systems
(5), and later we state a stabilization result for (12).

We denote by (respectively, or ) the set of nonneg-
ative (respectively, positive or boundary) equilibria of (5), i.e.,
the set of states (respectively, or ), such
that . Of course, is the disjoint union of and .

Theorem 1: Consider any system (5), under the stated as-
sumptions. For every maximal solution of (5) with ,
it holds that as .

This will be proved in Section VIII-B-2. The invariance of
classes (which are contained in subspaces of dimension

) precludes asymptotic stability of equilibria of (5). The
appropriate concept is that ofasymptotic stability relative to a
class. We say that an equilibrium is asymptotically stable
relative to a class if it is a) stable relative to [for each ,
there is some such that, for all solutions ,

and imply for all ] and b) locally
attractive relative to [for some , if and

then as ]. We say that is
globallyasymptotically stable relative to a classif it is stable
relative to and globally attractive relative to [ for
all solutions with ]. The main results are as follows;
the first part is shown in Section V-A, and the remaining two in
Section VIII.

Theorem 2: Consider any system (5), under the stated as-
sumptions. For any positive class.

a) there is a unique equilibrium ;
b) the equilibrium is asymptotically stable relative to;
c) the equilibrium is globally asymptotically stable rela-

tive to if and only if .
Example II.4: The following two trivial examples may help

in understanding the above theorems. In both cases we take
and for . The first example has

The system (5) is (for nonnegative states):

and thus and
. The positive classes are the sets

, for each , and for each such ,
is asymptotically stable with domain of attrac-

tion . See Fig. 1. Each class has a
second equilibrium , but this second equilibrium is in the
boundary, so there is no contradiction with part a) of Theorem 2.
Regarding Theorem 1, observe that every trajectory either con-
verges to an interior equilibrium or it is itself a trajectory
consisting of an equilibrium (and hence also converges to, in
a trivial sense).

The second example has

We now have (for nonnegative states) the following linear
system:

and thus and . The positive
classes contain no boundary equilibria; they are the sets
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Fig. 1. Equilibria for Example II.4, dark lines indicate equilibria.

, for each (see Fig. 1).
For each such , is globally asymptotically
stable.

A. Feedback Stabilization

The invariance of classes precludes the existence ofglobal
(not merely relative to a class) attractors for the uncontrolled
system (5). Now suppose that we wish to find a feedback law
which forces all the solutions of the closed-loop system obtained
from the controlled system (12) under this feedback to converge,
as , to a specific equilibrium . It turns out that
the obvious negative feedback solution, namely to use inputs
proportional to the errors , achieves the goal of global
stabilization to , provided that enough inputs are used [

, which is obviously necessary, since solutions of (12)
evolve in linear subspaces of dimension ] and that
the s are appropriately chosen. We next state a result in that
regard. For each we consider the set

(13)

which is nonempty, by (8).
Theorem 3: Let , and suppose that

are arbitrary positive real numbers, and
are such that

(14)

and

(15)

for some . Pick any equilibrium . Then,
all maximal solutions of

(16)

with are defined for all and remain in ,
and is a globally asymptotically stable equilibrium of (16).

The invariance statement is proved in Section VII. The global
stability statement is proved in Section VIII-B1.

To study the closed-loop system (16), and also to be able to
formulate a result concerning robustness of the stability proper-
ties described by Theorems 1 and 2, we will study “positive per-
turbations” of the basic uncontrolled system model (5). These
are described by equations as follows:

(17)

where is as in (5) (and all the stated assumptions hold), and
is a locally Lipschitz vector field on for which the following
property holds:

(18)

where denotes the th coordinate of . Property (18)
is the most natural assumption which guarantees the forward-in-
variance of [since it will imply that whenever

]. Of course, any results established for arbitrary sys-
tems (17) will be also true for systems (5) (take ).

The feedback system (16) is of this type. To see that (18)
holds, note that either (if some

) or , and, in the first case, implies
. Moreover, it satisfies the following strengthening of

(18):

(19)

[note the strict inequality, in contrast to (18)]. Indeed, pickas
in (15), , and so that . Then, for each ,
property (15) guarantees that .

B. Robustness

A different specialization of the general form (17) allows
the study of robustness with respect to perturbations which
preserve classes. The corresponding systems are obtained by
adding vector fields which lie pointwise in the span of the

s. We suppose given a collection of locally Lipschitz
functions : ( ) such that

(20)

and, using these, define the system

(21)

Observe that property (20) implies that this system is of the
general type (17). Indeed, the only possible negative signs for

can arise from the terms of
the form with (i.e., ), but these vanish,
because of (20), when . Of course, systems (5) are a sub-
class of (21) (take all ). The main robustness result will
be as follows.

Theorem 4: For each positive class there exists a contin-
uous function : , with if and only
if , such that, for any collection such that

(22)

for all , the following properties hold for the system
(21):

1) both and , and the class , are forward-invariant;
2) for each there is a (unique) solution with

, defined for all ;
3) the equilibrium is asymptotically stable relative to;
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4) the equilibrium is globally asymptotically stable rela-
tive to if and only if .

In other words, the claim is that the conclusions previously
stated for systems (5) are preserved by perturbations, as long as
the magnitude constraint (22) is satisfied. The result is not in
itself surprising; the main interest is in its proof, which will be
largely constructive, offering an explicit formula for the func-
tion and, moreover, the fact that will depend nicely on the
class (in a sense that will be clear). The invariance ofis clear
from the form (21), and the (also easy) invariance of orthants is
proved in Section VII. Parts 2–4 are proved in Section VIII-B3.

C. Regularity

For all results to be stated next, we suppose a fixed system
(5) has been given.

We say that a function defined on an open subset ofis
of class , if it is -times continuously
differentiable (for ) or real-analytic (for ).
We will refer to the following hypothesis, for each such:

H each restricted to is of class , and

for all

Obviously, this hypothesis is satisfied with when is
the identity map for , as is the case in the standard setup
leading to polynomial systems.

