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ABSTRACT
Cell-fate networks are traditionally studied within the framework of gene regulatory networks. 
This paradigm considers only interactions of genes through expressed transcription factors and 
does not incorporate chromatin modification processes. This paper introduces a mathematical 
model that seamlessly combines gene regulatory networks and DNA methylation (DNAm), with 
the goal of quantitatively characterizing the contribution of epigenetic regulation to gene silen-
cing. The ‘Basin of Attraction percentage’ is introduced as a metric to quantify gene silencing 
abilities. As a case study, a computational and theoretical analysis is carried out for a model of the 
pluripotent stem cell circuit as well as a simplified self-activating gene model. The results confirm 
that the methodology quantitatively captures the key role that DNAm plays in enhancing the 
stability of the silenced gene state.
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Introduction

Cell-fate determination in developmental biology 
is a multi-step biological process in which cellular 
functions are modified or specialized, ultimately 
resulting in a differentiated or proliferative state. 
A central role in this process is played by the 
dynamics of a core network of genes, often 
referred to as a cell-fate network (CFN). The 
expression levels of these genes can trigger 
a cascade of events that determine, in principle 
irreversibly, the fate of a given cell along 
a specific lineage. The metaphor of marbles rolling 
down a hill whose shape is shaped by a CFN (the 
Waddington landscape [1,2]) provides a way to 
visualize this process. Well-known examples of 
CFNs are the PU.1/GATA.1 gene regulatory net-
work in haematopoietic progenitors [3,4], the 
pluripotent stem cell network [4,5], and a circuit 
including SNAIL, miR-34, ZEB1, and miR-200 
that regulates epithelial-mesenchymal transitions 
in tumour metastasis [6].

Phenotypes associated to CFNs had classically 
been seen as irreversible. However, in their 

pioneering work [7], Takahashi and Yamanaka 
artificially induced a pluripotent state in mouse 
somatic cells through a process of overexpression 
of Oct3/4, Sox2, c-Myc, and Klf4. This success 
notwithstanding, simply overexpressing genes has 
been experimentally found to be grossly inefficient 
[8]. Hence, there has been a great interest in 
obtaining a quantitative theoretical understanding 
of CFNs in order to guide the process of repro-
gramming and increase its efficiency [9,10]. Such 
a quantitative understanding could have a huge 
impact in the field of regenerative medicine and 
stem cell therapy [11,12].

Traditionally, CFNs have been modelled 
within the wider theoretical framework of Gene 
Regulatory Networks (GRNs) [13,14]. A GRN is 
defined as a set of genes, each expressing 
a protein. The expressed proteins can act as 
Transcription Factors (TFs) by binding to the 
various promoters in the network to inhibit or 
enhance expression of the corresponding genes 
[15,16]. When used to model a CFN, a GRN 
must be able to display multistability. This 
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means that the long-term expression levels of 
genes can settle on multiple distinct steady 
state attractors, each corresponding to 
a distinct cell lineage. A well-known multistable 
GRN is the toggle switch [17] whose architecture 
consists of two mutually inhibiting genes. 
Similar architectures can also give rise to multi-
stability and have been subject of great inter-
est [2].

Despite their versatility and variety of applica-
tions, GRN models of CFNs do not typically 
account for epigenetic effects, such as DNA 
methylation, histone modifications, or chromatin 
remodelling. There have been both theoretical 
[18–20] and experimental [21] works aiming at 
the understanding of how epigenetic regulation 
and gene regulation interact. It is well known 
that CFNs employ epigenetic regulation as 
a mechanism to ensure the irreversibility of the 
cell lineage [22]. DNA methylation (DNAm), in 
particular, has been well studied in the context of 
developmental CFNs [23]. DNAm at the transcrip-
tional start sites (TSSs) is a highly heritable, hard 
to reverse, and robust silencer of genes [24–26]. In 
comparison to its well-known silencing function at 
the regulatory regions, less is known about 
DNAm’s role at intragenic regions [27].

In this work, we develop mathematical models 
of GRNs that incorporate DNAm at TSSs, and 
thus can quantitatively explain its effect on gene 
silencing. As a metric to quantify the gene silen-
cing abilities of DNAm, we consider the shift in 
the stability boundary of the basin of attraction 
(BoA) of the silenced steady state. More pre-
cisely, we define the BoA percentage (BoAp) of 
a steady state as the volume fraction of 
a predetermined region of the state space that 
is occupied by the BoA. Equipped with this 
metric, one can then computationally and theo-
retically study the sensitivity of the BoAp to 
parameters such as DNAm rates or the time 
scale of DNAm.

We carry out this program computationally, 
illustrating it with a three-gene model of the 
pluripotent stem cell network, and quantifying 
how DNAm effectively increases the BoAp com-
pared to a standard GRN. In addition, and in 
order to gain understanding, we also consider an 
ideal single self-activating gene, for which 

a more theoretical study is possible. We view 
our work as a first step towards integrating 
epigenetic mechanisms into the standard GRN 
paradigm studied in systems biology. 
Furthermore, we envision our model (and its 
derivatives) as computational guides uncovering 
the possible behaviours of a network and evalu-
ating the feasibility of the interventions that can 
be used for regulation. For instance, as we will 
discuss later, the DNAm rate in our model is 
proportional to the abundance of DNMT, and 
hence our mathematical framework can quanti-
tatively predict the effect of DNMT on the rela-
tive stability of the silenced (methylated) and 
active steady states. This would allow our 
model to function as a computational aid to 
design the reprogramming protocol in the con-
text of the PSCC. We will elaborate further on 
the biological implications of our model in the 
Discussion section.

Basic biological concepts and definitions

DNA methylation as epigenetic regulation

DNAm is one of the main epigenetic regulation 
mechanisms studied in modern molecular cell 
biology. Methylation plays a crucial role [28] in 
understanding the dynamics of gene silencing. It 
is associated with methylation of Cytosine- 
Phosphate-Guanine (CpG) islands, which are 
regions of DNA with a high G +C content and 
a high frequency of CpG dinucleotides relative to 
the bulk genome [29]. Methylation of promoter 
regions directly affects TF-promoter binding 
kinetics, and is often associated with transcrip-
tional repression [24–26,30].

The current understanding of the DNAm cycle 
is shown in Figure 1. As depicted, cytosines at 
DNA promoter regions are initially methylated 
by DNA methyltransferase (DNMT) to become 
5-methylcytosine (5mC). The methylated gene 
promoter is further oxidized to 5-Hydroxy 
Methylcytosine (5hmC). The oxidized form of 
the cytosine can further be oxidized by the TET 
protein into the 5fC and 5caC forms. The cycle 
closes by a TET/TDG (thymine DNA glycosylase)/ 
BER (base excision repair)-dependent pathway 
that restores the unmodified cytosine state [31,32].
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Experiments have shown that hydroxymethyla-
tion and formylation are relatively stable cytosine 
modifications in genomic DNA of both dividing 
and nondividing cells [33,34]. The 5hmC and 5fC 
forms in this enzymatic oxidation process are 
observed to be comparatively longer lived, though 
still transient, states. Moreover, it also has been 
shown [31] that the pool size of the transient oxi-
dized cytosine 5hmC is significantly larger than the 
other forms of oxidized cytosines (5fC, 5caC). 
Therefore, in this work, we further simplify the 
DNA demethylation cycle to the cycle in Figure 1 
(b) which consists of just three major steps, which we 
will refer to as the ‘triangle topology.’ The cycle starts 
with an initial de novo methylation on the 
unbounded gene promoter, which is followed by 
a TET oxidization enzymatic process oxidizing 
5mC to 5hmC. The last stage corresponds to 
a replication-dependent dilution bringing 5hmC 
back to the unbound promoter state.

The underlying DNAm dynamics is crucial for 
understanding how epigenetics regulates CFNs. 
DNAm plays a central role not only in early 
embryogenesis, but also in maintaining the correct 
pattern of methylation along DNA in somatic 
cells. As a model system of great interest, we 
review next how the pluripotent stem cell circuit 
(PSCC) is affected by the DNAm cycle.

The pluripotent stem cell circuit (PSCC)

Some of the key Transcription Factors (TFs) that are 
identified as being crucial to the PSCC include 
Nanog, Oct4, Sox2, Klf4, and the TET protein family 
[7,31]. Many of such TFs are ‘pioneering’ transcrip-
tion factors that are able to bind directly to the 
condensed chromatin. According to the induction 
experiments in [7], the overexpression of the afore-
mentioned TFs can lead to the induction of the 
pluripotent state. For the PSCC, the role of each TF 
in the GRN has been extensively studied [35]. Much 
research has been devoted to elucidating the inter-
play between the Nanog, Oct4 and TeT1 proteins 
[36,37]. Oct4 is central to the pluripotency machin-
ery, has been very well studied [38], and it can by 
itself reprogram a differentiated cell into pluripo-
tency [39]. Other experiments regarding the induc-
tion of the pluripotent state in PSCCs have highly 
heterogeneous results [8,40]. More recent research 
[41,42] has shown that, at a mechanistic level, Nanog 
is able to guide TET protein to bind to a particular 
region of the methylated region on the chromatin via 
the formation of a Nang-TET compound that is 
actively involved in the DNA demethylation process.

