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A Remark on the Converging-Input assumption that this stronger differentiability condition holds. How-
Converging-State Property ever, the proof of the result to be quoted relies only upon a theorem
given in an appendix to [2] which involves merely the local Lipschitz
Eduardo D. Sontag condition).

We will assume that two special elemefit€ X anda € U have
S ) been singled-out, so thatis a steady-state when the input is constantly
Abstract—Suppose that an equilibrium is asymptotically stable when ex-

ternal inputs vanish. Then, every bounded trajectory which corresponds to equal .tOU; that .Is’f(w’ u) = 0. . . .
a control which approaches zero and which lies in the domain of attrac- AN input defined onf, WhgreI IS a sublnt_ervgl 0f0,00), is a
tion of the unforced system, must also converge to the equilibrium. This Lebesgue-measurable functien: Z — U which is locally essen-

“well-known” but hard-to-cite fact is proved and slightly generalized here.  tially bounded, in the sense that for each compact sufiset 7 there
Index Terms—Asymptotic stability, domain of attraction, input of state 1S SOMe compact subset C U such thatu() € U, for almost all
stability. t € Zp. Given any inputw defined on an interval containing 0, and

any initial state, there is a uniqgue maximal solutiafit) = ¢ (¢, &, v)

of (1) with initial valuez(0) = ¢; this solution is defined on some
maximal interval0, o¢ ..) of Z.

This note deals with finite-dimensional controlled systems of the Whenu(t) = @, we write o(t, £, «) simply asy(t, §); this is the

|. INTRODUCTION

general form solutionx(t) of the autonomous systein= f (=, 4) with 2(0) = €.
Note thatp(t,z) = z forall t > 0.
() = fx(t).u(t)) (1) From now on, we will denote by single bark:*|” the distances to
the “origins”z in X or @ in U: |¢| = dist(¢, z), |p| = dist(p, @) and
and stability properties of an equilibrium. Suppose thdt, 0) = 0 We will use double bars|f- ||” for the supremum norm on the spaces

and that the zero state is a globally asymptotically stable equilibriuh controls and of trajectories. That is,qif: 7 — X is an absolutely
for the “unforced” system: = f(x,0). It is well-known that even Ccontinuous function and : 7 — X'is an input, wherd C [0, o) is
smallinputs: () may destabilize the system; in fact there are exampl&§ interval, then

whereu(t) — 0 ast — oo butz(¢) does not converge to zero (or even
diverges to infinity).

On the other hand, if.(t+) — 0 thenboundednessf the trajec-
tory z(-) is enough to guarantee(t) — 0 as¢ — oc. This is a
“well-known” fact, and one proof was given in [1]. Unfortunately, [1] iswhere the second “sup” is interpreted as an essential supremum.
not easily accessible. In addition, certain (not at all essential) assumpone |ast item of terminology is as follows. Given a compact subset
tions were made, for simplicity of exposition, which render the resuft ¢ x we will say that a function: : 7 — X is K - recurrentif for
not immediately applicable in some contexts, such as those involviggchr > 0 there is some > 7" such that:(#) € K. (A weaker notion
positivity constraints on inputs and states (as in biological and cheoyld result if asking merely that ™t [«] NE # 0, whereQt[z] is
ical applications). In this note, we basically repeat the proof from the{e omega-limit set of:. However, this property amounts simply to

reference, but adapt it to a more general situation, relaxing the global_recurrence for a slightly larger compact $6tC 7).
asymptotic stability assumption and allowing inputs to belong to more Thjs js the result that we wish to prove. a

lz] = sup |e(t)| and |lu|| = sup[u(?)]
tel tel

general spaces than those in [1]. Theorem 1: Suppose that is an asymptotically stable equilibrium
of the autonomous systein= f(x, @), with domain of attractior?,
A. Systems, Notations, Statement of Result and thati is a compact subset ¢F. Letxz(-) be al{-recurrent solution

We consider arbitrary finite-dimensional systems of the form (1§ (1) defined orf0, o), and suppose that(t) — @ ast — oc. Then,
where states () take values on an open sub3eof a Euclidean space @(t) — T ast — oc. _ o
R", for some integen, and inputs:(t) take values on a metric space Furthermore, the following stability property holds: for eacit 0,

U. The function there is somé > 0 such that, wheneve€¢| < é§ and|ju|| < &, the
solutionz(t) = (¢, &, u) exists for allt > 0, and|«(t)| < = for all
fiXXU—R #20.

Recall that the domain of attractiaf of an asymptotically stable

is continuous, and it satisfies the following local Lipschitz condition?gu”'b”um‘f of the autonomous syste= f(z, ) is the set con-

for each¢ € X and each compact subseg of U, there exist a neigh- sisting of those initial condition for which (t,£) — 7 ast — co;
borhoodV of ¢ and a constanL such that|f(z,u) — f(z,u)| < the setD is an open subset O(._ - .
L|x — 2| (Euclidean norms) for alk, = € V and allu € Uy. (This We remgrk thatasystem which satisfies the_aforementloned proper-
local Lipschitz condition is satisfied, in particular,fifz, «) is contin- :g;: Ztab'"iy andAc(t) _; 0 whenelvgru(t) _{ 0,1s no_tﬂ:l(;é:e_s?}?rly(?n
uously differentiable o, for each fixedu, and its Jacobianf/dx 3 > [ g)si/s em. A counterexampleis= (—1+u ) with X = K an
is continuous orX x U. Below, we will refer [2, Th. 1], which had = [0.1].
been stated, purely for reasons of simplicity of exposition, under the

Il. PROOFS
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Asymptotic stability implies in particular stability, i.e., for each>
0 there is somé = A;(=) > 0 such that

(| <s =

ot &) <= Viz0.