We will show, in Section V-B:
Theorem 5: If hypothesis (H) holds, then is an em-

bedded submanifold of , -diffeomorphic to .
Observe that, in the standard setup,is a polynomial vector

field, so and hence is an algebraic
subset intersected with .

Theorem 2 states that there is a unique interior equilibrium
in each positive class. This equilibrium depends nicely

(smoothly, analytically) on the class, provided that thes
be regular enough. In order to make this statement precise,
we introduce the map : which assigns, to each

, the unique interior equilibrium in the class
which contains . The next result is proved in Section V-A.

Theorem 6: If hypothesis (H) holds, then is of class .
Note that, once that we know that an embedded subman-

ifold, there is no ambiguity in the above statement: if we view
as a map : , it is also of class .
The following open subset of :

(23)

is the union of all those parallel translates ofwhich intersect
the positive orthant. It includes all positive classes. Assuming
again hypothesis ( ), it turns out that one may always find a
change of variables which transformsonto , and in partic-
ular onto the set and positive classes
into subsets of sets of the form for con-
stants , and transforms the dynamics oninto the following
form:

where and represent blocks of variables according to the
decomposition . Since points of are

equilibria, this implies that . To be precise, we
prove in Section V-C:

Theorem 7: Assume that hypothesis ( ) holds. Then, there
exists a diffeomorphism : such
that, denoting

and writing and in block form,

1) if and only if ,
2) if and only if , and hence

for all , and
3) for all .
The preceding results provide steps in proving this one, but

conversely, Theorem 7 implies Theorem 5, since is trans-
formed into a coordinate space. In fact, it also establishes that

transversally intersects each class. Also Theorem 7 im-
plies Theorem 6, since the map that selects the element in
in the same class as a given point amounts to a coordinate pro-
jection, let us call it , onto the last variables under
the change of variables given by. Moreover, let be the set of
nonnegative points that are not boundary equilibria of (5), that
is, . We will prove (Corollary VII.7) that each

belongs to some positive class; thus, the mappingex-
tends to . Since includes every positive class, it includes,
and the extension of to transforms into the restriction of
to . Thus, we have the following consequence of Theorem
7:

Corollary II.5: If hypothesis (H) holds, then the extension
of to is also of class .

III. M ASS-ACTION KINETICS, AND MCKEITHAN’S SYSTEM

As mentioned in the Introduction, the results explained in
Theorems 1 and 2 are basically theorems for what are called
mass-action networks of zero deficiency, and are given (implic-
itly in the case of global stability) in [10]–[13], [17]. (There is
one global stability result stated explicitly in the above papers,
namely in [17]. The statement would be that every trajectory
which starts in the positive orthant must converge to the inte-
rior equilibrium in the corresponding class. However, this ques-
tion is still open, since the suggested proof used the implica-
tion that if a positive definite function of states has a negative
derivative along trajectories while away from an equilibrium,
then global stability of the equilibrium follows. This implica-
tion is, in general, false, without the assumption of some sort
of radial unboundedness, a property which definitely does not
hold in the context in which it is being applied; see [18] for a
retraction of that proof.)

The assumptions of irreducibility of and full rank of
(both of which may be relaxed somewhat, cf. Remark V.5) are
key ones. They serve to rule out periodic (or even chaotic) be-
haviors which may otherwise arise in chemical networks such
as the Belousov–Zhabotinsky reaction or Prigogine–Lefever’s
“Brusselator” (for which see, e.g., [8]).

A. Kinetic Proofreading in T-Cell Signaling

The equations with which we started represent the dynamics
of the “kinetic proofreading” model proposed by McKeithan in
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Fig. 2. McKeithan’s network.

[20] in order to describe how a chain of modifications of the
T-cell receptor complex, via tyrosine phosphorylation and other
reactions, may give rise to both increased sensitivity and selec-
tivity of response. Let us introduce two additional variables
and , which represent the concentrations of T-cell receptor
(TCR) and a peptide-major histocompatibility complex (MHC).
The constant is the association rate constant for the reac-
tion which produces an initial ligand-receptor complexfrom
TCRs and MHCs. The quantities represent concentrations
of various intermediate complexes, and McKeithan postulates
that recognition signals are determined by the concentrations of
the final complex . The constants are the rate constants
for each of the steps of phosphorylation or other intermediate
modifications, and the constants are dissociation rates.

Global stability of a unique equilibrium will be deduced from
Part c) in Theorem 2 when we view the equations as those of an
appropriate system (5) restricted to a suitable class (which is de-
termined by the constants and ). The complete reaction
network is represented graphically in Fig. 2 (this is the same as
[20, Fig. 1], except that we do not make the simplifying assump-
tion of equal rates). In other words, we have a system of form
(5), where we use as a state, and
take

...
...

...
...

and with , ( ),
( ), and all other . The

corresponding set of differential equations is

...

...

Notice that
, and the positive classes are of the form ,

intersections with of the affine planes

with and . The original system is nothing else
than the restriction of the dynamics to the class determined by

and . Thus, the conclusions will follow from
Theorem 2 as soon as we prove that for any pos-
itive class . Pick any and any positive class .
According to Proposition VI.3, it will be enough to find some

with the property that for all .
Here, and for . If
the property is not satisfied for some , then

for all . But in this case, the equations for give
that and also , so can be used. In
conclusion, , and hence Part c) of the theorem applies.

Let us compute equilibria explicitly. Setting right-hand sides
to zero gives , and recursively
using we may express all

s as multiples of . We also have
. Thus

where the s are rational functions of the constants defining the
system (these are the equilibria studied in [20]). It is obvious in
this example that we obtained a two-dimensional (
) nonsingular algebraic subvariety of .
We next discuss the application of Theorem 3 to this example.

As , we consider feedback laws of the type
, where and , satisfy (14) and

(15). Since is spanned by ,
this means that (14) is satisfied provided that or

, and this is sufficient to guarantee that also (15)
satisfied. In other words, stabilization to any desired equilibrium
is possible provided that some pair of reactants, including at
least one of or , can be manipulated by a controller.