Notably, DNAm of the Oct4 gene plays a key 
role in the regulation of the PSCC. In Yamanaka’s 
lab early works [7,43], it was observed that the 

Figure 1. The DNA methylation cycle as currently understood [31,32]. (a) The TET-mediated cytosine DNA demethylation cycle starts 
with transferring a methyl group onto the C5 position of the cytosine to form 5-methylcytosine (5mC) by the DNA (cytosine-5)- 
methyltransferase (mainly DNMT3A/B for de novo methylation). The 5mC is then further iteratively oxidized by TET enzymes to form 
5hmC, 5fC, and 5caC. The 5fC and 5caC are then recognized by TDG that yields an abasic site that is repaired by BER and returns to 
the unmodified cytosine state. (b) A simplified de-methylation cycle for Oct4 in the PSCC. Due to the fact that 5mC and 5hmC are 
two leading abundant oxidized forms of cytosine, we can effectively reduce the full cycle to a three state model.
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promoters of Oct4 (and other pluripotency-related 
genes) are unmethylated in embryonic stems (ES) 
cells, while they are methylated in mouse embryo-
nic fibroblasts. Furthermore, it was observed that 
Oct4 becomes demethylated just prior to repro-
gramming [44], and that the differentiation of ES 
cells is associated with the silencing of Oct4 and de 
novo methylation of its regulatory region [45,46]. 
Hence, activation of the PSCC requires demethy-
lation of the corresponding promoters [47], which 
means that understanding DNAm is a prerequisite 
of understanding the PSCC. However, very few 
mathematical models have incorporated DNAm 
in their GRNs. In this work, we model the inter-
play between epigenetic regulation via the Nanog- 
guided TET-mediated active demethylation cycle 
and the role of pioneering transcription factors 
such as Oct4 and Nanog. A mechanistic view of 
this interplay helps one understand how emergent 
cell states can arise phenotypically from the under-
lying genotypic level interaction. Although the full 
modelling of epigenetic regulation at the molecular 
level would involve many additional epigenetic 

regulation mechanisms beyond methylation such 
as histone modifications [31], DNAm plays 
a major role in the coarse grained picture of the 
process of the induction of the pluripotent state 
which we are mostly interested in.

Basin of attraction percentage (BoAp)

Using high-dimensional attractors, and speci-
fically stable steady states, to represent cell fates 
in the epigenetic landscape is a widely used 
paradigm for studying cell fate [14,48]. In 
a biological context, a steady state attractor cor-
responds to an observable phenotype, e.g., 
a somatic state with a silenced Oct4 promoter. 
In the dynamical cellular environment, perturba-
tions can temporarily change the expression 
levels away from steady-state. Intuitively, the 
GRN should be able to return to its attractor 
(phenotype) for a sufficiently small perturbation, 
while there is a risk of jumping to another 
attractor (phenotype) for a large perturbation. 

Figure 2. A detailed diagram of the PSCC network showing N, T, O interactions. TET, Oct4, Nanog denote the unbound genes. *TET 
and *Oct4 denote NT binding to the respective promoter sites, TET* and Oct4* denote Oct4 bound to the respective promoter sites, 
and *TET*, *Oct4* denote both NT and Oct4 binding to the respective promoter sites. The black dashed line indicates binding 
locations of the Nanog-guided TET protein complex NT, while the blue dashed line indicates binding locations of Oct4. The coloured 
shaded area emphasizes the DNA demethylation cycle.
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By ‘perturbation’ we mean an abrupt change in 
the levels of the dynamical variables of interest 
such as TF abundances and DNAm levels. An 
attractor that can withstand a large perturbation 
is more ’stable’. Hence, to characterize the stabi-
lity boundary of such attractors we use the con-
cept of Basin of Attraction (BoA). The BoA of 
a given attractor (phenotype) is the set of all 
perturbed levels that will return back eventually 
to the steady state attractor. Figure 3 illustrates 
these ideas.

The concept of BoA has been frequently used by 
researchers and it is standard in dynamical systems 
when analysing multi-stable systems; moreover, it 
has recently been systematically used by the phy-
sics community in that context [49]. In order to 
quantify the BoA of a given attractor, we propose 
to use the concept of BoA Percentage (BoAp), 
which is defined as the ratio of the ‘size’ of the 
BoA of interest to the total size of the space of 
interest. A larger BoAp for a given attractor means 
that its BoA is larger, and hence it is relatively 
more stable, while a smaller BoAp means that it 
is relatively less stable.

In our simulation analysis, we adopt this 
concept to quantify the stability boundary of 
the somatic cell state. In a bistable one- 
dimensional model, the BoAp of the smaller 
steady state s0 can be defined as the distance 
between s0 and the unstable state relative to 

the length of a segment of interest. However, 
this is not an accurate measure for high- 
dimensional systems. Therefore, we adopt 
a volumetric definition for the BoA. We start 
by fixing a region of interest in the state 
space. With respect to such a region, BoAp 
can be defined as follows:

BoAp :

¼
Volume of the BoA of s0

Volume of the region of interest
:

(1) 

Equipped with this definition, we can study 
the effect of DNAm and demethylation con-
stants on BoAp. The silenced steady state 
corresponds to a highly methylated promoter. 
Hence, as the methylation rate γ increases, 
the BoA of the silenced steady state expands. 
On the other hand, as the demethylation rate 
θ increases, the BoA of the silenced steady 
state shrinks. Our subsequent results will 
show that the BoAp of the silenced steady 
state increases as the methylation rate 
increases, and decreases as demethylation 
rate increases. Note that we will use the 
term ‘steady state’ to mean a ‘steady state 
attractor’ from now on.

Figure 3. Graphical illustration of how a shift in the boundary separating two regions of attraction can result in phenotype switches 
under small perturbations. In the left panel, a perturbation of the silenced state leads to a transient configuration that belongs to the 
basin of attraction of the active steady state, resulting in a phenotype switch to the active steady state (i.e, the somatic state). In the 
right panel, the boundary has shifted, reflecting that fact that the relative sizes of the two basins of attraction have exchanged 
dominance. Now the same perturbation keeps the state in the domain of attraction of the silenced state, and the perturbed state 
eventually returns to that attractor. The shift in boundary could be due, for instance, to an increase in the methylation rate 
parameter γ.
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Results

The PSCC with epigenetic regulation

In our full model description of the PSCC, the 
network can be viewed as made up of two parts. 
The first part is the gene-TF regulatory network 
[50] which is a core underlying network defining 
how TFs bind and unbind to DNA as shown in 
Figure 2 without the shaded area. The main reg-
ulatory sub-network for the activation of the Oct4 
and Nanog genes is depicted within the two- 
pathway activation scheme in Figure 4. Both the 
Oct4 and the TET gene promoter binding 
mechanisms will follow such scheme, which has 
two pathways that lead to the activation of the 
gene. Oct4 protein self-binds to the first site 
while the Nanog-guided TET protein complex 
binds to the second site. The promoter is active 
only when both sites are occupied. In this GRN, 
the Nanog gene is activated by the Oct4 gene. 
Furthermore, Nanog and TET form 
a heterodimer which models TET guiding Nanog 
to the target promoters.

The GRN with DNA demethylation is summar-
ized in Figure 2. The DNA demethylation cycle 
with the triangle topology can be further simplified 
into two states, which are shown in Figure 5. The 
parameter γ is thought of as the effective methyla-
tion rate and the parameter θ as the effective 
demethylation rate. The CRN for the PSCC with 
a two-state methylation cycle can be written as in 
Table 1. (For simplicity, we omit explicit variables 
for mRNA and other intermediate steps such as 
protein maturation and post-translation modifica-
tions.) We model this network deterministically 
through a system of ODEs. The variables in this 
system can be thought of as mean numbers for the 

various species in a population. The full model is 
described in the Methods section.

Model reduction via quasi-steady state 
approximation

The full model CRN is computationally intensive 
to simulate, and it is conceptually difficult to inter-
pret its dynamical behaviour. Hence, we perform 
a quasi-steady state approximation by distinguish-
ing between two time-scales: the ‘fast’ time-scale of 
TF-promoter kinetics (binding/unbinding), and 
the ‘slow’ time-scale of protein expression/decay 
and DNA methylation kinetics. Note that the 

Figure 4. The two-pathway activation scheme for TF-gene 
binding. In the full model, such an activation scheme describes 
the promoter binding activation for both Oct4 and TET genes. 
Considering Oct4 as an example, there are two pathways for 
the activation of its promoter. Each of NT and Oct4 can inde-
pendently bind to the promoter of Oct4. When both NT and 
Oct4 bind to the promoter region of the Oct4 gene, it will be 
activated.

Figure 5. The diagram on the left shows how the triangle topology can be further simplified into a two-species CRN. Since the 5hmC 
methylation state has a slower dynamics compared to the 5mC methylation state, one may employ a quasi-steady states 
approximation to reduce the triangle topology to the two-state model depicted on the right.
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methylation cycle in our model is 
a phenomenological reduction of the cycle 
depicted in Figure 1, which includes a dilution 
step as well as the coordinated action of many 
TFs and enzymes. Hence, the methylation cycle is 
not faster than protein kinetics, which are known 
to be much slower than TF-promoter kinetics [15]. 
This is also supported by experimental evidence, as 
the re-establishment of methylation patterns can 
take up to 20 minutes [51], and de novo methyla-
tion kinetics take days which are even slower than 
protein kinetics as has been observed in various de 
novo methylation studies [52,53]. It can be noted 
also that inherited methylation patterns have very 
slow kinetics in general [54,55].

