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CONTROL-LYAPUNOV UNIVER­
SAL FORMULAS FOR RE­

STRICTED INPUTS* *

Y. Lin’ and E. D. Sontag^

Abstract. We deal with the question of obtaining explicit feedback control laws 
that stabilize a nonlinear system, under the assumption that a “control Lyapunov 
function” is known. In a previous work, the case of unbounded controls was consid­
ered. Here, we obtain results for bounded and/or positive controls. We also provide 
some simple preliminary remarks regarding a set stability version of the problem 
and a version for systems subject to disturbances.
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1. Introduction

A widespread technique in nonlinear control relies on the use of “energy” 
functions V, which can be made to decrease pointwise by means of instanta­
neous controls; given such a V, the control applied at each instant is one that 
forces a decrease. Functions V with this property are generically called control- 
Lyapunov functions {“elf’s”), in analogy to the Lyapunov functions classical in 
dynamical systems when no control is available. The use of elf’s is standard in 
engineering; see, for instance, the many examples in Sec. 3.6 of the textbook 
(Slotine and Li, 1991). In the early 1980s, Artstein (1983) and one of the authors 
(Sontag, 1983) produced independent and mathematically complementary theo­
retical justifications of the elf approach (the former work assumed more regular­
ity; the latter required less smoothness but applied more generally). More 
recently, the work (Sontag, 1989) provided a systematic methodology for the use 
of elf’s, resulting in “universal formulas” which permit a direct computation of 
the appropriate control, with no need to search for a control that makes the elf 
decrease at each point of the state space. Universal formulas produce the neces­
sary control directly from the derivative of the elf and the data defining the sys­
tem. The purpose of this paper is to generalize universal formulas to cases 
where inputs are constrained in magnitude or in sign.

Motivations for universal formulas As mentioned above, the use of elf’s 
is standard in practice. In this context, universal formulas are a natural math­
ematical object to study, and their use avoids a pointwise minimization. How­
ever, since elf’s are, as a general rule, easier to obtain than the feedback laws 
themselves—after all, in order to prove that a given feedback law stabilizes, one
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typically has to exhibit a suitable Lyapunov function anyway—these techniques 
provide in principle an extremely powerful approach to nonlinear stabilization. 
The availability of universal formulas allows the search for a feedback law to be 
confined to just one scalar function and can be used as the basis of numerical 
approaches. An excellent illustration of this principle can be found in the recent 
paper (Long and Bayoumi, 1993), which employed the universal formula given in 
Sontag (1989) as the main component of a “neural network” controller. Other 
applications of universal formulas can be found in Isidori (1995), which employs 
such formulas in disturbance attenuation problems, the work in Yang (1993) on 
global stabilization with continuously differentiable feedback for nonlinear affine 
systems, the work in Lafferriere (1994) on generalizations to discontinuous stabi­
lization, and the research in Florchinger (1994) on stochastic elf’s. Also, the book 
(Bacciotti, 1991) has a chapter devoted to universal elf formulas and their appli­
cations. As it is often the case in applications that controls are constrained, it 
can be reasonably expected that the functions given in this paper will be of simi­
lar or even more interest.

Definitions. This paper is concerned with systems evolving on 5^?” and af­
fine on controls

X = /(x) + G(x)m, (1)

where all entries of the vector f and the n x tn matrix G are smooth functions 
on and /(O) = 0. We assume that controls are restricted to take values in 
some subset of

u e c .

For the preliminary discussion, we do not need to impose any structure on the 
set

Assume that there is some feedback law,

(2)

which is smooth (differentiability is enough) on and which stabilizes the 
system (1), in the sense that the origin x — 0 is a globally asymptotically stable 
solution of the differential equation,

X = /(x) + G(x)^(x), (3)

then classical Converse Lyapunov Theorems due to Massera, Kurzweil and oth­
ers (see e.g., Massera, 1956; Kurzweil, 1956) establish the existence of a positive 
definite and proper (i.e., /(x) -> <» as 1 x| “) smooth function 7: 5i?>o
such that

inf {fl(x) + B(x)m} < 0, vx#=0.
Ke*-

(Here and throughout the paper, we use the notations,

(4)

a(x)4 V7(x)/(x) (5)
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and

fi(x) = (6i(x),-,6«(x))4 VF(x)G(x) (6)

for Lie derivatives.) To prove this fact, simply find a Lyapunov function for (3) 
and now use u = k{x} in the infimum.