To illustrate some of our constructions in a comparatively
trivial case, let us now specialize even further, taking just
and all constants equal to one. (This is mathematically the same
as the example treated in Section I-A.) Writing instead
of , we have the system

and is a hyperbolic pa-
raboloid (intersected with the main orthant). This is obviously
a nonsingular algebraic set, but it is instructive to see it also as
the image of the diffeomorphism : constructed in
the proof of Theorem 5 in Section V-B. Using ,
we have the formula for

. Here, is the span of ,
i.e., , and

, so it is clear that
.

Note, incidentally. that there are boundary equilibria as well:
, but none of these
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is in a positive class (since both and are positive
constants on positive classes).

The most natural (in the motivating application, anyway)
initial state is one in which . We now compute the
value of the map considered in Corollary II.5 at such a point

. We must find the positive-orthant intersection of
with the line .

Equivalently, we need to solve subject
to the constraint , which guarantees that

and as well as . There is exactly one such
solution, and it is the smallest of the two solutions, since the
graphs of and intersect
at precisely one point in the interval , so we
take the negative sign in the quadratic formula:

(and corresponding values for and ), which is, indeed, a
real-analytic (hypothesis H) function.

Finally, let us find a decomposition as in Theorem 7. We let
and . Thus along

all solutions, and .
This does not yet have for all , so one needs
a further change of variables to bring the equilibrium to zero,
which can be achieved by translating .
Note that , the set of points with , gets mapped into

, and the positive orthant gets mapped into the set given
by the inequalities , , and ,

.

IV. SOME PRELIMINARY FACTS

The equations (5) [and their perturbed form (17)] have a con-
siderable amount of structure, and various useful properties are
reflected in alternative expressions for the system equations.

A. Other Expressions for the System Equations

For each , let us introduce the maps

[with ]; note that and
. Furthermore, the restriction of to

is locally Lipschitz, strictly increasing, and onto. For any
positive integer , we let

(we do not write “ ” to emphasize the dependence on, be-
cause will be clear from the context). Then (5) can also be
written as

(24)

The expression “ ” is interpreted in accordance with
the conventions made for powers: if is a vector and

is an index such that and , then
, consistently with , and thus also

but, if , then we have .

Another useful way of rewriting (5) is as follows. We write
for the th coordinate of [i.e., the coordinates of solutions

satisfy ]. The terms in the sums defining can
be collected into two disjoint sets: those that do not involve a
product containing , for which , and those which
do involve . The latter, by assumption (7), have ,
so we can factor from
and there remains a locally Lipschitz product. In other words,
we can introduce, for each , these two locally
Lipschitz functions

(25)

and

(26)

where and . [Note
that, in terms of the sets introduced in (13), if and only
if .] Note that for all . More generally, for
perturbed systems (17), we let

In terms of these functions

(where ). If and are such that
, then property (18) says that . In particular, since

,

and

(27)

so the vector fields and always point toward the
nonnegative orthant, on the boundary.

B. A Coordinatization Property

When we apply the following Lemma, we will always take
, but we can state the result in more generality. Actu-

ally, we may get an even more general result by dropping the
assumption that the maps are onto. We will only assume,
for the next result, that each , :
(where ) is locally Lipschitz, has ,
satisfies , and its restriction to is
strictly increasing and onto , but we are not now requiring

. The reason for this relaxation is to allow consid-
eration of functions like which arise in
Michaelis–Menten kinetics. We will impose, instead, another
condition, which we describe next. Let, as earlier,

, and let (infinity if ). Notice that
, seen as the inverse of the restriction ofto , is a strictly

increasing map from onto . Thus, for any given
constant , for all , some ,
which implies that, for , its derivative



SONTAG: STRUCTURE AND STABILITY OF CERTAIN CHEMICAL NETWORKS 1037

for all . Under the general assump-
tion , we have that, for any:

(28)

for any finite . Instead of assuming , we will
merely ask that (28) should hold. [Example:
gives , so

as .]
Lemma IV.1: Let be any subspace of . For each in
, there exists a unique such that

(29)

and

(30)

Furthermore, if hypothesis (H) holds, then the map
is also of class .

Proof: We fix as in the statement, and start by intro-
ducing the following mapping, for each :

defined for . By assumption (28),
increases to infinity as . Also,

as , because is nonnegative and . Thus,
is proper, that is, is compact for each.

Now we take the (continuously differentiable) function

thought of as a function of . Observe that 0
is in the open set , since of all by definition
of . This function is also proper, because

where is any common lower bound for the functions. Re-
stricted to , is still proper, so it attains a minimum
at some point , which is a nonempty (since 0 be-
longs to it) relatively open subset of . In particular, must
be a critical point of restricted to , so

, which means that

(31)

Finally, pick such that . Such an exists
because we can solve the equations for each
, because since . Then

by definition, and (31) gives also .
Finally, we show uniqueness. Suppose that there is a second

so that and . This implies
that and . Since each is an
increasing function, we have that, for any two distinct numbers

, . So

implies .
It follows that is a well-defined mapping from

into . Suppose now that hypothesis (H) holds,

and therefore also each has positive derivative and is for
positive arguments. Let be an matrix whose
columns are a basis of (for instance, when , we may
take the columns ), and let be an

matrix whose columns form a basis of . Consider the
map : given by

Observe that is of class . Denote by the Jacobian of
evaluated at an .
We claim that is nonsingular, for any . The transpose

of can be expressed as a block matrix: ,
where is a symmetric posi-
tive–definite matrix. As the columns of are linearly inde-
pendent, as are the columns of, it will suffice to prove that
the column spans of and of intersect only at zero. Since
the column spaces of and are orthogonal, this fact follows
from the following observation: if is self-adjoint and posi-
tive definite, then for any subspace of

. (Proof: factor , with nonsingular, and suppose
that . For any ,

. Thus, , so ,
which implies .)