Therefore, we assume that the reaction rates of 
the promoter-TF binding and unbinding dynamics 
are faster than the other reaction rates in the CRN 
Table 1. By applying time scale separation or 
quasi-steady state approximation, we reduce the 
full dynamical system model from a 17- 
dimensional state space to a 4-dimensional state 
space. The full model ODEs are given in the 
Methods section. The reduced dynamical system’s 
ODEs can be written as below:

dN
dt
¼ m1 � δN þ

αNO
KO þ O

;

dT
dt
¼ m2 � δT þ

αTNTO
NT þ KntKdð Þ KO þ Oð Þ

;

dO
dt
¼
� KntKdδO2 � δNTO2 þ KOKntKdm3 þ αONTOþ KntKdm3O

NT þ KntKdð Þ KO þ Oð Þ

þ
KOm3NT þm3NTO � KOδNTO � KOKntKdδO � αODmNTO

NT þ KntKdð Þ KO þ Oð Þ

dDm

dt
¼
� KOKntK2

dγDm þ KOKntK2
dγ � θKON2T2Dm � θN2T2ODm

Kd NT þ KntKdð Þ KO þ Oð Þ

�
θKOKntKdNTDm þ θKntKdNTODm

Kd NT þ KntKdð Þ KO þ Oð Þ

Effect of methylation rate
For the full model, Figure 6 displays how the BoAp 
changes as one changes the epigenetic reaction rate γ. 
Each plot in the figure corresponds to one set of 
parameters, sampled from a wide range. The para-
meter set for the full model contains the following 
rates: KO, Knt, Kd, a, ant, aO, αT , αO, αN , δ, γ, θ, m1, m2 
and m3. Biologically speaking, changing the reaction 
rate γ is equivalent to changing the effective methyla-
tion rate. Our subsequent study of the single gene 
model will display the same trend of BoAp’s depen-
dence on γ.

The phenotypic somatic state is characterized 
[36] by low expression of Oct4, Nanog, TET, and 
methylated promoters. With simulations per-
formed over 6200 parameter sets as shown in 
Supplementary Figure 1(a), the BoAp vs. γ plot 
shows that the BoAp is monotonically increasing 
with respect to γ. In Figure 6, we show 
a representative sample of these curves. If γ is 
increased beyond a certain threshold, then bist-
ability is lost and the BoAp of the silenced steady 
state becomes 100%. Note the different behaviour 
for intermediate values of γ compared to low or 
larger values of γ. Another interesting observation 
is that the BoAp is bounded below by 10% for all 
parameter sets when γ is greater than 10� 1:5.

Table 1. The CRN model of the PSCC. Reactions have been grouped into eight modules and labelled from R1 to R18.
Oct4 promoter(R1-R4)

DO
00 þ ½NT� Ð

Knt�ant

ant

DO
10

DO
01 þ ½NT� Ð

Knt�ant

ant

DO
11

DO
00 þ O Ð

KO�aO �

aO

DO
01

DO
10 þ O Ð

KO�aO

aO

DO
11

TET promoter (R5-R8)
DT

00 þ ½NT� Ð
Knt�ant

ant

DT
10

DT
01 þ ½NT� Ð

Knt�ant

ant

DT
11

DT
00 þ O Ð

KO�aO

aO

DT
01

DT
10 þ O Ð

KO�aO

aO

DT
11

Nanog promoter (R9)
DN

0 þ O Ð
KO�aO

aO

DN
1

Nanog-TET Dimer (R10)
Nþ T Ð

Kd�a

a
½NT�

Protein decay and production (R11-R13) N � !
δ
;; DN

1 � !
αN DN

1 þ N

T � !
δ
;; DT

11 � !
αT DT

11 þ T

O � !
δ
;; DO

11 � !
αO DO

11 þ O

Basal Rate (R14-R16) ; � !
m1 N

; � !
m2 T

; � !
m3 O

Methylation (R17) DO
00 � !

γ
Dm

Demethylation (R18) Dm þ NT � !
θ

DO
00 þ NT
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On the other hand, changing the reaction 
rate θ means changing the demethylation rate. 
As we reduced the triangle topology for the 
DNA demethylation cycle to a two-state cycle 
in the full model, the effective demethylation 
rate can be thought of as representing the com-
bination effect of 5mC to 5hmC oxidation rate 
affected and the rate of oxidized 5hmC revert-
ing to the unbound promoter state via either 
TDG-BER pathway or dilution via cell replica-
tion. In Supplementary Figure 1(b), the simula-
tion shows that the BoAp is monotonically 
decreasing with respect to θ. Over 6200 para-
meter sets have been simulated and we plot 
BoAp vs. θ over 4 orders of magnitude to 
show the trend. In Figure 7, we show 
a representative sample of these curves. We 
choose the value of the range for θ to be the 
same as the range of γ in the BoAp vs. γ plot, 
which both are from 10� 2 to 102.

These results confirm that our model captures 
the key role that methylation rate plays in enhan-
cing the stability of the somatic steady state. The 
higher the effective methylation rate, the larger the 
BoAp. This means that it is more likely for the 
underlying dynamical system to stay at the somatic 
(silenced) steady state, which implies that it is 

relatively more stable. Furthermore, the methyla-
tion rate can be increased to the point of eliminat-
ing the existence of the active steady state (the 
pluripotent steady state) and making the silenced 
steady state immune to any abrupt perturbations. 
Note that the methylation rate is proportional to 
the abundance of DNMT, and hence all the con-
clusions above can be interpreted as applying to 
the DNMT abundances. We will elaborate on the 
practical implications of our model further in the 
Discussion section.

Effect of slow/fast methylation kinetics
To understand how the relative methylation rate 
affects the BoAp, we define the methylation asso-
ciation rate as R = γ

θ .
The simulations in Figure 8 show that BoAp vs. 

γ across 4 orders of magnitude in γ while θ is 
increased so as to keep the ratio R constant with 
different ratios of R that span 3 orders of magni-
tude. Assuming a normalized protein decay rate 
(δ ¼ 1), Figure 8 allows us to disentangle two 
effects: the methylation ratio (R) and the time- 
scale of the methylation cycle. The plots display 
a biphasic trend, i.e., the BoAp monotonically 
increases and then monotonically decreases. 
Therefore, there is a maximum value of the 

Figure 6. The relative stability (measured by BoAp) of the silenced steady state increases with respect to the DNAm rate (γ). We 
show simulations for a representative set of different rates for the full model, where extensive simulations are shown in SI-x1.1. Each 
curve in the figure correspond to a particular set of parameters. Each curve ends when bistability is lost and BoAp jumps to 100%. 
This behaviour is illustrated in SI-x 2.1. The simulations also show that, at small γ region, the BoAp exhibits a sudden slowing down 
at around γ¼ 10� 1:5.
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BoAp which occurs in the slow range 
½10� 1:5; 10� 0:5� for various methylation ratios R, 
while the BoAp decreases as the methylation 
cycle becomes faster (which is consistent with the 
analytical picture to be shown in Figure 9). These 
results mean that the stability of the silenced state 
(or the efficiency of methylation) is maximized 
with a higher methylation ratio and a relatively 

slower methylation kinetics (roughly an order of 
magnitude slower than the protein decay rate).

It should be noted that the biphasic nature of 
the trends is not a result of high-dimensional 
dynamics. Rather, the same behaviour can be 
observed in the single gene model (see SI-x 1.2). 
Furthermore, the biphasic trend for the fixed ratio 
R can roughly be inferred from the PSCC simula-
tions by varying each γ and θ independently. As 

Figure 8. The BoAp of the silenced state shows a biphasic behaviour when the methylation cycle transitions from slow to fast, where 
R defined as the methylation association rate R = γ

θ . The plot shows the BoAp while γ is increased with a fixed methylation ratio, i.e., 
θ is increased so as to keep the ratio R constant. The system loses bistability when R exceeds 30. The kinetic rate parameters used 
are: KO = 0.3, Knt = 0.2, Kd = 0.1, a= 1, ant = 100, aO = 100, αT = 1, αO = 1, αN = 1, δ = 1, R 2 f0:01; 0:1; 1; 10; 20; 30g, 
γ 2 ½10� 2; 102�.

Figure 7. The relative stability (measured by BoAp) of the silenced state decreases with respect to the DNA demethylation rate (θ). 
Shown are a representative set of simulations for the full model, where extensive simulations are shown in SI-x1.1. Each curve in the 
figure corresponds to a particular set of parameters.
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per the trend we have shown in Figure 6, the BoAp 
increasing rate exhibits a sudden slowing down at 
γ around 10� 1:5, while there is no corresponding 
change for the demethylation rate θ shown in 
Figure 7. Therefore, it is not surprising that the 
methylation association ratio R has a biphasic 
behaviour.

Model of a single self-activating gene

In order to complement the numerical investiga-
tions in the previous sections, we consider next 
a simplified model which includes Oct4 only. Its 
interaction with the rest of the network is mod-
elled as a self-activating loop. This model is more 
amenable to an analytical study as will be dis-
cussed below.

Our simplified model consists of a single self- 
activating gene. A CRN model for it can be written 
as follows:

2X þ DiÐ
β=2

β�
Da (2) 

Da � !
k Da þ X (3) 

DiÐ
θ

γ
Dm (4) 

X � !δ ;; (5) 

where X is the protein expressed from the active 
promoter state Da and Di is the inactive promo-
ter state. (As earlier, we omit explicit variables 
for mRNA and other intermediate steps such as 
protein maturation and post-translation modifi-
cations.) To model self-activation, we assume 
that an X homodimer can bind to the inactive 
promoter site to activate the gene. The inactive 
promoter region can be methylated to a state 
that we denote by Dm. Reversely, Dm can be 
epigenetically modified back to the Di state. We 
assume that protein X has degradation rate δ. 
Our aim is to study the effect of the methylation 
ratio γ=θ on the dynamics.