)

Lemma Il.1: For each compact subsit C O, eachT > 0, and
eache > 0, thereis a = Ay(K,T.2) > 0 with the following
property: for eaclf € K and every control defined on[0, o) such
that||u|| < é, the solutiony(¢, &, v) is defined fort € [0, T], and

dist(p(t. & u)p(t.6) <= Vi€ [0,T]. 3)

Proof: We recall [2, Th. 1]. For each fixefl > 0, letDr be the
set consisting of those paif§, «) with v : [0,7] — U, for which
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Letz € K and||u|| < 6. By Lemmall.3, property c)u(T, &, u)| <
51/2, s0

¢ =a(T & u) € K.

On the other hand, the choiée < A, (¢/2) insuresg|p(t,£)| < /2
forallt, and in particular fot € [0, T, soX isincluded inthe /2-ball
aroundz, so the triangle inequality applied to

s
e

dist(p(t. & u). K) < 3

vtel0,T]

[\CIRGY

(property b) in Lemma 11.3) lets us conclude that

lp(t.&u)| <= Vi [0,T].

@(t, &, u) is defined for allt € [0, T]. Then,Dr is an open subset of
X x Ur, whereUr = £ (0,T), the space of all Lebesgue measurStarting now from the stat¢/, and using the restriction of the input
able essentially bounded: [0, T] — U endowed with the (essential) v to [T, c0), which also has uniform norme §, we conclude that

supremum norm. Moreover, the mapping (&, u) — z = ¢(-, &, u)

|o(t,&,u)| < e forallt € [T,2T], and an induction argument proves

is continuous, when trajectories are also endowed with the supremtat this holds for alt > 0 as required for the stability proof.

(uniform convergence) norm. Now suppose thafl’, = are given. Pick
any(¢ € K. By continuity of« at the pair(¢, @), there is somé; > 0
such thatlist (o (¢, &, u), o(t, &', ")) < < forall t € [0, 7] holds for
all statest, ¢ and inputsu, «" in balls of radiuss; around¢ and the
inputu(t) = u respectively. In particuladist(o(t, &, u), o(t,€)) < e
for all t € [0,T]. By compactness ok’, one may let be obtained as
the smallest, from a finite subcover. [ |

To prove the first part of the theorem, we first show the following
result.

Proposition I1.4: For each compadt’ C O and eaclr > 0 there
existTy > 0 ands > 0 with the following properties: for every control
u defined on[0, co) such thaf|u|| < 6§ and everg € K, the solution
x(t) = (¢, &, u) is defined for allt > 0 and satisfies thdt:(¢)| < ¢
forallt > T.

[2, Lemma 5.9.12] states that, for the autonomous system Proof: Pick any compacf ands > 0. Leté, > 0 be such

* = f(z,u), for each¢ € O and each neighborhodd of = there is
some neighborhoolV of £ and somé&” > 0 such that

CEW & t>T = ot,¢) eV

A compactness argument then gives the following standard unifofsures thato (. ¢, u)| < = for all t > Th.

stability fact.

Lemma I1.2: For each compact subskt C O, and each neighbor-

hoodV of 7, there is som& = 7(K,V) > 0 such thato(7,¢) € V
forall¢ € K. O

Lemma 11.3: For each compact subsgt C O and eachke > 0,
there exist' = 7 (I, =) ands = A3( K, ¢) such that, for every € K
and every input: with ||u|| < &, the following properties hold.

a) The solutiony(t, ¢, u) is defined for alkt € [0, 7.

b) Denotingk’ = {¢(t,&) | t € [0,T],§ € K}, it holds that
dist(p(t, & u), K) < =, forallt € [0,T).

C) |x(T, & u)| < e.

Proof: Given K, ¢, introduceV = the open ball of radius
£/2 around z, T
6 = Ao(K,T,¢/2) where A, is the function in Lemma II.1.
Now, pick anyé € K and any|lu|| < §. Inequality (3) says that
dist(p(t, & u), o(t,&)) < e/2 forall ¢+ € [0,T], which gives in

T(K,e) chosen as in Lemma 1.2, and

that the stability statement holds, i.ex(t.&,u)| < = forallt > 0
provided that|é| < & and||u|| < &i. PickT, = T(K,&) and
62 = A3(K,6,) asin Lemma 1.3, and let = min{6;,62}. Now
take anyu with ||u|| < 6 and anyr € K. By Lemma II.3, and using
that||u|| < &2, the solution is defined of), 7o] and|¢'| < &1, where
& = (T, &, ). Since the restriction’ of u to [Ty, oc) has norm
< &1, the stability statement applied to the initial stat@nd inputu’
]
Finally, we prove the first part of the Theorem. LEt be so that
x(t) = ¢(t, & ) is K-recurrent and suppose thatt) — u# ast —
co. We must show that for each > 0 there is somé” > 0 such
that|z(t)] < = forallt > T. PickT, andé as in Proposition 11.4.
Sinceu(t) — u, we may pick somé3 such that|«|| < é for all
t > Ti. By the K-recurrence property, we may pi@k > T such
thate’ = (7>, &, w)) € K. Starting from the initial stat¢’ and using
the inputu restricted td7%, oc), we are in the situation of Proposition
Il.4, and this insures thap (¢, &, u)| < =forallt > T :=T> + Tp. W
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particular property (b). On the other hand, this inequality together

with |o(T. €)| < =/2 (which holds because of the choice®f gives
property c). [ |
Next, we prove the stability part of Theorem 1.
Let= > 0 be given. We introducé, min{A(c/2),2}, K
the closed ball around of radiusé; /2, andT = T(K,6,/2) and

6 = Ay(K, 6 /2) as in Lemma 11.3. We prove the stability property

with this 6.
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