To conclude, we note that, givenand , is the
unique solution of

(32)

Thus, the Implicit Function Theorem gives thatis class ,
since has rank at all and
is of class .

Remark IV.2: Note that, since in (32),
we know that

(33)

for all . Thus , and
we conclude that has constant rank, equal to .

The following quantity measures deviations relative to.
Let us define, for each

(34)

Remark IV.3: Note that if and only if
, since is spanned by the differences .

Also, note that, since , satisfies both (29)
and (30) [which uniquely characterize ] if and only if

. To summarize

(35)

for any .
Remark IV.4: We could also have defined a smaller, but ba-

sically equivalent, sum using only the generating differences
, , but the above definition for seems

more natural. Moreover, note that if we let
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where the constitute a basis of , then the uniqueness part
of Lemma IV.1, applied with , gives that
if and only if . [Because , and
implies .]

Remark IV.5: Recall the definition (23) of . We can extend
to a map by defining

for any and , where is any element
of with the property that . This definition is
valid because, for any and in such that and

are in , we have , since
is uniquely determined by the two conditions

and , and the second condition is
equivalent to . Moreover, if hypothesis (H)
holds, then the extension ofto , which we denote again
by , is of class . Indeed, given any , and a
so that , it holds that for all in
some neighborhood of , so the extension of is obtained (on
that neighborhood) by composition of the originalwith the
translation , and the former is of class
by Lemma IV.1.

Remark IV.6: If hypothesis (H) holds, then, for some con-
tinuous , and for all ,

(36)

Indeed, ,
and , where

is the Jacobian
of evaluated at [nonsingular, by hypothesis (H)], so

, where
is a nondegenerate inner product on.

This gives (36), because the s constitute a basis of. [Or,
more concretely: , where

, ,
and is a symmetric positive definite matrix, continuous on
, with . So, we may use that ,

where is the smallest singular value of restricted to
, which is nonzero since implies ,

together with , where is the smallest
eigenvalue of , to obtain again an estimate (36).]

V. INTERIOR EQUILIBRIA

It is convenient to also express the dynamics (5) in matrix
terms. Letting

...
...

...
...

we write:

(37)

where is the mapping

obtained as the composition of the maps , ,
and . In particular, since and
each maps onto ,

the restriction is onto (38)

Note that

(39)

For any two , it holds that:

(40)

[recall the definition (10) of ]. To see this, denote ,
. If , then, with , ,

for each . Thus ,
which implies that for all , and therefore

Conversely, if this holds, we may define ,
, and reverse all implications.

We also note, using once again thathas full column rank,
that is equivalent to , that is the fol-
lowing.

Lemma V.1:A state is an equilibrium if and only if
.

We now consider the matrix . The row vector
has the property that ,

so, in particular, is singular. The following is a routine
consequence of the Perron–Frobenius (or finite dimensional
Krein–Rutman) Theorem.

Lemma V.2:There exists so that
.

Proof: If is any eigenvector of , corresponding
to an eigenvalue, it follows that , where

is a positive number (because, being an eigenvector,
is nonzero), and therefore necessarily . In other words,
a nonnegative eigenvector can only be associated to the zero
eigenvalue. Pick now any large enough such that all en-
tries of are nonnegative. Since the incidence graph

coincides with , it follows that is also irreducible.
By the Perron–Frobenius Theorem, the spectral radiusof
is positive and it is an eigenvalue ofof algebraic multiplicity
one, with an associated positive eigenvector . Moreover,
every nonnegative eigenvector associated to is a pos-
itive multiple of . As adding moves eigenvalues bywhile
preserving eigenvectors [that is, is the
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same as ], is a positive eigenvector of the original
matrix . It is necessarily in the kernel of, since we already
remarked that any nonnegative eigenvector must be associated
to zero. Finally, if is any other nonnegative eigenvector of,
and in particular any element of , then it is
also a nonnegative eigenvector of, and thus it must be a posi-
tive multiple of , completing the proof.

Corollary V.3: The set of positive equilibria is nonempty.
Moreover, pick any fixed . Then, for any positive vector

, the following equivalence holds:

(41)

Proof: By Lemma V.2, there is some in .
By (38), there is some such that . In view
of Lemma V.1, is an equilibrium.

Now fix any and any , and let ,
. Suppose . By Lemma V.1, . By

Lemma V.2, every two positive eigenvectors ofare multiples
of each other, so there is some such that . By
(40), . Conversely, if this holds, then, again
by (40), . Hence, is also an eigenvector of , so by
Lemma V.1 we conclude .

Remark V.4:Even if the assumption that each is onto
is dropped, the second part of Corollary V.3 is still valid,

as the proof of the previous lemmas did not use ontoness, but
merely (28). We are not assured that equilibria exist, but if there
is any equilibrium then (41) holds.

Remark V.5: It is possible to generalize many of the results to
the case when is not irreducible but, instead, there exists a per-
mutation matrix with the property that is a block ma-
trix with irreducible blocks. Let us sketch this next. Assuming
already such a reordering has taken place, the family of systems
considered is as follows. The dynamics are described by

where is a positive integer (the “number of linkage classes”),
and each has the form in Equation (5), for some matrices

and . We suppose that each is an irreducible
nonnegative matrix of size , and each has size

. We let . Further, we also assume that
the matrix which is composed from the blocks , namely

, satisfies the properties (7)–(9) required of
. We let be the subspace of spanned by the differences

of columns of , for each , and now define
as the sum of the spaces. (Note that the column spaces of

the s intersect only at zero, because we are assuming that the
columns of are linearly independent; thus is also a direct
sum of the s. The dimension of each is , and has
dimension .) Since the differences of columns of
different s do not ever appear in the vector fields defining the
system, the same argument as before shows that the cosets
(with the new definition of ) are invariant. Classes are now
defined using this , and are also invariant. We can express the
dynamics in the form (37), where is formed as before, starting
from the matrix that is obtained by using
as diagonal blocks.