Since the total concentration of promoters is 
conserved, the ODE model can be reduced by 
writing Di ¼ 1 � Da � Dm, where we scale the 
total number of promoters to 1. The system of 
ODEs that results is given as follows:

dx
dt
¼ kDa � δx � βx2ð1 � Da � DmÞ

þ β� Da; (6) 

dDa

dt
¼ βx2ð1 � Da � DmÞ � β� Da; (7) 

dDm

dt
¼ γð1 � Da � DmÞ � θDm: (8) 

Figure 9. Phase plane analysis of the two-dimensional model (11). (a) The directions of the vector field and the BoAs in the case of 
bistability with stable steady states s0; s1, where s0 denotes the silenced steady state and s1 denotes the active steady state. The 
arrows in each region denote the direction of the vector field. (b) The area of the ε-independent BoA of the silenced steady state s0 

increases when the methylation ratio increases. Recall that ε!1 denotes the case of a slow methylation kinetics (relative to 
protein kinetics), while ε! 0 denotes the case of fast methylation kinetics.
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The steady states can be evaluated analytically 
to yield a cubic equation. There always exists 
a steady state in which x ¼ 0 (and also Da ¼ 0). 
We call such a state the silenced steady state. It 
is easy to verify by linearization that this state 
is locally stable, for any parameter values. 
A bifurcation occurs and three steady states 
exist if and only if the following inequality 
holds:

k2

δ2 >
γ
θ
þ 1

� � 4
B
; (9) 

where B :¼ β� =β is (double) the dissociation ratio, 
and k=δ and γ=θ are the production and methyla-
tion ratios, respectively. One of two additional 
steady states is always locally asymptotically stable 
and the other one is unstable (a saddle). We call 
the second stable steady state the active steady 
state. It follows from condition (9) that 
a sufficiently high methylation ratio renders the 
active steady state non-existent. Hence, a point 
attractor will coincide with the silenced steady 
state. This recapitulates our observation in 
Figures 6, 7 that increasing the methylation ratio 
beyond a certain threshold will eliminate bistabil-
ity, and hence the active (pluripotent) steady state 
disappears.

The model can be reduced further by utilizing 
the fact that transcription factor binding/unbinding 
is fast relative to protein expression and epigenetic 
modifications. We thus carry out a quasi-steady 
state (QSS) approximation, in which we set the 
state Da to:

Da;qss ¼
ð1 � DmÞx2

Bþ x2 : (10) 

Substituting this expression into the ODE system, 
we obtain a two-dimensional system whose two 
variables are the promoter methylated state yðtÞ :

¼ DmðtÞ and the protein x, as follows:

_x ¼ kð1 � yÞ
x2

Bþ x2 � δx (11) 

ε _y ¼ γð1 � yÞ
B

Bþ x2 � θy ;

where ε is a parameter that represents the relative 
time-scale separation between protein and methy-
lation kinetics. This system must be studied for 

ðx; yÞ 2 ½0;1Þ � ½0; 1�. We next analyse this 
reduced system.

Global behaviour
Observe that all solutions of the reduced system 
are bounded. Indeed, y is bounded by definition, 
and _x< 0 whenever x> k=δ, so the rectangle 
½0; k=δ� � ½0; 1� is an attractor.

The steady states of the reduced system are in 
a one-to-one correspondence with the states of the 
full system, in the sense that for each steady state 
ðx; yÞ there is a unique steady state ðx;Da;DmÞ of 
the full system, where Dm ¼ y and Da is given by 
the expression in Eq. (10). Thus, there are one or 
more steady states depending on condition (9). 
We may think of the system (11) as a ‘toggle 
switch’ in which Y (the methylated promoter) 
represses X (protein), and conversely X represses 
Y. If silencing is stronger, we expect the protein 
state to remain at zero, while if activation is stron-
ger, we expect protein values to converge to 
a higher steady state.

In order to analyse the global behaviour of 
system (11), we first evaluate its Jacobian matrix:

2kBxð1� yÞ
ðBþx2Þ

2 � δ � k x2

Bþx2

� 2γBxð1� yÞ
εðBþx2Þ

2 � 1
ε

γB
Bþx2 þ θ
� �

2

4

3

5:

Both off-diagonal entries are non-positive, which 
makes this system a monotone system, and speci-
fically, a system that is cooperative with respect to 
the cone defined by the ð� ; � Þ orthant, as dis-
cussed in [56] (see also [57] for exposition and 
biological applications). In [58], M.W. Hirsch 
proved (Theorem 2.2) that every bounded solution 
of a planar cooperative system converges to an 
equilibrium; see also Theorem 2.2 in [56]. 
Coupled from boundedness of solutions for our 
system, we conclude that every trajectory con-
verges to an equilibrium (which depends on the 
initial conditions of the trajectory).

Phase plane analysis

Our two-dimensional reduced model can be 
analysed via nullclines. A summary of the analy-
sis is depicted in Figure 9 for a bistable model. 
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The nullclines and the steady states are indepen-
dent of ε. On the other hand, the separatrix, 
which is the boundary between the BoAs, is ε- 
dependent. It is shown that each BoA can be 
partitioned into ε-dependent and ε-independent 
regions (Figure 9(b)) shows that the area of the 
ε-independent BoA of s0 increases as the methy-
lation ratio is increased. Hence, it can be argued 
that the BoAp of the silenced steady state 
increases as the methylation ratio increases, 
which recapitulates our observations for the full 
model. Furthermore, we have performed numer-
ical simulations for the single-gene model and 
they show the same trends. Refer to SI-x 1.2.

Slow methylation kinetics
We have argued previously that DNAm can be 
even slower than protein kinetics; hence, we 
focus on case ε!1 in this subsection. Figure 9 
shows that, in this limit, the BoA of s0 consists 
only of the ε-independent region. Next, we analy-
tically investigate the aforementioned limit.

Computing the asymptotic separatrix

Setting _x ¼ 0, we see that the x-nullcline consists 
of two components, which we call the silenced and 
active arcs, because the dynamics along each arc 
converge to the silenced and active steady states, 
respectively. The arcs can be written as follows:

1. Silenced/Somatic: The arc is x ¼ 0, which 
gives the slow dynamics of 

_y ¼ γBð1 � yÞ � θy:

This is a linear system, and it has an asympto-
tically stable steady state at y ¼ Bγ=θ

Bγ=θþ1 . Notice that 
the location of this steady state is an increasing 
function of the methylation ratio γ=θ.

2. Active/Pluripotent: The arc is given by the 
implicit equation: k

δ ð1 � yÞx ¼ Bþ x2. Solving 
for x in terms of y: 

x ¼
k
δ
ð1 � yÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

4δ2 ð1 � yÞ2 � B
r

: (12) 

The slow dynamics are given as (note 
lim supt!1 yðtÞ�1 for all t and any initial condi-
tion with yð0Þ�1):

_y ¼
γδB

k
� θy:

Hence, y ¼ γδB
θk is the asymptotic steady state, 

which is proportional to the methylation ratio γ=θ.
Given an initial condition ðxð0Þ; yð0ÞÞ, we want 

to determine which arc will be representative of 
the dynamics. A necessary condition for the exis-
tence of the second arc (i.e., the chance to con-
verge to the active steady state) is that the quantity 
under the square root in (12) is real. Hence, we 
have:

yð0Þ � 1 �
2δ

ffiffiffi
B
p

k
; and 1 �

2δ
ffiffiffi
B
p

k
> 0 (13) 

Hence, yð0Þ> 1 � 2δ
ffiffi
B
p

k automatically implies that 
the silenced arc represents the dynamics regardless 
of the initial xð0Þ. Furthermore, if the dissociation 
ratio is high compared to the protein production 
ratio (i.e., k=δ< 1

2

ffiffiffi
B
p

) then the dynamics are also 
represented solely by the silenced arc. Assuming 
the necessary condition is satisfied, we need also 
that

xð0Þ >
k

2δ
ð1 � yÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

4δ2 ð1 � yÞ2 � B
r

: (14) 

To summarize, if both (13), (14) are satisfied, then 
the second arc is representative of the dynamics; 
otherwise, the first arc represents the dynamics. 
This conclusion is summarized in the dark grey 
region in Figure 9(a).

A remark concerning reprogramming by 
over-expression of X. Our global analysis allows 
us to intuitively understand the role of X in over- 
expression experiments (such as the ones carried 
out in Yamanaka’s lab [7]). In this scenario, we 
assume that ðxð0Þ; yð0ÞÞ ¼ ð0; Bγ=θ

Bγ=θþ1Þ, i.e., the 
initial condition is a silenced steady state. Over- 
expression means that a sudden dose of x will be 
injected to the system such that xð0þÞ ¼ u, where 
u is a constant positive number. Our aim is to 
drive the system to the BoA of the active steady 
state.

It follows from the analysis above that

Bγ=θ
Bγ=θþ 1

� 1 �
2δ

ffiffiffi
B
p

k 
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is necessary for reprogrammability. Hence, the 
expression ratio k

δ and the methylation ratio γ
α 

must satisfy:

k
δ
> 2

ffiffiffi
B
p

;
γ
θ
�

1
B

k
2δ

ffiffiffi
B
p � 1

� �

: (15) 

If both of these conditions are satisfied, then over-
expression will steer the trajectory to the active arc 
if the following holds:

u>
k

2δ
1

Bγ=θþ 1

� �

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2

4δ2
1

Bγ=θþ 1

� �2

� B

s

: (16) 

In a nutshell, eqns. (15), (16) imply that we need 
a sufficiently high Oct4 expression ratio, 
a sufficiently high overexpression value (u), and 
a sufficiently low methylation ratio. This again 
underscores the importance of the methylation ratio.