This motivates the following definition (see e.g., Sontag (1989) and Lin and 
Sontag (1991), as well as Dayawansa and Martin (1989), Tsinias (1989) and 
Tsinias and Kalouptsidis (1990) for related work).

Definition 1.1. A proper and positive definite smooth function, 

is said to be a control Lyapunov function {elf} (with respect to controls taking 
values in ^/) if (4) holds. The function V is said to satisfy the small control 
property {sep} if for any e > 0, there is a S > 0 such that, if x #= 0 satisfies 
IX1 < S, then there is some « G with | < £ such that a{x}+ B{x)u < 0.

If the above mentioned feedback k[x} is also continuous at the origin, then 
the Lyapunov function V obtained from the converse theorems has the scp. 
Thus, the existence of stabilizing feedback with regularity implies the existence 
of a elf (possibly with scp). There is a converse as well. For various choices of 
control-value sets y/, a theorem of Artstein (1983) guarantees that if there is a elf 
V, then there is a feedback law,

u = k{x},

which globally stabilizes the system (1), and k is smooth on If, in addi­
tion, V satisfies the scp, then k can be chosen to be what we call almost smooth 
on meaning not only smooth away from the origin, but also continuous on 
all of Thus, Lyapunov functions with scp completely characterize almost- 
smooth stabilizability.

The proof in Artstein (1983) is based on partitions of unity and is, therefore, 
nonconstructive. In Sontag (1989), a “universal” formula (the term will be de­
fined later; it means roughly an explicit formula for obtaining k{x} from a{x} 
and B{x}} was given for the case when the control set is the whole of 
The formula was

u = k{x} = K{a{x},\B{x}f)B{xy, (7)

where
a + + ^2

if b 0,
b} (8)

if d = 0.

This was generalized to the case when is the unit ball of in the paper 
of Lin and Sontag (1991). The formula obtained in that case was as follows. The 
feedback law u = k{x} has the same form as in (7), except that the function x is 
now defined instead to be
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K{a, b)

a + +b^ _
6(1+vm)' if 6 ¥= 0,

(9)

lo, if 6 = 0.

As Artstein’s Theorem is valid on rather general control-value sets % it is 
natural to ask if such “universal” formulas exist for other as well. That is the 
focus of this work. Specifically, we provide universal formulas for the particular 
cases in which = (0,«») and = (0,1), which correspond to rescalings to 
the possible instances of scalar positive controls. Also, we provide some prelimi­
nary results on elf’s for systems with disturbances, as well as on elf’s for the 
problem of stabilization with respect to non-equilibrium compact attractors.

2. Universal Formulas

For any subset C consider the open set,

4 {(fl, a + (B, «><0}, (10)

where we use B to denote the row vector (6i, 62, •••, 6„).
For instance,

when the control is one-dimensional and satisfies -1< u < 1, i.e., w = 1 and 
^ = (-1,1).

Then, the definition of elf is equivalent to the requirement: for the given V 
and any x 0, it must hold that

(a(x), 6i(x), 6m(x)) e .

In other words, is the largest possible subset of where the (w +1)- 
tuples

(a(x),6i(x),-",6«(x)), x^O,

can lie. Note that for any given does not contain any points of the form 
(fl, 0, •••, 0) for all a 0, so in particular the origin is not in

Definition 2.1. Let be a subset of A universal stabilizing formula 
relative to is a real-analytic function,

a = X 3?'” -> C ,

such that
• for any (fl, B) G a + Ba{a, B) < 0;
• for any e>(), there exists 5 > 0, such that

g'^n[fl<<5|S|,lfl|<5,|B|<5]=>|a(fl, B)!<e. (11)
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Fig. 1. Region where function must be small.

(The region where a must be small is shown in Fig. 1.)

One could also define universality in weaker senses, for instance, requiring 
just smoothness of a. However, we impose analyticity in order to disallow solu­
tions involving tricks such as partitions of unity.

Proposition 2.1. Let a be a universal stabilizing formula relative to
C Then, for each system (1) and elf V,

k(x) 4 a{a{x), B{x))

is smooth on and globally stabilizes the system. If, in addition, Vsatis­
fies the sep, then

a{a{x), S(x))

is also continuous in the origin; i.e., k{-) is, in fact, almost smooth on 
Moreover, if the right-hand side of the system is analytic in x and V is analytic, 
then k is analytic on ^"\{0}.

Proof. From the fact that

B(x)) G vx #= 0,

it is immediate that

(2(x) +<S(x), 0!(a(x), B(x))> < 0, vx#0.