Since each is irreducible, we can find positive eigenvec-
tors for the entire matrix , and the possible such eigenvec-
tors are of the form , where each is a
positive eigenvector of and the s are positive numbers.
The function is still onto, so we obtain the existence of
positive equilibria. Note that decomposes into blocks

, mapping into , respectively, and (40) gener-
alizes to: for some iff

. Thus, uniqueness in each class holds just as before, since
is the intersection of the , , and also is

an equilibrium iff all .
As a last comment along these lines, we remark that the as-

sumption that has full rank can also be slightly relaxed, as
follows. Suppose that the column spaces of thes intersect
only at the origin, and the column space of somespans an
affine space of dimension , i.e., has dimension ,
but itself has rank (instead of ). Then, we may
add a state variable to the system, which satisfies a differential
equation , and extend the system in such a manner that

has rank : this is equivalent to adding a row constantly
equal to 1 to the matrix (and to the remaining matrices as
well). The original system appears as the restriction of the new
system to the invariant subset consisting of those states whose
last coordinate is equal to one.

A. Proof of Part a) in Theorem 2 and Theorem 6

Fix an and any . Applied with (and
), Lemma IV.1 says that is uniquely char-

acterized by a) and b) , the second of
which is in turn equivalent by (41) to . In conclusion,

is the unique point in which is an equilibrium
and lies in the same class as. This proves Part a) in Theorem
2, and, moreover, shows that

(42)

is the assignment of into the unique positive equilibrium in
its class. Furthermore, by Lemma IV.1, is of class
provided hypothesis (H) holds, which proves Theorem 6.

Remark V.6: Theorem 2 is valid even under the weaker as-
sumption that condition (28) holds, not necessarily assuming
that each is onto . More precisely,if there is at least one
equilibrium, then the conclusions hold. The stability parts will
be remarked upon later, but regarding Part a), it is only necessary
to note that Lemma IV.1 was proved under the weaker hypoth-
esis, and that (41) holds (cf. Remark V.4).

Now let us introduce the following condition, expressed in
terms of the transpose of the vector and the
image of the transpose of:

(43)

[Observe that, if the system is “homogeneous” in the sense
that the exponents in each term add to a fixed constant, then
(43) holds, since homogeneity amounts to the requirement
that , where we denote by the vector of length

consisting of 1s.]We claim that if (43) holds (instead of
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unboundedness), then there exists at least one interior equilib-
rium. For this we may assume, without loss of generality, that

for all (if this were not the case, we simply rescale
all the functions , adjusting the matrix accordingly; thus
we rewrite the system equations as those of a system of the
same form, for which ). It follows that the image of
is , where “ ” means taking exponentials of
each coordinate. Now take any and let
be so that . As is an open set, and using
(43), there are and such that ,
or equivalently which means that

for some . As , is an
equilibrium, as wanted.

Remark V.7:Recall Remark IV.5. After fixing an ,
we may extend to by letting for any

. As for some so that ,
and by (42), we have that for all

. Note also that if , since in that case
is itself the unique positive equilibrium in its class. Thus

(44)

for any . Furthermore, as
by definition of , we know that

, so

(45)

for all . We also have that

(46)

for all , by (45) and because is the unique
positive equilibrium in when .
Finally, note that is of class if hypothesis (H) holds, once
more by Remark IV.5.

B. Proof of Theorem 5

Suppose that hypothesis (H) holds. Then the restriction of
each to is of class , and so is its inverse, which is a
map . With some abuse of notation, we will denote in
this section the restriction of eachto , and more generally
the associated vector function, restricted to , with the same
symbols. Note that is a -diffeomorphism (class and has
an inverse which is also of class ). Now we fix any equilib-
rium , and in terms of it, define

which is a -diffeomorphism since both and
are -diffeomorphisms. As an illustration, in the standard

setup we would have and , so
.

We claim that . Once that this is shown, The-
orem 5 will be established, since diffeomorphisms map subman-
ifolds into submanifolds, and has dimension .
Note that if and only if for some

, that is, if and only if , so Corollary
V.3 gives the equivalence with .

C. Proof of Theorem 7

We will construct a preliminary transformation of into
. Since is a linear space of dimension , and since

by Theorem 5 we know that is a manifold diffeomorphic
to , the result will then easily follow. We assume that
hypothesis (H) holds, and fix any .

Recalling Remark V.7, we define, for

(see Fig. 3). The function is of class as a map into ,
and, because of (44),

(47)

for all . Also, property (45) gives that for
all , and we have that (since assigns positive
equilibria). So the image of is contained in , which
is an embedded submanifold of because is a linear
subspace and using Theorem 5. Thus,defines also a map-
ping into the submanifold , and we view it as such.

Now consider the mapping

and its image . If we show that the
restriction of to is the inverse of , then we will
know that is a diffeomorphism. It is clear from the formulas
that . Pick now any , and let

. Thus, , and
by (35) and (41). By the definition of , and thus , on ,
we have that , so

, which equals .
Thus also .

In conclusion, we have a diffeomorphism ,
which can be composed with a diffeomorphism :

(where is a linear map) to yield the
final diffeomorphism : .
We let be the vector field obtained under this change of coor-
dinates (namely, ) and write

in block form. Note that, by (47),
if and only if . That is, block vectors with

correspond under the coordinate change to. That is,
every vector of the form is an equilibrium. This implies
that for all , and in particular the same is true
for the first block . Also, by (46) we know that if
and only if , i.e., if and only if .

Finally, we show that . It suffices to prove that
is constant, for an arbitrary solution of

(5) taking values in . This follows from the fact that classes
are invariant, and hence the function is constant,
which gives from the definition that , and thus also

, is constant.

VI. BOUNDARY EQUILIBRIA

Fix any . We wish to study the
implications of some coordinate vanishing. Recall the defi-
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Fig. 3. Change of coordinates.

nition (13) of the sets . We will use repeatedly the following
fact, for any and :

and

(48)

which is obvious, since vanishes when and
. In particular

(49)

since either or (48) applies. We state results for arbi-
trary perturbed systems (17). [Note that (50) below is merely the
particular case of (51) that arises for systems with , but it
will be useful to have the conclusion for stated separately.]