Comparison of the two models. The results for 
the single gene model (presented analytically 
above, and numerically in SI-x 1.2 parallel those 
for the four-dimensional model (which was, in 
turn, obtained through QSSA from the full 17- 
dimensional CRN)). For example, we see 
a qualitatively similar behaviour regarding the 
BoAp’s dependence on the (de)methylation rate 
in both models. In addition, the results in the 
reduced model with 4D state space again agree 
with those for the single gene model with 2D 
state space.

The full model has the advantage of incorporat-
ing all the regulation loops and displaying the 
effect of the methylation cycle on the steady-state 
values of the Nanog and TET proteins. However, 
the single gene model can be reduced to a 2D 
model which enables the analytical computation 
of the steady states and the application of phase 
plane methods. Basic trends in the BoAp can be 
intuitively read from the shift in the separatrix 
within the predefined cube. Unfortunately, per-
forming similar analysis for the 4D model is 
intractable, but the numerical simulations have 
shown the same basic behaviour predicted by the 
single gene model.

The single gene model is not equipped with the 
additional regulation loops mediated by the NT 
heterodimer. Nevertheless, this model 

demonstrates that the trends displayed by the full 
model are intrinsic effects of the proposed methy-
lation/demethylation cycle. In both cases, a slow 
epigenetic process – in our case, a methylation 
cycle – shifts the stability boundary of the under-
lying system consistently in the same direction.

Discussion

We have proposed a mathematical modelling 
paradigm to elucidate the role of DNAm in the 
activation and silencing of genes. This has been 
achieved by integrating DNAm into the standard 
paradigm of GRNs, which rely on TF-promoter 
binding/unbinding. Our model can be consid-
ered as an effective model which considers 
essential chemical reactions that are relevant to 
the core cell Oct4 reprogramming network. We 
have provided a quantitative model of the effect 
of methylation rates on gene silencing and acti-
vation, particularly in the context of ES cell 
reprogramming. We have shown that increasing 
the methylation rate increases the BoAp of the 
silenced state until the active state disappears 
and the silenced state becomes the only stable 
steady state. Since the methylation rate is 
directly proportional to the abundance of 
DNMT, our results predict that reducing 
DNMT abundances will lead to gene activation 
via the emergence of the new active steady state 
and the loss of stability of the silenced state by 
BoA shrinkage. Indeed, experimental evidence 
shows that the application of DNMT inhibitors 
leads to the reactivation of the associated genes 
in various contexts [59–62]. In the context of the 
PSCC, repressing DNMT3B helps in generating 
pluripotent cells and underscores its role as 
a regulator of the circuit [63]. Furthermore, 
downregulation of DNMT3a/b via miRNAs has 
been suggested as a mechanism for regulating 
pluripotency [64,65]. On the other hand, 
DNMTs 1/3a/3b genes can be eliminated with-
out any negative impact on the pluripotent state 
[66]. Similar results were reproduced in human 
ES cells with DNMT 3a/b knockout [67]. These 
results are consistent with our prediction that 
a highly reduced methylation rate will consoli-
date the stability of the active steady state. As 
discussed in the introduction, a smaller basin of 
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attraction of the silenced state means that nat-
ural perturbations in the cell environment will 
have a greater chance of leading to a state tran-
sition to the active state.

Since DNAm and demethylation rates can be 
changed dynamically during the developmental 
process, the model can be applied at different 
stages. Also, it can be used to predict the interven-
tion needed (for instance in terms of DNMT up- 
or down-regulation) to activate or silence a gene of 
interest. The relative stability of a certain pheno-
type (measured by the BoAp) can be also esti-
mated which correlates with the average time 
(e.g., number of days) needed to transition 
between different phenotypes. Hence, our model 
can be used as a quantitative guide to design the 
reprogramming protocol in the context of the 
PSCC. Furthermore, the DNAm rate can be mea-
sured directly. Experimental tools have been devel-
oped to trace the dynamic changes of DNAm at 
single base resolution [68]. In principle, a time 
series of the DNAm density at the TSS over the 
course of the developmental process can be con-
structed from such data, and the methylation rate 
can be determined accordingly. Such time-series 
data have been used in a recent experiment [53], 
which studied the reprogramming of B cells to 
induced pluripotent cells. That paper showed that 
the last stage of the successful pluripotency induc-
tion displays successive waves of hydroxymethyla-
tion associated with a decrease in DNA 
methylation and active demethylation. Although 
such techniques are in their infancy, we predict 
that our model can be used, in conjunction with 
more extensive data collection methods, to predict 
the likelihood of the activation of a gene based on 
the measurable methylation and demethylation 
rates.

Our model can also be used in conjunction with 
more direct experimental manipulation methods. 
In addition to DNMT inhibitors mentioned above, 
a recent intriguing technique in synthetic epige-
netics is the newly developed synthetic read-write 
modules [69] implemented in human cells via 
m6A DNA modification. Such synthetic epigenetic 
regulatory system can allow us, in principle, to 
regulate the DNAm patterns and influence the 
resulting phenotypes by controlling the (de) 
methylation rate. Using our model, the relative 

stability of a phenotype is reflected in the duration 
of the time that a cell takes to successfully repro-
gram to the pluripotent state due to the stochastic 
nature of the underlying processes. From an engi-
neering perspective, with the help of synthetic 
epigenetic read-write modules, one can aim at re- 
engineering the DNAm patterns to explore how 
changes of (de)methylation rates affect the repro-
gramming time during the developmental process. 
In addition to directly manipulating the DNAm or 
demethylation rates, one can also think of indirect 
ways for interacting with DNAm. Evidence suggest 
that histone modifications like H3K4me1/3, 
H3K27me3, H3K27ac and the polycomb family 
of proteins are intricately interacting with DNAm 
and are playing key roles in recruiting some co- 
factors and interacting with enhancer regions [70]. 
Therefore, one can experimentally engineer speci-
fic pathways for perturbing the DNAm rate 
through histone level interventions.

Along with the discovery of the role of TET 
protein in regulation of the DNA (de)methylation 
cycle, several theoretical models have been pro-
posed to understand the underlying mechanistic 
picture of how TFs and DNA interact with each 
other, and additionally how epigenetic factors 
such as DNAm and histone modifications affect 
gene regulatory networks in various biological 
contexts. In the following, we discuss the relation 
between these models and ours. Many related 
core gene regulatory networks have been pro-
posed at various levels of complexity. An early 
attempt using a probabilistic Boolean network 
that describes the interplay between gene expres-
sion, chromatin modifications, and DNAm has 
been proposed in [19]. In addition to lacking 
mechanistic interpretations, Boolean models do 
not allow one to quantify the effect of DNAm 
on the stability boundary between the multiple 
phenotypes. As the role of the TET protein family 
in gene regulation became clearer [31,42,71,72], 
various CRN models and ODE models that have 
partially considered TET-mediated demethylation 
cycle [36,73] and core gene-TF regulatory 
mechanisms have been proposed. Notably in 
[73], an ODE model for a core gene-TF regula-
tory network of the PSCC has been studied. The 
system involves Oct4, Sox2 and Nanog proteins 
and exhibits multistability under certain 
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conditions. Regarding epigenetic regulation, that 
work modelled the DNAm cycle on top of Oct4 
auto-activation. The model did not consider the 
interaction between Nanog and TET, nor how NT 
heterodimer regulates the DNA demethylation 
cycle. Despite the fact that the DNAm model in 
[73] did not include a two-pathway activation- 
like mechanism for gene activation, it represented 
an early attempt to mechanistically link gene reg-
ulation and chromatin modifications. In [36], 
a mechanism was proposed for the core gene-TF 
network without epigenetics, and then a two-state 
model without NT regulating the DNA demethy-
lation process was investigated on top of this core 
network. However, the underlying chemical reac-
tion model in [36] was not spelled-out clearly. In 
addition to this, without the NT complex 
involved in the DNA demethylation process, the 
model in [36] couples the core gene-TF network 
and DNA demethylation cycle, which does not 
reflect the experimental evidence of the role of 
NT in the regulation of DNA demethylation. 
Specifically, the model lacks the reaction in 
which NT complex binds to the 5hmC. In the 
recent experimental work [74], four chromatin 
regulators, including DNMT3B which causes de 
novo methylation of cytosine-guanine dinucleo-
tides (CpGs), have been studied. Though 
a descriptive three-state model was proposed in 
[74] for explaining how each chromatin regulator 
affects the silencing and reactivation of gene 
expression, a detailed mechanism at a molecular 
level was not provided. In comparison with all 
these previous attempts, we model the underlying 
CFN with a detailed CRN model at a molecular 
level, and we clearly show how epigenetic regula-
tion, specifically the DNA demethylation cycle, 
regulates the CFN by the Nanog-guided TET 
protein complex.

In [75], a purely phenomenological model of 
how epigenetic feedback affects gene expression 
dynamics is proposed. The main idea is to repre-
sent the kinetic rate parameters by epigenetic vari-
ables that have their own dynamic equations. 
More recently, a similar idea has been employed 
in the context of epithelial-mesenchymal transition 
(EMT) and cancer metastasis [18]. Such a view of 
epigenetic feedback regulation of kinetic rates is 
a valuable complementary perspective.