Therefore, the same function V is also a Lyapunov function for the closed-loop 
system obtained when using u = k{x) as a feedback. Since a(x) and B{x) are
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smooth functions, we also get the fact that a(fl{x), is smooth for 
X G £^”\{0}. In addition, if the right-hand side of the system and V are real- 
analytic, then both a{x) and S(x) are real-analytic. We again obtain that 
a{a{x), B(x)) is real-analytic for x E. Now, we only need to show that 
if a elf V satisfies the sep, then a(a{x), B(x)} is small in magnitude if x is 
near 0.

Take any £ > 0. From the definition of universal stabilizing formula, there 
exists S > 0 such that

[(fl, B) G a < 5| 61, |a| < 5 and |61 < <5] => |a(fl, 6)| < e.

As F is positive definite, its gradient vanishes at the origin, so fl(0) = 0 and 
6(0) = 0, and by continuity, there exists some > 0 such that

|x| < 51 => |a(x)| < S and 16(x)|<5.

By the sep, we can choose 5i so that also fl(x)<5|6{x)|. Combining with the 
above discussion, we know that

|a(fl{x), 6(x))| < e, whenever |x| < 5i.

This completes the proof of the proposition.

In what follows, we provide various universal formulas for different choices 
of the control value set

3. Positive Controls

We first illustrate, by means of counterexamples, that the use of the previ­
ously known formulas can lead to wrong results if there are positivity con­
straints.

Unbounded case Let us first take the control value set to be = (0, 0°), 
the positive unbounded case. Consider the following system.

X = x^ - u, (12)

Also,

is small when x is near zero. Consequently, F is a elf with respect to controls in 
= (0, co), and it has the sep. But the control law given by (7), (8) is

= x2

if instead, x > 0,

with n = m = 1. Take the elf F(x) = x^l2. Then, for any x < 0,

inf (fl(x) + m5(x)) = inf (x^ - ux} ~ x^ <0,
K>0 K>0

a(x) 
b{x)

inf(fl(x) + ub{x}) = inf(x^ — «x) = — •» < 0.
K>0 u>0
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2 , / 2 . 1)^(x) - ------------2---------- ” X + xa/x + 1 ,
X

which fails to be positive if x < 0. This shows that more work is required in 
finding a universal formula in the unbounded positive case.

Bounded case Now, we give an example for the positive bounded control 
case. Consider the following one-dimensional system,

x^x = ^-5--a, (13)
l + x^

with the control value set y/ = (0,1). Take again the elf V(x) = x^/2. Then, it 
follows that

( 
inf {a(x)+ ub{x)) = inf -------^-ux

1 + x
If X < 0, then

if instead x > 0, then

inf -------7 - ux ------- 7
«e(o,i)\ 1 + x'^ / l + x'^

Also,

2(1 + x2)

fl(x) _ x^
b{x} i + x^

is small when x is near zero. Therefore, V is a elf with respect to controls in 
■5^ = (0,1), and it has the scp. However, the control law given by (7), (9) is

It fails to be positive (in particular, in (0,1)), since

x^ + x^x^ + Cl + x^)^ <0, ifx<0.

The region of interest In this section, we assume that the control in (1) is 
one-dimensional. Again, if V is a elf for (1), we denote
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VFU)/(x)

and

b{x}^ VF(x)^(x).

Let 0 be the open subset of obtained by deleting the closed positive half 
x-axis,

^4^2^{(x,0)|xs0}.

The polar coordinates {r, 0) of elements of S’, if we restrict 0G(O,2;r), are 
real-analytic functions of (x, y)GS. Note that for any control value set

Let 

^(0.1)

and
^2^(0.“)-

From the definition given in (10),

= •{(/■ cose, rsine)|r>O,-y<0<-^} (14)

and

^*"2 = j(*'cos0, rsine)|r > 0,-y < e < [. (15)
L )

The two regions are shown in Fig. 2.

Fig. 2. The two regions S(o.i) and f/(o,a)-
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For any r > 0 and any 0 e , define

X{r, 6} 4 arctan+ 1^0 (16)

and
<(r, 0) 4 ;if(^ 0) “ (17)

For r>Q and 0 G [ -;r, ?r/4], let

Z(^^)-Z(r.T£L. (18)

For r > 0 and 0 G (—k, ^12}, let

£(JI — £a)

£{JI — £tf)

Now, we are ready to state and prove our main results on positive controls.

3.1 Statements of results for positive controls

Theorem 1, Let = {0,1). Then,

(20) 
\ I

is a universal stabilizing formula relative to where the function is defined 
by (18), and r and 6 are the polar coordinates of (a, b) = (rcos0, rsin0) G .

