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A Remark on the Converging-Input
Converging-State Property

Eduardo D. Sontag

Abstract—Suppose that an equilibrium is asymptotically stable when ex-
ternal inputs vanish. Then, every bounded trajectory which corresponds to
a control which approaches zero and which lies in the domain of attrac-
tion of the unforced system, must also converge to the equilibrium. This
“well-known” but hard-to-cite fact is proved and slightly generalized here.

Index Terms—Asymptotic stability, domain of attraction, input of state
stability.

I. INTRODUCTION

This note deals with finite-dimensional controlled systems of the
general form

_x(t) = f(x(t); u(t)) (1)

and stability properties of an equilibrium. Suppose thatf(0; 0) = 0
and that the zero state is a globally asymptotically stable equilibrium
for the “unforced” system_x = f(x; 0). It is well-known that even
small inputsu(�) may destabilize the system; in fact there are examples
whereu(t)! 0 ast!1 butx(t) does not converge to zero (or even
diverges to infinity).

On the other hand, ifu(t) ! 0 then boundednessof the trajec-
tory x(�) is enough to guaranteex(t) ! 0 as t ! 1. This is a
“well-known” fact, and one proof was given in [1]. Unfortunately, [1] is
not easily accessible. In addition, certain (not at all essential) assump-
tions were made, for simplicity of exposition, which render the result
not immediately applicable in some contexts, such as those involving
positivity constraints on inputs and states (as in biological and chem-
ical applications). In this note, we basically repeat the proof from that
reference, but adapt it to a more general situation, relaxing the global
asymptotic stability assumption and allowing inputs to belong to more
general spaces than those in [1].

A. Systems, Notations, Statement of Result

We consider arbitrary finite-dimensional systems of the form (1),
where statesx(t) take values on an open subsetof a Euclidean space
n, for some integern, and inputsu(t) take values on a metric space
. The function

f : � ! n

is continuous, and it satisfies the following local Lipschitz condition:
for each� 2 and each compact subset0 of , there exist a neigh-
borhoodV of � and a constantL such thatjf(x; u) � f(z; u)j �
Ljx � zj (Euclidean norms) for allx; z 2 V and allu 2 0. (This
local Lipschitz condition is satisfied, in particular, iff(x; u) is contin-
uously differentiable onx, for each fixedu, and its Jacobian@f=@x
is continuous on � . Below, we will refer [2, Th. 1], which had
been stated, purely for reasons of simplicity of exposition, under the
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assumption that this stronger differentiability condition holds. How-
ever, the proof of the result to be quoted relies only upon a theorem
given in an appendix to [2] which involves merely the local Lipschitz
condition).

We will assume that two special elements�x 2 and�u 2 have
been singled-out, so that�x is a steady-state when the input is constantly
equal to�u; that is,f(�x; �u) = 0.

An input defined onI, whereI is a subinterval of[0;1), is a
Lebesgue-measurable functionu : I ! which is locally essen-
tially bounded, in the sense that for each compact subsetI0 of I there
is some compact subset0 � such thatu(t) 2 0 for almost all
t 2 I0. Given any inputu defined on an intervalI containing 0, and
any initial state�, there is a unique maximal solutionx(t) = '(t; �; u)
of (1) with initial valuex(0) = �; this solution is defined on some
maximal interval[0; ��;u) of I.

Whenu(t) � �u, we write'(t; �; u) simply as'(t; �); this is the
solutionx(t) of the autonomous system_x = f(x; �u) with x(0) = �.
Note that'(t; �x) = �x for all t � 0.