Lemma VI.1: Take any such that .
Then

or (50)

and

or (51)

Proof: Pick any , and assume that . The as-
sumption “ ” is equivalent to
. So, since , necessarily . By (27),

, where is as in (26), and the indexbeing considered
does appear in the sum defining. Moreover, for each ,

by hypothesis, so .
On the other hand, means that , and also .
Thus, the term involving this particularand in the sums
defining is positive (and the remaining terms are non-
negative). We conclude that , establishing (50). In
addition, since we are assuming that , property (27) also
says that ; as we proved that ,
and [by assumption (18)], also (51) holds.

We will denote by (respectively, or ) the set of
nonnegative (respectively, positive or boundary) equilibria of
(17), i.e., the set of states (respectively, or ),
such that . When , these are the same as the sets

, , and , and, more generally, for systems (17), we still
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use , etc., for the equilibria of the system (5) which has the
same .

Proposition VI.2: For any system (17), and for an arbitrary
, consider the following properties:

1) .
2) .
3)

.
4) .

Then .
Proof: Pick any . If the second property

is false, then there is some indexsuch that for all
. We claim that for every index, for all .

Since [recall hypothesis (9)], this will
mean that for all , so could not have been a boundary
point, a contradiction. Let and let

. We know that and must prove that
. Suppose by contradiction that . Pick some

and such that (irreducibility of ), and take
any . We claim that . Suppose that this is not
the case, i.e., . From (51) in Lemma VI.1, we conclude
that . This contradicts the fact that is in . In
conclusion, for all , contradicting the fact that

.
The product in 3 can vanish if and only if some

and for the same , but this is precisely the
condition in 2.

Since all terms in the definition (5) of vanish,
it follows that . On the other hand, must be a boundary
point, since otherwise no product as in 3 could vanish.

For systems (5), all the properties are equivalent, since
. More generally, this stronger result holds for all systems of

form (21):
Proposition VI.3: For any system (21) and for an arbitrary

, the properties in Proposition VI.2 are equivalent.
Proof: We prove that . If 4 holds, we apply

Proposition VI.2 to the system (5) which has the same, to
conclude that 2 holds. Assume now that 2 (and hence also 4)
holds. Since we already know that , all that needs to
be verified is that for all . Pick any . Choose

so that . Property (20) then gives the conclusion.

VII. I NVARIANCE

We start with an easy but key observation.
Lemma VII.1: Suppose that : is any so-

lution of (17). Then the following implication holds for any
:

Proof: Suppose that is so that . Let :
be the (locally Lipschitz) function which coincides for

and with

and has for and
for . Note that for all , because (27) says that

when . For , the scalar
function satisfies the scalar differential equation

We must prove that never vanishes. For this, we let
and introduce the auxiliary initial

value problem

Since is locally Lipschitz (in both variables, but just on
locally uniformly on would be enough) and 0 is an equilibrium
of , for all in its domain of definition.
Moreover, we have that for all . By
a standard comparison theorem, see, e.g., [16, Corollary I.6.3],
we know that for all in the common domain of
definition of and . Since is well-defined, remains
bounded, and thus is defined as well for . So,

.
Corollary VII.2: The set is forward invariant for (17).

Proof: Consider any solution: of (17), and
suppose that . We must prove that . Since

is in the interior of , the only way that the conclusion
could fail is if for some . We assume
that this happens and derive a contradiction. Let

. By minimality, for all , for
all , and in particular for all ,
and also there is some indexsuch that . But this
contradicts the conclusion of Lemma VII.1.

The closure of an invariant set is also invariant, so:
Corollary VII.3: The set is forward invariant for (17).
Note that Corollaries VII.2 and VII.3 prove Lemma II.1 as

well as the invariance parts of Theorems 3 and 4.
Lemma VII.4: Consider any solution : of

(17) for which . Suppose that there is some
such that

or

Then, for all .
Proof: We know that , by Corollary VII.3, and

we need to prove that for all and all . Let

Since , it will be enough to show that
.

We start by remarking that , because, for each
, either , and then Lemma VII.1, applied on any

subinterval , says that for all , or
and imply that for all

small enough, so also (again by Lemma VII.1) for all.
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Suppose by way of contradiction that
. Pick some and so that (irreducibility

of ). We will show that, for any given , and for any
given , , and this will contradict .

Since , for all . Then, we can apply
Lemma VI.1, to obtain that or .
As before, if then via Lemma VII.1 we conclude
the positivity of for all , and in particular of

. And if instead , then
and imply for all near ,
and so by Lemma VII.1 once again .

For the special case of systems (5), and more generally per-
turbed systems (21), we conclude that every trajectory starting
on the boundary which is not an equilibrium must immedi-
ately enter the positive orthant.

Corollary VII.5: Consider any solution: of
(21) for which . Then, for all .

Proof: By Proposition VI.3, implies that there
is some such that for all . So,
Lemma VII.4 insures that for all .

Another special case of that of the feedback system (16), and
more generally when property (19) holds. This property says
that there is some such that, for every ,
it holds for each that either a) , or b) and

[in which case also ].
Applying with and using Lemma VII.4 with this ,
we have:

Corollary VII.6: Suppose that property (21) holds. and con-
sider any solution : of (17). Then,
for all .

We also note, for further reference, the following.
Corollary VII.7: Consider a system (21), and pick any

. Then, either or belongs to some positive class.
Proof: If , then Corollary VII.5, applied to a solu-

tion starting from , and forward invariance of classes, give that
is in the positive class containing .

VIII. STABILITY

We start by establishing some useful estimates.
Lemma VIII.1: Define the following quadratic function:

(52)

Then, there exists a constant such that

(53)

for all .
Proof: We first observe that

Indeed, obviously implies for each
pair for which . Now let be the set of indices

such that , and its complement; as , . We
need to see that . Suppose that . The connectedness
of the incidence graph of provides an and such
that . Thus, , contradicting .