Proof. The real-analyticity of Ai(r, 0 - (3;r/2)) for (a, b) is clear from 
Item 1 of Proposition 3.1 given in the next section and also the fact that r and 0 
are real-analytic functions of (a, b} G . Because of Item 2 of the same Propo­
sition, ki maps any point (a, b} G S’y/j to . Also,

fl + Jfei ■ & = r-^cos0 + 0 - -^^sin0^ < 0

by the Item 3. Therefore, the only thing that remains to be shown is that it 
satisfies (11).

Given any e>0.Fix (a, b) = (rcos0, rsin0) G , and assume that

|fl| =/'|cos0| < 5, |ft| = r|sin0| < 5 and cos0<51sin0| (21)

for some 5 > 0 (which will be chosen later).
If ff/2 < 0 2Jtl2, then from Item 3 of Proposition 3.1,

lim fei ( r, 3 - ^ = (^.
r-40* \ }

uniformly in d; hence, there exists 5i > 0, such that if 0 < |r| < 5i,
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. I a 3;r \ r, 0-— <e.
\ !

If 3;r/2 < 6 < then also from Item 3 of Proposition 3.1,

V I. ( \ JC (~ 3^ \hm r,e-—- = — 0-— ;
r->0^ \ 6 / 4 \ Z /

hence, there exists 62 > 0, such that if 0 < |r| < ^2.

Based on (21), we have

so

Combining the results above, if we let

S 4 mins^i, §2^ ~r»
I J

then if (a, b) E and satisfies (21), then indeed 

u I a \

This completes the proof of Theorem 1.

Remark^.!'. From the proof of Theorem 1, we can see that in order to find a 
universal formula for = (0,1), we only need to find a real-analytic function.

®(oi) -> (0,1),

such that
• COS0 + k{r, 6)sine < 0; i.e.,

k{r, Q) < -cote,

and

fe(r, 0) > -cote,

• ’^e e (;r/2, 3;r/2), the limit

vr>0;

*r > 0

lim ife(r, e) = 0.
r-»0*

In other words, we need a real-analytic function as shown in Fig. 3.

Similarly to the argument above, we need a function as shown in Fig. 4 for
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Fig. 3. Graph for k(r, $) when = (0,1).

Fig. 4. Graph for k{r, 6) when =(0, »).

the case ^2 = (0, ®). Proceeding as in the proof for Theorem 1, we can get the 
following universal formula for this case.

Theorem 2, Let = (0» “)• Then,
Z 3 \

(22)

is a universal stabilizing formula relative to ‘?/2. where the function ^2 is de­
fined by (19), and r and Q are the polar coordinates of {a, b} = (rcosd, rsind) 
es’.z,.

3.2 Proofs of technical results needed for positive controls

Lemma 3.1. For any fixed r > 0, / defined by (16) is a strictly increasing 
function of 0.

Proof. For any fixed r > 0, let ^4 Qlr; then, we have
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de
= —4t = —arctan(^) +1 + ^—. 

r n ;r 1 + ^2 {23}

Since

1 4 1
r d^^ (1 + <^2)2 (24)

we have

r
> lim f arctan(.^)+1 + 9 ^ — 0: (25)

i.e., d^ldQ >0. Hence, for any fixed r > 0, x is a strictly increasing function of 
e.

Lemma 3.2. For any r > 0 and 0 e let

n(»-, B) ti(r, 8) - (26)

where is defined in (17). Then,
• for any fixed r > 0, ^(r, 0) is an increasing function of 0 e and
• for any fixed r > 0 and 0 £ (-ff, -nl2}, e}>^ and 77(r, 0) < 0.

Proof. The increasing and positive character of ^(r, 0) follows from Lemma
3.1. Fix any 0 £ (- ff, - ff/ 2). Then,

4^ = -afr, d){e + ;r)(40 - ir)[ff(30 + ff) + 4^^],
dr

where

a(r, 0) —------5---- 5—z—4-------5------ 5- > 0.{r2 + 02){r2 + ;r2jdg^2 + ^2j

Hence, for any fixed 0 G. {-ji, -k/2), dr]ldr < 0 when

0 < , < 4 Vz£(^±2£L

and dr^ldr > 0 when r > rg. Therefore, we have

rj(r, 0) < max( lim r){r,d), lim Tl{r,d)') {27}
r-^O* r-»+®

for any r E (0, «■) and 0 £ {-ji, -jc/2}.
Note that

fO, if0<O,
lim y(r, 6} =

[2e, if0>O,

uniformly for bounded 0, so it follows by its definition that

lim ^{r, 0) = max{20,0}, 
r-»0*

(28)
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uniformly for bounded 0. Therefore, for any fixed 0 £ {-Jt, -n/2),

lim Ti{r,0) = —r{0+?r)<O. (29)

Since for any 0 £ ^,

lim 0) = 0-(-ff) = 0 +;r,

it follows that 
( It \ 4lim r]{r, 3) = (0 + n) - ( — + JC )•■^(0 + = 0. (30)

r-»+M \ 4 /bn

Combining (27), (29) and (30), we get

(n \
9 ’/

and this establishes the lemma.