From now on, we will denote by single bars “j � j” the distances to
the “origins” �x in or �u in : j�j = dist(�; �x), j�j = dist(�; �u) and
we will use double bars “k � k” for the supremum norm on the spaces
of controls and of trajectories. That is, ifx : I ! is an absolutely
continuous function andu : I ! is an input, whereI � [0;1) is
an interval, then

kxk = sup
t2I

jx(t)j and kuk = sup
t2I

ju(t)j

where the second “sup” is interpreted as an essential supremum.
One last item of terminology is as follows. Given a compact subset

K � , we will say that a functionx : I ! is K- recurrentif for
eachT > 0 there is somet > T such thatx(t) 2 K. (A weaker notion
would result if asking merely that
+[x] K 6= ;, where
+[x] is
the omega-limit set ofx. However, this property amounts simply to
K0-recurrence for a slightly larger compact setK � K 0).

This is the result that we wish to prove.
Theorem 1: Suppose that�x is an asymptotically stable equilibrium

of the autonomous system_x = f(x; �u), with domain of attractionO,
and thatK is a compact subset ofO. Letx(�) be aK-recurrent solution
of (1) defined on[0;1), and suppose thatu(t)! �u ast!1. Then,
x(t) ! �x ast ! 1.

Furthermore, the following stability property holds: for each" > 0,
there is some� > 0 such that, wheneverj�j < � andkuk < �, the
solutionx(t) = '(t; �; u) exists for allt � 0, andjx(t)j < " for all
t � 0.

Recall that the domain of attractionO of an asymptotically stable
equilibrium �x of the autonomous system_x = f(x; �u) is the set con-
sisting of those initial conditions� for which'(t; �) ! �x ast ! 1;
the setO is an open subset of.

We remark that a system which satisfies the aforementioned proper-
ties: stability andx(t) ! 0 wheneveru(t) ! 0, is not necessarly an
ISS [3] system. A counterexample is_x = (�1+ u)x with = and

= [0; 1].

II. PROOFS

We collect first a number of statements, all of which are elemen-
tary consequences of continuity properties of solutions of differential
equations. We assume given (1) so that�x is an asymptotically stable
equilibrium of the autonomous system_x = f(x; �u), with domain of
attractionO.

0018-9286/03$17.00 © 2003 IEEE



314 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 2, FEBRUARY 2003

Asymptotic stability implies in particular stability, i.e., for each" >
0 there is some� = �1(") > 0 such that

j�j � � ) j'(t; �)j < " 8 t � 0: (2)

Lemma II.1: For each compact subsetK � O, eachT � 0, and
each" > 0, there is a� = �2(K;T; ") > 0 with the following
property: for each� 2 K and every controlu defined on[0;1) such
thatkuk < �, the solution'(t; �; u) is defined fort 2 [0; T ], and

dist('(t; �; u); '(t; �)) < " 8 t 2 [0; T ]: (3)

Proof: We recall [2, Th. 1]. For each fixedT > 0, letDT be the
set consisting of those pairs(�; u) with u : [0; T ] ! , for which
'(t; �; u) is defined for allt 2 [0; T ]. Then,DT is an open subset of
� T , where T = L1(0; T ), the space of all Lebesgue measur-

able essentially boundedu : [0; T ] ! endowed with the (essential)
supremum norm. Moreover, the mapping� : (�; u) 7! x = '(�; �; u)
is continuous, when trajectories are also endowed with the supremum
(uniform convergence) norm. Now suppose thatK,T , " are given. Pick
any� 2 K. By continuity of� at the pair(�; �u), there is some�� > 0
such thatdist('(t; �; u); '(t; �0; u0)) < " for all t 2 [0; T ] holds for
all states�, �0 and inputsu, u0 in balls of radius�� around� and the
inputu(t) � �u respectively. In particular,dist('(t; �; u); '(t; �)) < "
for all t 2 [0; T ]. By compactness ofK, one may let� be obtained as
the smallest�� from a finite subcover.

[2, Lemma 5.9.12] states that, for the autonomous system
_x = f(x; �u), for each� 2 O and each neighborhoodV of �x there is
some neighborhoodW of � and someT � 0 such that

� 2 W & t � T ) '(t; �) 2 V:

A compactness argument then gives the following standard uniform
stability fact.

Lemma II.2: For each compact subsetK � O, and each neighbor-
hoodV of �x, there is someT = T (K;V) > 0 such that'(T; �) 2 V
for all � 2 K.