Let us introduce next a quadratic form in variables

which we denote as . Since
for all , one has

Note that is positive definite: if , then
, which as already observed implies

that all . Thus, there is some constant such that

for all , which means that

(54)

for all . As
for all , we may re-express the estimate (54) in

the form (53), using a smaller constantwhich depends only
on and .

The following estimate will be the basis of a Lyapunov func-
tion property to be established later.

Lemma VIII.2: There exist two continuous functions

such that, for every pair of points in :

(55)

Proof: As has full column rank, there is an matrix
(for instance, its pseudo-inverse) such that . We

let

and

Now take any pair of positive vectors . Denote, for each
:
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and observe that

so, using formula (24),

(56)

Therefore [writing for sim-
plicity]

(57)

(58)

where is the quadratic form in Lemma VIII.1. Equality (57)
follows by adding and subtracting and using (56). To
justify (58), we note first that, for each , the function

is always [because ,
as , and

for all ]. Now we use the inequality
in each term of the sum with and

[recall ].
Lemma VIII.1 gives that . Thus,

we may take .

A. An Entropy Distance

We will show the stability conclusions even if one does not
impose the assumption that eachis onto . Note that none
of the results in Sections VI and VII used this condition. Thus,
we suppose that each: (where ) is
locally Lipschitz, has , satisfies
[where ], and its restriction to is strictly
increasing and onto , with . We let .

[For the stability results, we will not even need to ask for con-
dition (28).]

For any fixed constant , and each ,
we consider the following function:

This function is a well-defined continuous mapping
, continuously differentiable for . Moreover,

achieves a global minimum at the unique where
, decreases for , and increases to for

.
The following function will play a central role:

The above-mentioned properties of the functions imply
that

(59)

i.e., for each fixed , the function has a unique
global minimum, at . Note also that the gradient of

(60)

(defined for ) vanishes only at and that [since
if ]

(61)

for every given . As is continuous, this implies that

(62)

is compact for every and every .
Remark VIII.3: In the standard setup ,

. Then this formula, when states
are interpreted probabilistically in applications such as chemical
networks, is suggested by “relative entropy” considerations.

B. Main Stability Results

The next lemma will be applied later with equal to the
whole space or to a class, depending on the type of system.

Lemma VIII.4: Let be a closed set, and pick .
Suppose that

(63)

is valid for all , . Consider any
for which the maximal solution of (17) with is
included in .
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1) If the system has the form (21) then is defined for all
, and

as

2) If (19) holds, then is defined for all , and

as

Furthermore, in either caseis an equilibrium of (17), asymp-
totically stable relative to .

Proof: Fix , , and as in the statement, and let be
the maximal solution of (17) with , defineda priori on
some maximal interval . We will use

(64)

as a Lyapunov-like function. By (59), this function is positive
definite relative to the equilibrium , i.e., for all

, and if and only if . Moreover,
is proper, meaning that the sublevel sets are
compact, for all , by (62). Finally, is continuously
differentiable in the interior , and, using (60)

(65)

whenever , , by (63).
If the system has the form (21) and , then

(cf. Proposition VI.3), and thus, in that special case, is of
course defined for all and converges to an equilibrium in

(it is constant, in fact).
So, from now on, we suppose that either the system has the

form (21) and , or that (19) holds. By, respectively,
Corollaries VII.5 and VII.6, we know that for
all . So is differentiable for , and

[by (65) if , and obvious otherwise,
since ], which means that is nonincreasing.
Since is proper, this means that the maximal trajectory is pre-
compact, and hence it is defined on the entire interval ,
as claimed. Furthermore, the LaSalle Invariance Theorem im-
plies that

as

where is the -limit set of , which is a compact subset
of , for some . As the set is closed,

. We pick any , and show that necessarily
or, in the case of systems (21), .

If , we are done, so we may assume from now on that
. Similarly, if the system is of type (21), we will assume

that . We now derive a contradiction.
Consider the forward trajectory starting from . Since

is invariant and a subset of, for all , and
for all [since otherwise ]. Moreover,

for all (using either Corollary VII.5 or Corollary

VII.6). Thus (65) says that for all ,
which means that is strictly decreasing. But this is a
contradiction, since .

The stability statement is a simple consequence of the fact
that is a Lyapunov function (see, e.g., [22, section 5.7]) rela-
tive to for the dynamics restricted to .

1) Proof of Theorem 3:Suppose ,
are positive, are such that (14) holds,
and is such that (15) holds. Fix any equilibrium .

We must prove that, for any given , the maximal so-
lution of (16) with is defined for all (the
fact that the solution remains in has already been estab-
lished) and that is a globally asymptotically stable equilibrium
of (16).

We apply Lemma VIII.4, with . Notice that

(66)

for all by (55) [since ]. The inequality is strict
unless , i.e.,

(67)

On the other hand,

where the last inequality follows from the fact that eachis an
increasing function, and the inequality is strict unless

(68)

for . Thus equals

(69)

and this inner product can only vanish if both (67) and (68) hold,
which implies, because of (14), that , i.e., .
This means that (63) holds. As the system (16) is a system (17)
for which (19) holds, Lemma VIII.4 provides the proof of global
stability.

2) Proof of Theorem 1:Consider any system (21) and any
maximal solution . By Corollary VII.7, either

, in which case of course , or there is a
positive class such that for all , which we assume
from now on. Let . Notice that (66) again holds, for all

. Let us now specialize to systems (5). We claim that

(70)
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[i.e., property (63) for (5)] is valid for all , .
Since , by (66) all we need to show is that .
But the only way that could vanish is if is an equilib-
rium (cf. Corollary V.3), and uniqueness of equilibria in
then gives . So, Part 1 in Lemma VIII.4 gives .