Proposition 3.1. The function defined by (18) has the following proper­
ties:
1. Ai(r, 0) is a real-analytic function of r £ (0, “) and 0 £ {-;r,
2. 0 < fei(r, 0) < 1, for any r (0, “) and 0 G {-n,

0, if -;r < 0 < 0,
3. lim )fei(r, 0) = 1 40 (the limit is uniformly on 0);

, ifO<0< — n 4
4. COS0 + jfei(/', 3 - 3;r/2)sin0 < 0, for any r & (0, “) and 0 G {nl2, 

i.e., sin0 - k\{r, 3}cq33< 0, for any r G (0, =») and 3 £ {-n, nl^}.

Proof. Analyticity follows from the fact that arctan is analytic. Item 2 follows 
from Lemma 3.2, and Item 3 follows from (28).

We only need to prove Item 4. We want for any r G (0,««) and 0 G {~n, 
^1^},

sin0 - 0)cos0 < 0. (31)

Because of Item 2, (31) is automatically satisfied if 0£[-;r/2, 0]. Hence, we 
only need to consider (31) for r > 0 and

0G(-;r,--^')

Or, equivalently, we need to prove

tan0 - kx{r, 0) > 0, vrG{0,“), ^^0 G (-;r,--y j (32)

and

Ai(r,0)-tan0>O, vr£(0,^), (33)

Now, we assume that 0 G (- n, - nl2}. From Lemma 3.2, as
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/ n \ 4n(r. 0) = C(r, e) - dr. Y + JT) < 0

and the fact that

0,

we know

(34)

Since

it follows that for any 0 G (-;r, -;r/2),

(35)

(36)

defined in

4
tan0 --^{0 +;r) > lim

4 
bn

Combining (34) and (35), we get (32).
Now, we prove (33). Let

\ 4 / n
be defined for all r > 0 and 0 G (0, ;rZ4), where is the function 
(17). For any 0 G (0, ;r/4) and r > 0, since

cos*^^

^i(r,g)= +J n \ bn

d I 4 \ 1 4
— tan©- —(0 + ;r)| = —r-------—
d0\ 5n ) cos^e 5n

where

it follows that

and hence,

(37)

0G(O, n!^). Since tan0 is a strictly convex function on

^(r, 0)> lim 5(r, 0) = O, 
r-^O*

for any r > 0 and 
eG[0,;r/2),

= —(4e-ff)y(r,0)>O, ar n

z,. A 15;r02 + 40r2 + 4;f2g + + ;r3
y{r,0)^------ ;----- z---- ;----- ;-------;----- ;-----> 0,

{r^ + 0^){r^ + 7^){16r^ + 7^)

f’l \
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4 
tan Q < — 3, 

ft \ )
(38)

Combining the two inequalities in (37) and (38), we get (33).

Proposition 3.2. The function ki defined by (19) satisfies the following
properties:
1. k2{r, 3} is a real analytic function of r £ (0, =») and 3 E (-;r, ;r/2);
2. Jt2(r, 3} > 0, for any r E. (0, ®) and 0 E {-n, nl2)',

3. lim k2{r, 0) = 
r-»0*

0,

3;re
. n - 20 ’

if -n <0^0,

ifO<0<^:

4. k2{r, 0)< tan0, for any r >0 and 3E(-^, -nl2}-, and k2{r,3} > tan0, for
any r > 0 and 3 E (0, ;r/2).

Proof. Analyticity is clear, and Items 2 and 3 follow from Lemma 3.2 and (28), 
respectively; we now only prove Item 4.

Since for any fixed 0 E {-n, nl2},

have

and

0^2  (;r-0)(;r + 0)
dr Jt-23 + 3^){r^ +

3;r(0 + ;r) 
2{7t-2e}

0,
^2(r 0) > lim ^2(^ = 2n3

.K-2J3'

if -n < 3 0,

if O<0<-^.