So far, we have explored a cell fate network 
combining gene-TF interactions and a TF-guided 
DNA demethylation process. For the CRN we 
proposed, we have considered how the TET- 
mediated demethylation cycle potentially affects 
the gene regulatory network, and subsequently 
affects the cell fate decision associated with the 
transcription factors. We have simplified the 
demethylation cycle into a two-state cycle. Our 
mechanistic modelling approach using CRN agrees 
with the intuition on how DNAm affects the cell 
fate network. The faster the methylation rate the 
more stable the silenced (somatic) state will be. 
However, in the detailed molecular picture of the 
cell fate network that involves Oct4, Nanog, TET 
and potentially many other transcription factors, 
there might exist all sorts of self or non-self inter-
actions in the network. For example, if one adds 
Nanog protein self activation, one would expect 
such a model to potentially exhibit tristability. 
Although our model explored the simplest case 
in which the system gives rise to bistability, the 
basin of attraction boundary of other models with 
tristability can still be studied by the relative BoAp 
within a predefined hypercube.

DNAm’s role in gene silencing at transcrip-
tional start sites has been well established where 
genomic maps have shown that regulatory genes 
are indeed active when they are unmethylated 
[76]. Furthermore, its repressing roles have 
been documented in many specific cases such 
as that of the PSCC [46], X-chromosome inacti-
vation [77], and in ageing and cancer [78,79]. 
However, it is worth mentioning that a full and 
universal understanding of its role across differ-
ent genes and its effect on phenotypic variability 
is not completely achieved yet. This is since 
different epigenetic mechanisms at different 
scales are intricately related to DNAm pattern 
and dynamics. Additionally, its role can vary in 
different localized biological contexts [76]. For 
example, although DNAm generally represses TF 
binding at transcriptional start sites, methylation 
in the gene body can have a different role [25]. 
For instance, it has been shown recently that 
DNAm can indirectly facilitate TF binding in 
some special cases [80]. Another issue for debate 
is whether DNAm is a master regulator or a by- 
product of the underlying GRN [80,81]. 
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Therefore, the analysis provided in this paper is 
more predictive for the majority of cases in 
which DNAm plays a repressing role in 
a GRN. A future direction will be to develop 
a more encompassing framework for the various 
roles of DNAm.

As for future directions, even though the two- 
pathway activation is a mechanism-based model, 
it does not capture the full complexity of the 
whole picture of gene activation. The implicit 
assumption for this activation process is that 
genes are only activated by TFs binding to pro-
moters. Hence, we are studying the extension of 
our methods to the analysis of more sophisti-
cated transcriptional control mechanisms, such 
as the formation of super-enhancers [82]. We 
are also interested in combining machine learn-
ing approaches with our CRN model so as to 
discover new mechanisms when the relevant 
data is available. Finally, when generalizing the 
BoAp to a stochastic setting, the effective land-
scape of the dynamical system and the mean 
first passage time between equilibria are the con-
cepts which are most relevant to the analysis of 
the stochastic stability boundary. Furthermore, 
stochastic analysis via effective potentials can 
be used for defining the BoAp and exploring 
gene-TF interactions with epigenetic regulation.

Methods

Basic mathematical concepts and definitions

Mathematically, our model is initially described as 
a Chemical Reaction Network (CRN). 
CRNs provide a natural formalism for represent-
ing biological interactions, and in particular bio-
chemical processes, and CRN descriptions map 
into systems of Ordinary Differential Equations 
(ODEs) using standard procedures.

Chemical reaction network (CRN) framework
It is essential for our study to keep track of pro-
moter occupancy, since DNAm at the level of 
promoters is commonly understood as a slow pro-
cess compared to TF binding/unbinding, and it 
can be even slower than protein kinetics. 
However, our main model assumes that DNAm 
and protein kinetics are in the same time-scale.

Following [83], each gene is associated with 
promoter states and one or more a protein 
states.1 After the model is set up, we later reduce 
it by the substitution of quasi steady-state approx-
imations of fast variables, based on appropriate 
relative time-scales.

We briefly review the general formalism, see, 
e.g., [84,85]. A CRN is specified by a set of 
species S ¼ fZ1; ::;Zng and a set of reactions 
R ¼ fR1; . . . ;Rνg. A reaction Rj can be written 
as: 

Pn
i¼1 αijZi !

Pn
i¼1 βijZj. The associated stoi-

chiometry matrix Γ 2 R n�ν is defined element-
wise as ½Γ�ij ¼ βij � αij. Each reaction Rj can 
occur with a rate function Rj : R n

�0 ! R ν
�0. We 

assume that Rj takes the form of Mass-Action 
kinetics: RjðzÞ ¼

Qn
i¼1 kjz

αij
j , where kj is a kinetic 

constant. Letting zðtÞ 2 R n
�0 be the vector of 

species concentrations at time t, the associated 
ODE can be written as: _z ¼ ΓRðzÞ, 
where R :¼ ½R1; ::;Rν�

T .
The goal of our models is to grasp the essence 

and the most relevant dynamics that give rise to 
the CFN with bistability. Unfortunately, it is diffi-
cult to decide on appropriate ranges of kinetic 
parameters for such coarse grained level models. 
One restriction that we have imposed on para-
meters is to require bistability, meaning (for both 
the single gene and the full model) that there 
should be two stable attractors (and a saddle 
node) for the underlying dynamics. One stable 
attractor corresponds to the somatic (silenced) 
state, and the other one corresponds to the active 
(pluripotent) state.

Full model description

We grouped our CRN for the full model into eight 
modules with the reactions numbered from R1 to 
R18 as shown in Table 1.

1. Oct4 promoter module (R1-R4): This module 
contains four reactions. In our modelling context, 
we assume that the Oct4 gene has two binding 
sites. The first binding site is for Oct4 protein itself 
[86,87], and the second binding site is for Nanog- 
TET heterodimer complex [42] as shown in the 
two-pathway activation scheme in Figure 4. 
Although we have shown NT binding to the first 
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site and Oct4 binding to the second site in Figure 
4, the cases of Oct4 binding to the first site and NT 
binding to the second site are the same for our 
modelling. Both cases are considered as a single- 
site occupancy and are denoted by DO

10 in Table 1. 
As long as two sites are occupied, the correspond-
ing gene will get activated. The parameter αNT is 
the forward rate for all reactions that involve NT 
binding to a promoter, and KNT is the dissociation 
rate for all reversible reactions associated with NT 
binding to a promoter. The parameter αO is the 
forward rate for all reactions that involve Oct4 
binding to a promoter, and KO is the dissociation 
rate for all reversible reactions associated with 
Oct4 binding to a promoter.

2. TET promoter module (R5-R8): This module 
contains 4 reactions. Similar to the Oct4 promoter, 
the TET promoter region is also able to bind with 
the NT dimer and the Oct4 protein [31,36,42]. For 
the reaction rate, we adopt the same rate para-
meter for TET as for Oct4.

3. Nanog promoter module (R9): This module 
describes the reversible reaction of Oct4 protein 
binding to the Nanog promoter [87].

4. Nanog-TET module (R10): This module 
describes the fact that the TET-mediated DNA 
demethylation cycle is guided by the Nanog pro-
tein in the form of an NT complex [53]. The 
parameters a1;Kd are the association and dissocia-
tion rates of the heterodimerization of Nanong 
and TET.

5. Protein decay and production module (R11- 
R13): In this module, we assume Nanog, TET, and 
Oct4 all have the same degradation rate δ. When 
each gene promoter has been fully occupied by 
TFs, the corresponding gene will be activated. 
The protein production rates for each activated 
promoter DN

1 , DT
11, DO

11 are given by the reaction 
rates αN , αT and αO.

6. Protein basal production module (R14-R16): 
In this module, we assume that TET protein has 
a basal production rate m2. The rates m1 (basal 
rate for Nanog) and m3 (basal rate for Oct4) are 0. 
We used the values of such basal protein produc-
tion rates from [36].

7. Oct4 promoter Methylation module (R17): 
This module describes the de novo methylation of 

the Oct4 gene promoter region with a methylation 
rate γ. We assume that the Oct4 promoter can be 
methylated only if its promoter is unbound. This is 
supported by experimental observations that show 
that Oct4 protects its promoter from methylation 
when it is bound to it [88].

8. Nanog-guided TET demethylation module 
(R18): In this module, we assume that the trian-
gle topology of DNA demethylation cycle has 
a slow dynamics on the 5hmC oxidized promo-
ter state [31]. Using a quasi-steady state approx-
imation, we reduced the demethylation cycle 
from the triangle topology to a two-state CRN 
with the effective demethylation rate given by θ. 
(See Figure 5)

In our model, the DNA methylation rate refers 
to the effective rate combining de novo methyla-
tion rate, mainly contributed by DNMT3a/b, and 
maintenance methylation (upon replication) con-
tributed by both DNMT1 and DNMT3a/b [89,90]. 
DNMT3 is a family of DNA methyltransferases 
that can methylate hemimethylated and unmethy-
lated CpGs at the same rate, while DNMT1 has the 
tendency to methylate hemimethylated DNA after 
replication [90]. In our model of the DNA 
demethylation cycle, the 5mC state is considered 
as a fully methylated state, and our model is not 
affected by the gene methylation state being hemi- 
methylated state for a transient short period.