Lemma II.3: For each compact subsetK � O and each" > 0,
there existT = T (K; ") and� = �3(K; ") such that, for every� 2 K
and every inputu with kuk < �, the following properties hold.

a) The solution'(t; �; u) is defined for allt 2 [0; T ].
b) DenotingK = f'(t; �) j t 2 [0; T ]; � 2 Kg, it holds that

dist('(t; �; u);K) < ", for all t 2 [0; T ].
c) jx(T; �; u)j < ":

Proof: Given K, ", introduceV = the open ball of radius
"=2 around �x, T = T (K; ") chosen as in Lemma II.2, and
� = �2(K;T; "=2) where �2 is the function in Lemma II.1.
Now, pick any� 2 K and anykuk < �. Inequality (3) says that
dist('(t; �; u); '(t; �)) < "=2 for all t 2 [0; T ], which gives in
particular property (b). On the other hand, this inequality together
with j'(T; �)j < "=2 (which holds because of the choice ofT ) gives
property c).

Next, we prove the stability part of Theorem 1.
Let " > 0 be given. We introduce�1 = minf�1("=2); "g, K =

the closed ball around�x of radius�1=2, andT = T (K; �1=2) and
� = �3(K; �1=2) as in Lemma II.3. We prove the stability property
with this �.

Letx 2 K andkuk < �. By Lemma II.3, property c),jx(T; �; u)j <
�1=2, so

�0 = x(T; �; u) 2 K:

On the other hand, the choice�1 � �1("=2) insuresj'(t; �)j < "=2
for all t, and in particular fort 2 [0; T ], soK is included in the"=2-ball
around�x, so the triangle inequality applied to

dist('(t; �; u);K) <
�1
2

<
"

2
8 t 2 [0; T ]

(property b) in Lemma II.3) lets us conclude that

j'(t; �; u)j < " 8 t 2 [0; T ]:

Starting now from the state�0, and using the restriction of the input
u to [T;1), which also has uniform norm< �, we conclude that
j'(t; �; u)j < " for all t 2 [T; 2T ], and an induction argument proves
that this holds for allt � 0 as required for the stability proof.

To prove the first part of the theorem, we first show the following
result.

Proposition II.4: For each compactK � O and each" > 0 there
existT0 � 0 and� > 0 with the following properties: for every control
u defined on[0;1) such thatkuk < � and every� 2 K, the solution
x(t) = '(t; �; u) is defined for allt � 0 and satisfies thatjx(t)j � "
for all t � T0.

Proof: Pick any compactK and" > 0. Let �1 > 0 be such
that the stability statement holds, i.e.,j'(t; �; u)j < " for all t � 0
provided thatj�j < �1 andkuk < �1. Pick T0 = T (K; �1) and
�2 = �3(K; �1) as in Lemma II.3, and let� = minf�1; �2g. Now
take anyu with kuk < � and anyx 2 K. By Lemma II.3, and using
thatkuk < �2, the solution is defined on[0; T0] andj�0j < �1, where
�0 = '(T0; �; u). Since the restrictionu0 of u to [T0;1) has norm
< �1, the stability statement applied to the initial state�0 and inputu0

insures thatj'(t; �; u)j < " for all t � T0.
Finally, we prove the first part of the Theorem. LetK be so that

x(t) = '(t; �; u) is K-recurrent and suppose thatu(t) ! �u ast !
1. We must show that for each" > 0 there is someT > 0 such
that jx(t)j < " for all t � T . Pick T0 and� as in Proposition II.4.
Sinceu(t) ! �u, we may pick someT1 such thatkuk < � for all
t � T1. By theK-recurrence property, we may pickT2 � T1 such
that�0 = '(T2; �; u)) 2 K. Starting from the initial state�0 and using
the inputu restricted to[T2;1), we are in the situation of Proposition
II.4, and this insures thatj'(t; �; u)j < " for all t � T := T2 + T0.
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