Now, in order to prove Item 4, it is enough to show

1g^-tan«-0, (39)

and 

veefo,^). (40)
Tl ~ £x) \ C /

As 

sin0<0<tan0, *0e(O,-^L

in order to prove (40), it is enough to show that

37^3 3
n-2j3 CO&3

or, equivalently.
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p(0)4cos0--^^-^<O, veefo.-^-V (41)
■in \ I j

''Ne have 

and it then follows that

p(0)>min{p(O), = vdefo.-^V

This completes the proof of (41).
Now, the proof of (39). It is enough to show that

£0, vvefo.-y). (42)
o?C — 4^ \ I J

Note that for any S (0, ;r/2),

g) 1 , 9» 1 "^9 ...------ ■--------------------------------------------- = —< (p < tan 0,
6ff-4(p 2 , _22_ 2 4

3«: 3ff
which proves (42).

3.3 Examples Let us now return to the examples introduced in the begin­
ning of this section and get the actual stabilizing control laws from our universal 
formulas. The system of our first example, that in Eq. (12), was

x = x^-u, kG(0,oo),

and we still use the obvious elf F(j;) = ^2/2. Since (a(x), d(x)) = (x^,-x) 
= (rcos0, rsin0), the almost smooth stabilizing law u = k{x} is given, for any 
X * 0, by (22) as

3;r r / A 3 \ , J

3;r Fz, 1 . 20 — 3/r . / 20- 3?r z. . / \1 ,= + ^r^aretan^y^J, (43) 

where

r = ^la\x) + b\x) = IxIa/TT? > 0

and

0 =

2;r - arctan if X > 0,

/r - arctan ifx<0.
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The second system discussed, in Eq. (13), involved the system,

X =------- 5*“M, M G (0, 1),

again with the elf V(x) = x^/2. As 

Z \{a{x),b{x))- -------7, ~x| = (rcos0, rsin0),
\ 1 + X f

the almost smooth stabilizing law u = k[x) is given, for any x 0, by (20) as

( 3 \

5?r,l i \ n \—arctan — -2arctan —4 2 \4ry \ry
7 i , 20-3;r ( 20-3n\ „e- — jc +-------- arctan —=------ - 2arctan —2 n \ 2r } \r

(44)

where

and

r = ■ja\x) + b\x) = Zx"* + 2x2 + 1 > 0
1 + X^

4. Universal Formulas for Set Stabilization

In this section, we establish some results regarding the existence of universal 
formulas for stabilization with respect to compact invariant sets which do not 
consist of just an equilibrium point. The basic definitions are presented for arbi­
trary closed invariant sets, but results are only given in the compact case. (An 
Appendix introduces terminology and basic facts concerning uniform global as­
ymptotic stability with respect to sets.)

Consider systems affine on controls evolving on

x = /(x) + G{x)«, (45)

where all entries of the vector f and the n x m matrix G are smooth functions 
on and C is a nonempty closed set. As before, controls take values 
in some subset of u(t) G C Again, we use the notations (5) and (6).
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Definition 4.1. A control Lyapunov function for the system (45) with re­
spect to s7 and controls in is a smooth function V: .-'X'” satisfying:
1. there exist two -functions and a2 such that for any e

ai(I^G)s7(^)sa2(|^L), (46)

2. there exists a continuous, positive definite function aj such that

inf {«(«)+B(«)«}s-O3(|5U. (47)
«€//

The function V is said to satisfy the small control property if for any e > 0, 
there is a 5>0 such that, if $ J/ satisfies |^b<5, then there is some 
M e with I u I < e such that

fl(«) + B(«)««s-|oj(|«U).

First of all, we note that if the set j/ is not compact, then all of the universal 
formulas given earlier might fail, as the following example shows.

Example 4.1. Consider the following system on

X2 = 0

with .?/ 4 {(xi, X2)lxi = 0} and controls taking values in 5^. Let 
= x\l2-, then, it follows that

inf{a(x)+MZ>{x)}= inf ]
Ke,4f [ 1 + X2 J

Applying the formula (7), (8), we get

Consequently, the closed-loop system is

i _ _____ £1___
‘ (1 + xi)^’

X2 =0.

However, this system is not UGAS with respect to .-y: Otherwise, if it were 
UGAS with respect to 3^ it would follow that for xi(0) = l and any 
X2,o ^2(0)- there exists some T > 0, such that

|xi(f)l < whenever (50)

V"(xi, X2)

(48)

(49)

Solving the differential equation with Xi(0) = 1, we get
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Then, it follows that

contradicting (50). This shows that the system (48), (49) is not UGAS with re­
spect to .?/, and hence, the formula defined by (7), (8) is not “universal” in the set 
case.