In order to understand the basic effects of 
DNAm on silencing, and to maintain the intel-
ligibility and tractability of the model, we 
assume that the methylation status of 
a promoter is binary: it is either methylated or 
not. As we have illustrated in Figure 1, this is 
a simplified representation of the real picture 
where methylation is a complex process. Recent 
results suggest that the methylation of individual 
cytosines can be important in certain cases [91]. 
Furthermore, the methylation of Oct4 starts 
initially from two sites: the proximal enhancer 
and the distal promoter, spreading later to 
neighbouring regions [45]. In addition, the aver-
age promoter methylation does not usually reach 
to either 0% or 100% [92]. However, these intri-
cate details are not relevant to our reduced 
model. For instance, if 80% methylation of 
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Oct4 promoter is sufficient for silencing, and the 
cell is somatic at phenotypic level, we assume 
that an average DNAm level of 80% to be func-
tionally equivalent to a fully methylated 
promoter.

ODE system for the full CRN model

The corresponding ODE model for the PSCC 
(Table 1) is given below:

dNðtÞ
dt
¼ � aNT þ akd½NT� þ αNDN

1 � δN þm1 

dTðtÞ
dt
¼ � aNT þ akd½NT� þ αTDT

11 � δT þm2 

d½NT�ðtÞ
dt

¼ aNT � akd½NT� � ant½NT�DO
00

þ KntantDO
10 � ant½NT�DO

01

þ KntantDO
11 

� ant½NT�DT
00 þ KntantDT

10 � ant½NT�DT
01

þ KntantDT
11 

dDO
00ðtÞ
dt

¼ � ant½NT�DO
00 þ KntantDO

10 � aOODO
00

þ KOaODO
01 � γDO

00 þ θDm½NT�

dDO
10ðtÞ
dt

¼ ant½NT�DO
00 � KntantDO

10 � aOODO
10

þ KOaODO
11 

dDO
01ðtÞ
dt

¼ � ant½NT�DO
01 þ KntantDO

11 þ aOODO
00

� KOaODO
01 

dDO
11ðtÞ
dt

¼ ant½NT�DO
01 � KntantDO

11 þ aOODO
10

� KOaODO
11 

dOðtÞ
dt
¼ � aOODO

00 þ KOaODO
01 � aOODO

10

þ KOaODO
11 � aOODT

00 þ KOaODT
01 

� aOODT
10 þ KOaODT

11 � aOODN
0 þ KOaODN

1

þ αODO
11 � δOþm3 

dDT
00ðtÞ
dt

¼ � ant½NT�DT
00 þ KntantDT

10 � aOODT
00

þ KOaODT
01 

dDT
10ðtÞ
dt

¼ ant½NT�DT
00 � KntantDT

10 � aOODT
10

þ KOaODT
11 

dDT
01ðtÞ
dt

¼ � ant½NT�DT
01 þ KntantDT

11 þ aOODT
00

� KOaODT
01 

dDT
11ðtÞ
dt

¼ ant½NT�DT
01 � KntantDT

11 þ aOODT
10

� KOaODT
11 

dDN
0 ðtÞ
dt

¼ � aOODN
0 þ KOaODN

1 

dDN
1 ðtÞ
dt

¼ aOODN
0 � KOaODN

1 

dDmðtÞ
dt

¼ γDO
00 � θDm½NT�

Steady state calculation

For the models defined above (the single gene 
model is (2)-(5), and the full model given by the 
CRN in Table 1), we first calculate the number of 
steady states that the model admits given a certain 
set of parameters. We use a Homotopy 
Continuation (HC) method to find all possible 
steady state solutions for our dynamical system 
models. The Global HC method is currently the 
best candidate to find all steady states solution for 
the system [93].

Sampling method

For the single gene model
We calculate the BoAp with various parameter sets 
that give rise to three steady states. Then, we 
calculate the BoAp against γ and θ individually. 
Though the model contains four state variables O, 
Di, Da, Dm, it is essentially a three-dimensional 
model due to the conservation of the total concen-
tration of promoters. For simplicity, we normalize 
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total concentration of promoters to an arbitrary 
constant, say 5.

In order to calculate the BoAp, we need to 
specify a predefined volume of interest. We have 
defined the hyper-cube ½0; o� � ½0; d1� � ½0; d2�

where d1; d2; o are 1.5 times the corresponding 
high steady state. Because the conservation law 
puts a constraint on the total concentration of 
promoters, for each Di, Da and Dm, their concen-
tration should be all less than the total (in the 
simulation we choose the concentration total = 5). 
We sample the state space (with a given grid size) 
and count the number of points in the defined 
grided space that converges to the low steady 
state. We then plot BoAp with respect to γ and θ 
for various numbers of parameter sets and show 
that they display a consistent trend.

For the full model
Given the CRN from Table 1, we first calculate 
steady state solutions that show bistability. Then, 
we use quasi-steady steady approximation to 
reduce the full model from 17 dimensions to 4 
dimensions and simulate the BoAp in 4D space 
with a predefined hypercube similar to the pre-
vious paragraph.

Parameters

The ‘free’ parameters below are constrained to the 
set which can give rise to bistability. The following 
‘free’ parameters can be thought of as normalized 
constants that can be re-scaled to their experimen-
tal values when applied to a biological context.

In the single gene model, the kinetic rate para-
meters are: β, β� , k, δ, γ, θ. In the simulation of 
BoAp vs. γ plot, we choose the parameter (β, β� , k, 
δ, θ) values ranging from 0 to 5 with a step size of 
0.5. For the simulation of BoAp vs θ plot, the same 
range is used for β, β� , k, δ, γ.

The range can be chosen to be ½0; a�, for any 
a> 0. This is since the ODE (2)-(5) follows Mass- 
action kinetics and all the rates can be scaled to 
have values from 0 to a for the purpose of BOAp 
investigation.

In the full model, the kinetic rate parameters 
that define the system are: KO, Knt, Kd, a, ant, aO, 
αT , αO, αN , δ, γ, θ, m1, m2 and m3 as shown in 

Table 1. Although the values for the three dis-
sociation parameters KO, Knt, Kd were given in 
[36], in our full model simulation results, we are 
varying KO, Knt, Kd from 0 to 0.5 with 0.1 step 
size, and δ from 1 to 5 with 0.5 step size, and the 
parameter θ from 1 to 20 with a step size of 2. 
We set protein production rates αT , αO and αN 

for Nanog, TET and Oct4 to be 1, the parameter 
a ¼ 1, and finally the parameters ant and aO are 
set to be 100. For those parameters that are set to 
be constants, we did extensive simulations that 
have shown that the BoAp is insensitive to large 
changes in their values. Hence, our presented 
simulations only contain parameter sets that 
have noticeable influence on the BoAp.

Methylation association rate (R)
In the single gene model, we choose the methyla-
tion association rate (R) to be from 0.2 to 1.3 so 
that it covers both the “R< 1“ regime and the 
“R> 1“ regime of the dynamics with a particular 
parameter set. In the full model, we choose the 
methylation association rate (R) to span across 
several orders of magnitude, as possible, ranging 
from 0.01 to 30. The values of R for each model 
depend on the parameter set we choose, but the 
qualitative trend for all the parameter sets we 
tested is the same and shows a biphasic 
trend. For the full model in Figure 8 we have 
chosen the following parameters: KO ¼ 0:3, 
Knt ¼ 0:2, Kd ¼ 0:1, a ¼ 1, ant ¼ 100, aO ¼ 100, 
αT ¼ 1, αO ¼ 1, αN ¼ 1, δ ¼ 1, 
R 2 f0:01; 0:1; 1; 10; 20; 30g, and with γ 
spanning the range ½10� 2; 102�. For those R values 
outside the range, the system does not exhibit 
bistability for this particular parameter set.

Note

1. We assume that transcription is fast enough that no 
explicit consideration of mRNA abundances is 
required, but it would be straightforward to add 
mRNA intermediates to the model.
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1 Additional BoAp simulations

1.1 Extensive numerical simulation results for the full model

In the main paper, we show few simulations for the behavior of the BoAp when γ or θ are varied
(see Figures 6 and 7). Supplementary Figure 1 shows more extensive simulations corresponding to all
the samples generated as described in the Methods section in the main paper. We observe the same
behavior, namely the BoAp increases with respect to the methylation rate γ, and decreases with respect
to the demethylation rate θ.

1.2 Numerical simulation results for the single-gene model

As a complement to the theoretical discussion, we carried out numerical experimentation to confirm
the preceeding nullcline analysis. Figure 2 shows, for the three dimensional system defined by (6) -
(8), the result of simulations over 4,000 different parameter sets. The parameter set for the single gene
model includes β, β−, k,γ, θ and δ. In Figure 2, each single curve corresponds to a fixed parameter set.
We observe that, as expected, the BoAp is a monotonically increasing function of γ. Intuitively, γ is
considered to be the effective methylation rate of the Oct4 gene promoter. The methylation rate of the
promoter is proportional to the loss of activity of the gene, and hence is proportional to the likelihood
of cells staying at their silenced state (defined as the Oct4 protein staying at low concentration level)
We view the variable X as representing Oct4 in the CRN of the single gene model. We interpret a
low concentration of the Oct4 protein as meaning that the system stays at silenced steady state (somatic
cell state). On the other hand, if Oct4 protein achieves high concentration, the system is considered as
being in the active steady state (the pluripotent state). Conversely, if we increase the reaction rate θ, the
effective demethylation on the promoter dominates, and therefore a cell would be more likely to stay in
a pluripotent state.
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(a) (b)

Supplementary Figure 1: The relative stability (measured by BoAp) of the silenced steady state versus
the methylation and demethylation rates. We show simulations for a large set of different rates for the
full model as described in the Methods section in the main text. Each curve in the figure correspond
to a particular set of parameters. (a) The BoAp increases with respect to the DNAm rate (γ). Each
curve ends when bistability is lost and BoAp jumps to 100%. This behavior is illustrated in SI-§2.1.
The simulations also show that, at small γ region, the BoAp exhibits a sudden slowing down at around
γ = 10−1.5. (b) The BoAp decreases with respect to the demythelation rate θ.