3) Proof of Theorem 4:Let be a positive class, and pick
. Define:

restricted to . Since and if
and only if is an equilibrium, which by uniqueness means

, we have for all . take now any collection of
functions such that (22) holds.

Notice that (66) again holds, for all . On the other
hand, for

where the first inequality follows from the Cauchy–Schwartz
inequality, the estimate (22), and the definition of. Therefore,

equals

(71)

for all , and this expression is negative when
. Thus, (63) in Lemma VIII.4 holds, with as given. Part 3

(asymptotic stability of ) follows from the Lemma.
We pick any , and consider the ensuing maximal solu-

tion. By Part 1 of Lemma VIII.4, the solution is defined for all
(proving Part 2 in Theorem 4) and as

. Since and are at positive distance, this means
that either or . In the first case, being
closed implies that . Thus, if does not
intersect , the only possibility is that . Conversely, if

then is not globally asymptotically stable rela-
tive to . This is clear, since if then (being an
equilibrium) is not attracted to. This proves Part 4 of Theorem
4.

Observe is of class if hypothesis
(H ) holds. One may pick easily a smooth lower bound for the
function , and in that manner obtain a classfunction .

4) Proof of Parts b) and c) in Theorem 2 and Lemma
II.2: Pick any positive class . We let be any function as
in the statement of Theorem 4; as , the hypotheses
of that theorem are verified. In this manner, all conclusions in
Theorem 2 as well as Lemma II.2 are established.

Remark VIII.5: A different approach to the proof of Theorem
1, not using LaSalle invariance, can be based upon the fact that

can be shown to decrease strictly alongeverytrajec-
tory (not merely in the positive orthant), and this proof applies
as well in the multiple-linkage class case described in Remark
V.5. [The fact that all trajectories approach equilibria, in the
multiple-linkage class case, may also be proved directly. The
LaSalle argument proceeds in basically the same manner; the
critical step is to study those trajectories that remain in a level
set of the Lyapunov function and start on the boundary. In the
case of a single class, such trajectories are either equilibria or
enter immediately the interior (Corollary VII.5). In the gen-
eral case, there may be a block which is “turned off,” that is,

for some . In that event, we are
reduced to studying a system with classes, and the same
Lyapunov function (restricted to a possibly smaller state space,
after dropping those state variables which only appear in the
“off” reaction) can be used inductively.

C. A Remark on Exponential Stability

Suppose that hypothesis (H) holds. Recalling the definition
(64) of the Lyapunov function , and the form of its gradient
given by (60), , we know that the Hessian ofat
is given by and is therefore
nonsingular. Since the gradient ofvanishes at , we have
a Taylor expansion ,
and thus, for all in some neighborhood of,

for some positive constants and . If we
let in (36), we also have that
for all in a neighborhood of . So inequality (71) gives us that,
along trajectories in the class containing, as long as is
near we have

where . Integrating, ,
so we obtain an estimate
for all trajectories of system (21) which start near. In other
words, (relative) stability is in factexponential.
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Correction to “Structure and Stability of Certain Chemical
Networks and Applications to the Kinetic Proofreading

Model of T-Cell Receptor Signal Transduction”

Eduardo D. Sontag

Index Terms—Chemical networks, stability.

I. THE ERROR

There is an error in the statement and proof of Lemma VIII.2 in the
above paper.1

The estimate (55) is incorrect, and it should be replaced by the fol-
lowing one:

h~�(x)� ~�(z); f(x)i � �
c(x)�(x; z)

4 + �(x; z)
+ hv (~�(x)� ~�(z)) ; f(z)i

(the first term in (55) was�c(z)�(x; z)). The mistake was made when
passing from (57) to the next line, because the functionfa is not always
negative. (As a side remark, note that the relevant equation numbers in
the published version are inconsistent with the discussion).

We will explain here how this new estimate is proved, and why the
main results are not affected by the change. All notations are as in in
the above paper.1

II. THE FIX

We first note that (56) can also be written as

g(x; z) =

m

i=1

m

j=1

aije
hb ;~�(x)i eq �q � 1 :

The main derivation is now as follows:

h~�(x) � ~�(z); f(x)i

=

m

i=1

m

j=1

aije
hb ;~�(x)i (qi � qj)

=

m

i=1

m

j=1

aije
hb ;~�(x)i qi � qj � eq �q + 1
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+ g(x; z) (1)

��

m

i=1

m

j=1

aije
hb ;~�(x)i (qi � qj)

2

4 + �(x; z)
+ g(x; z) (2)

��
c0(x)

4 + �(x; z)

m

i=1

m

j=1

aij (qi � qj)
2 + g(x; z)

=�
c0(x)

4 + �(x; z)
Q (q1; . . . ; qm) + g(x; z):

As earlier, equality (1) follows by adding and subtractingg(x; z). To
justify (2), we note first that

1 + h� eh � �
h2

4 + h2

for all h 2 . We apply this inequality withh = qi � qj and use that
(qi � qj)

2 � ` k(q` � qk)
2 = �(x; z).

Lemma VIII.1 gives thatQ(q1; . . . ; qm) � ��(x; z). Thus, we may
takec(x) := �c0(x). This completes the proof of the revised version
of Lemma VIII.2.

III. T HE PROOFS OF THEMAIN RESULTS

Because of the new statement, a couple of small changes must be
made in the proofs of the main results of the paper. First of all, in
the proof of Theorem 4, instead of�S(x) = (1=4)c(�x)2 �(x; �x), one
should define

�S(x) :=
1

4

c(x)2� (x; �x)

(4 + � (x; �x))2

which then leads to an upper bound as follows in (71):

�
1

2

c(x)� (x; �x)

4 + � (x; �x)
:

Finally, Remark VIII.C on exponential stability is still valid with the
modified formulas, because

�
1

2

c(x)� (x; �x)

4 + � (x; �x)
� ��� (x; �x)

for any constant�>0 which lower-bounds the values(1=2)c(x)=(4+
�(x; �x)) on a neighborhood of�x.
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