Now, let .5/ be a compact subset of Introduce the following notations:
• y/] CT?*”;
• ‘^2 the open unit ball in
• ^4 4 {sjs e (0,1)} C .'/I and
• ^4 4 {s|s G (0,00)} C
Let be the function defined by (7), (8), ^2 be the function defined by (7), {9}, 

be the function defined by (20), (18) and (16), and be the function defined 
by (22), (19) and (16).

Theorem 3. Let i be any number in the set {1,2, 3, 4}. If V is a control 
Lyapunov function satisfying the small control property with respect to s/ and 
controls in then the control law u = ^,(x) is smooth on continuous 
on and it stabilizes the system (45) in the following sense: there exists a 
.>^2-function jS, such that every trajectory of the closed-loop system x(f) satis­
fies

|x,(7’)| = exp(- J
V U + ^2.0)

Xi(Z) = exp(- /
V (I+ ^2,0)

Choose X2,o large enough so that

..^1
(i+4o)'

|X(Z)L., ^A(|x(0)L,/)

for all t. Moreover, if the right-hand side of the system is analytic in x and V is 
analytic, then jfe, is analytic on

The proof is virtually the same as in the case = {0}. We omit the details 
here.

5. Systems with Disturbances

In this section, we study generalizations of our results to systems subject to 
disturbances. By this, we mean systems which evolve on and are described 
by equations of the following type:

x(f)= + (51)

The functions d, to be thought of as “disturbances” acting on the system, are 
measurable functions taking values in an arbitrary but fixed compact subset Sj



2000 Y. Lin and E. D. Sontag

of . Controls take values in some subset C We assume that all entries 
of f and G are smooth functions {i.e., smooth on a neighborhood of x c

X Furthermore, /(O, A) = 0 for all A.
Suppose, for system (51), that there exists a smooth function,

such that the closed-loop system,

x = f{x,d} + G{x,d}k{x,d},

is robustly uniformly globally asymptotically stable, in the sense reviewed in the 
Appendix. Then, just as for systems not subject to disturbances, a converse 
Lyapunov theorem (specifically, one may use the one in Lin et al. (1996) and 
reviewed in the Appendix) implies that there exists a smooth, proper and posi­
tive definite function V(x) such that

inf A)+B(x, A)«}<0, va;^0, (52)

where a{x, A) = /)y(x)/(x, A) and B(x, A) = /)y(x)G(x, A). This motivates 
the following definition.

Definition 5.1. A proper and positive definite smooth function V(x) is said 
to be a uniform control Lyapunov function (uclf) with respect to the control 
value set if (52) holds.

The function V is said to satisfy the uniform small control property (uscp) if 
for any £ > 0, there exists a 8 such that if x 0 satisfies |xf < 5, then there is 
some u E with |m| < e such that f2(x, A)+ B{x, A)m < 0 for all A.

Note that Definition 2.1 still applies in the case when a and B are dependent 
of A. Similar to Proposition 2.1, we have the following.

Proposition 5.1. If a is a universal stabilizing formula given by the uclf V 
for system (51) relative to C then the feedback law defined by

^(x, A) = a(a(x, A), B(x, A))

is smooth on {(x, A): x =# 0} and robustly, uniformly, globally stabilizes system 
(51).

If in addition, V satisfies the uscp, then k is continuous everywhere. More­
over, if the right-hand side of the system is analytic in (x, A) and Vis analytic, 
then k is analytic on the set where x 0.

The proof of the result basically follows the same steps as the proof of 
Proposition 2.1. The only difference is that, when showing that V is a Lyapunov 
function for the closed-loop system—see the Appendix for the precise definition 
of this concept for systems with disturbances—one needs to notice that the fact 
that

fl(x, A) + (5(x, A), a{a{x, A), B(x, A))) < 0, *x 0

implies that
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sup{fl(x, A) + (B(x, A), A), B{x, A)))} < 0, vx # 0,
Ae&-

as is compact. Then, by Theorem 5, one concludes the robust uniform stabil­
ity of the system.

Remark Note that if we would weaken the definition of the control 
Lyapunov function to allow a dependency on A, then the above universal formu­
las might fail to robustly stabilize the system. This is because the Lyapunov 
function of the closed-loop system would be dependent on A, which does not 
guarantee robust stability.

Let ‘i/i and ki {i = 1, 2, 3, 4) be defined as before. With the same proof as in 
the case of systems without disturbances, we conclude the following.