(a) Linear Scale (b) Log Scale

Supplementary Figure 2: The basin of attraction percentage (with respect to silence state) vs DNA
methylation rate plot. In this figure we show plots of BoAp vs γ for a large set of different parameters
for the single gene model. Each curve in the figure represents a particular set of parameters in the
simulation. The color associated with each curve is automatically assigned by the plotting package. We
present the BoAp vs γ in both (a) Linear Scale, and (b) Log Scale. It can be seen that the BoAp is
monotonically increasing with respect to the methylation rate. For a particular set of parameter, as one
increases methylation rate γ, the model will loose bistability after a certain threshold value of γ, which
is why both sub-figures show vertical ”spike”-like structure.
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(a) Grid 1 (b) Grid 2

Supplementary Figure 3: BoAp comparison between different grid sizes. The left plot is simulated
with grid size = 1. The right plot has a finer grid size = 0.01. Both plots are simulated with the same
parameter set: β = 5, β− = 5, k =5, δ = 4, θ = 5. We vary γ from 0 to 20.

We display the simulations both in linear scale, shown in Figure 2(a), and in log scale, shown in Figure
2(b), in order to cover different ranges. The apparent clustering of curves in these plots is due to
sampling, as closely related parameters give rise to a similar landscape when changing γ. Observe that
subsets of curves in the same group all seem to end at roughly the same value of γ. The reason for this
sudden cut-off is that the the system is undergoing a bifurcation and losing bistability. Furthermore, for
each curve in the plot, with γ sampled according to a given finite grid, hence the BoAp might achieve a
higher value with a finer grid. For example, in Figure 3, the left plot with a coarser grid would indicate
that the BoAp reaches only 60%. However, on the right plot, done with a finer grid, the BoAp reaches
72%. We picked a grid size that balances the computational cost involved in the simulation of a large
ensemble of parameter sets versus the accuracy of estimation of the BoAp.

In terms of how the DNA demethylation rate θ affects the BoAp, we show a similar simulation in Figure
4 over different parameter sets that for : β, β−, k, γ, θ, δ. We describe the parameter sampling method
in the Methods section.

1.3 Effect of slow/fast methylation kinetics

We have discussed in the previous section how the BoAp changes as we independently change either
the methylation rate γ or the demethylation rate θ. Here, we would like understand how the BoAp is
affected by the relative changes between γ and θ. In Figure 5, we explore how the BoAp changes with
methylation rate γ as one fixes the methylation association ratio defined as

R =
γ

θ
.

The methylation association ratio (R) is the ratio of the methylation to the demethylation rates. The
larger the value R, the faster the effective methylation process is. Therefore, a value R < 1, indicates
that the effective DNA demethylation reaction is faster than the methylation reaction. If instead R > 1,
the effective DNA methylation is a faster process. We explore how BoAp changes as one changes γ
at different ratios R. We study R across 12 values and simulate as γ and θ span across seven orders of
magnitudes.

The value of γ sets the time scale of the dynamics. When γ is small, both methylation and demethylation
rate are small. When the value of γ is greater than 10−2, both methylation and demethylation rate are
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(a) Linear Scale (b) Log Scale

Supplementary Figure 4: The basin of attraction percentage (with respect to silence state) vs DNA
demethylation rate plot. In this figure we show plots of BoAp vs θ for a large set of different rates
for the single gene model. Each curve in the figure represents a particular set of parameters in the
simulation. The color associated with each curve is automatically assigned by the plotting package.
We present the BoAp vs θ in both (a) Linear Scale, and (b) Log Scale. It can be seen that the BoAp
is monotonically decreasing with respect to the demethylation rate.The vertical ”spike”-like structure
comes from loosing bistability for the model.

Supplementary Figure 5: The effect of slow/fast methylation kinetics plot. In this plot we show the
effect of the timescale of dynamics on the BoAp. We show BoAp vs. γ with a range of fixed R values
for the single gene model.The methylation association ratio R set the scale of the dynamics timescale.
When R value is large, both γ and θ values are large, therefore, methylation and demethylation dynamics
operates at faster timescale. Similar to the full model case, the R we set for the following kinetic rate
parameter set was to make sure we explore as wider range as possible as long as they underlying system
dynamics still exhibit bistability. For each R ratio (range from 0.2 to 1.3) that allows the bistability of the
single gene model, the BOAp vs. γ plot has a biphasic nature (BoAp increases first and then decreases)
based on the time scale of the (de)methylation dynamics
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considered to be large. The simulation in Figure 5 shows a biphasic trend for the underlying dynamics,
where γ = 10−2 set the rough transition barrier. If the (de)methylation rate is sufficiently small, the
BoAp is an increasing function with respect to γ, and θ as well since R is fixed. Across different values
of R, the BoAp shows saturation for large values of γ. This saturation trend observed in simulations
confirms the theoretical analysis shown in Figure 9 in the main text. Indeed, as (de)methylation dynam-
ics becomes very fast, the ε in Figure 9 in the main text, which controls the time scale of the dynamics,
approaches ∞, and the separatrix becomes a vertical line. Therefore, within the predefined cube, the
fraction of the volume that corresponds to the somatic state volume will saturate, hence giving rise to
the saturation trend in Figure 5.

2 Full model visualization and additional analysis

2.1 Effect of increasing the methylation rate γ

In the main paper, we have presented how the BoAp changes as a function of the DNAm rate γ. We
provide here an alternative visualization. Figure 6 shows the fate of a specific initial state depending on
the methylation rate γ. The plots start from a low methylation rate γ = 1, where the system settles on
the active steady state marked by high concentrations of Oct4, TET, and Nanong. As γ increases, the
trajectories of the Nanog, TET and Oct4 transition from the active steady state to the silenced steady
marked by very low concentrations of the TFs. The lower panel in Figure 6 shows that the methylated
Oct4 promoter transitions from a low-methylation to a high-methylation state.

As mentioned in the main text, when the DNA methylation rate increases and passes a threshold value,
γ = 50 in the example above, the system will make a transition from bistability to monostability. Figure
7 shows what happens to the number of steady states during the transition. With γ = 49, right before the
transition, the system retains its bistable character, and when the DNA methylation rate γ increases to
50, the system suddenly loses its bistability and we are left with a single steady state which corresponds
to the silenced state as shown in the top right panel of in Figure 7. The lower panel in Figure 7 shows
how the BoAp changes as a function of γ with a discontinuity at γ = 50. When the bifurcation from bi-
to mono-stability happens, the BoAp jumps to 100%.

2.2 3D trajectories visualization

We have shown the BoAp vs γ and θ plots in the main paper. We show here 3D trajectories in the state
space in the (Nanog,TET,Oct4)-coordinates that illustrates how different initial conditions approach
one of the attractors in the 3D state space. Figure 8 shows a system exhibiting bistability. Different
trajectories in the state space will converge to either of these two stable attractor based on the initial
values.

In addition to the 3D trajectory plots as shown in Figure 8, we show the norm of the velocity vector
for the underlying dynamical system in Figure 9. The color represents the norm of the velocity. The
velocity plot also shows two stable attractors colored with green. It can be seen also that the norm of
the velocity approaches zero close to the attractors.
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Supplementary Figure 6: Trajectories of Nanog, TET, Oct4 and Dm for different methylation rates γ.
All the trajectories have an initial value 0.5 for Nanong, TET and Oct4, whileDm is initialized at 1. The
strength of γ is color-coded from blue to red. The parameter set for this plot is given by: KO = 0.3,
Knt = 0.2, Kd = 0.1, a = 1, ant = 500, aO = 500, αT = 1, αO = 1, αN = 1, δ = 1, θ = 1, m1 = 0,
m2 = 0.05, and m3 = 0.

Supplementary Figure 7: Transition from bistability to monostability. The upper left plot shows the
steady state values of Nanog, TET, Oct4 displaying bistability at γ = 49. The upper right plot shows the
monostability when γ was increased to 50. The lower panel shows how the BoAp changes as function
of γ. Note that when γ > 50, the BoAp becomes 100% which means that there is only one steady state.
The parameter set for this plot is given by: KO = 0.3, Knt = 0.2, Kd = 0.1, a = 1, ant = 500,
aO = 500, αT = 1, αO = 1, αN = 1, δ = 1, θ = 1, m1 = 0, m2 = 0.05, and m3 = 0.
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Supplementary Figure 8: 3D trajectories of Nanog, TET and Oct4. There are two steady states in the
state space. The blue cross represents the silenced steady state (somatic state) in which all the three
genes are lowly expressed. The green dot represents the active state (pluripotent state) where all the
three genes are highly expressed. The color range specifies the norm of the 3D velocity vector. A
brighter color denotes a higher velocity. The parameters are given in the caption of Figure 7.

Supplementary Figure 9: The 3D velocity plot. The plot shows the norm of the velocity of the dynamical
system. The left panel and right panel are the same visualization from two different angles showing the
two stable steady states for the underlying dynamical system. The two green regions correspond to the
two steady states. The parameters are given in the caption of Figure 7.
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