Theorem 4. Let i be any number in the set {1,2, 3, 4}. If V is a uniform 
control Lyapunov function satisfying the uniform small control property with 
respect to the control value set then the control law u = ki{x, A) is smooth 
on {(x, A): x 0}, continuous everywhere, and it robustly stabilizes the system 
(51). Furthermore, if the right-hand side of the system is analytic and V is ana­
lytic, then ki is analytic on {{x, A): x 0}.

A special but interesting class of systems is that consisting of systems for 
which there is no disturbance in the control channel, i.e., those described by 
equations of the following type:

x{t) = f(x(t),d{t)) + G{x{t))u{t). (53)

Observe that for such systems, “S” in the formulas does not depend on A. One 
can then replace a{x, A) by fl(x), where

fl(x) = max{a(x, A)}

in all the universal formulas. This is because under the compactness assumption 
of (52) implies that

sup{fl(x) + B(x)m} < 0, vx^O.

Further, using an approximation, one can assume that fl(x) is smooth (just pick 
a slightly larger function so that the inequalities still hold). Hence, we conclude 
the following.

Proposition 5.2. Let i be any number in {1,2, 3, 4}. Let V be a uniform 
control Lyapunov function for system (53), satisfying the uniform small control 
property with the control value set ^i. Then, the control feedback law 
« = ki{x} defined as before, but with a replaced by a, is smooth on ^”\{0}, 
continuous everywhere, and robustly stabilizes the system.
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Appendix: A Converse Lyapunov Theorem

We briefly review some needed definitions and a converse Lyapunov theorem 
for systems with disturbances and stability with respect to sets.

Recall that a function y: is a j^-function if it is continuous,
strictly increasing and y(0) = 0; it is a JC^-function if it is a S^-fwiction and 
also y(5) 00 as s -> »; and it is positive definite if 7(5) > 0 for all 5 > 0 and
y(0) = 0. A function x is a ^^.-function if for each fixed
t s 0 the function p[-, t) is a JT-function and for each fixed 5^0 the function 
)3(5, •) is decreasing to zero as t —> 00.

Consider the following system evolving on

x{t} = fMt),d{t}). (A.l)

The functions d, called “disturbances,” are measurable and take values in a com­
pact subset 12) of for some m-, f\ is assumed to be continu­
ous and locally Lipschitz on x uniformly on d (that is, for each compact subset
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K of there is some constant c so that | /(x, A) - /(z, Z)| c|x - 2| for all 
X, z E K and all A E 0). Let be the set of all measurable functions from 
-j? to For each d E let x(/, d} be the trajectory starting from with 
the disturbance d. (Sometimes we will need to consider disturbances d that are 
functions defined only on some interval I C . In those cases, by abuse of nota­
tion, x{f, d) will still be used, but only times ZE/ will be considered.)

We say that a closed set .c/ is an invariant set for (A.l) if for each E j/, it 
holds that

x(/, .^,f/)E.!y, vz>0, vdE^s:.

For each nonempty subset .5/of and each E we let

Kl.y = d{^, inf d{^, 1]).
tie../

Let be a closed, invariant set for (A.l). We assume the mild technical condi­
tion sup^e^UI^L) =

Definition A.l. System (A.l) is {absolutely} uniformly globally asymptotically 
stable (UGAS) if the following two properties hold:
1. Uniform Stability. There exists a JT®-function 5(-) such that for any £ > 0,

|x(Z, (/)l,y £ for all d E .^9:, whenever 5(e) and Z 0. {A..2}

2. Attraction. For any r, e > 0, there is a T > 0, such that for every 
dE.J^y,

\x{t,^,d}i,<e, (A.3)

whenever < r and / T.

Note that this definition also applies to systems without disturbances as well 
as in the case when the invariant set is a single equilibrium.

It can be shown (see e.g., Lin et al., 1996) that the UGAS property can be 
equivalently characterized by an estimate of the form |x(Z, 6/)|y s J5(|5U, t} 
for some .KJ. -function p.

Definition A.2. A smooth function ^>0 is a Lyapunov function
for system (A.l) with respect to .2/ if there exist two -functions a2 as 
well as a .yT-function 0:3 such that

1. ai(|$L)£7($)sa2(ICL)forall
2. 5F(^)/5x-/(^,A)<-a3(I^L)-

The following is Theorem 2 in Lin et al. (1996).

Theorem 5. The system (A.l) is UGAS with respect to a compact, invariant 
set if and only if it admits a smooth Lyapunov function.
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