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Comments on “Some results on t3ole4acement 
and reachability” 
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Rcwscd 3 June 19X6 

Ahrrrucr. We prcscnl various comments on a qucshon aboul 
systems over rings posed in a recent note by Shnrma. prowng 

that a ring R is pole asstgnnblc II and only II. for every 
rcachablc syswm (F. C). G contains a rank-one summand of 
rhc SIDIC space WC also prowdc a gcncrahzation IO deal with 

dynamic feedback. 

Ke,vwor&. Systems over rings. F&back. Pole placcmcni. 

1. lnboduction 

In the nice paper [9], it is shown (Corollary 1) 
that for projective-free rings, every reachable sys- 
tem of dimension 2 is pole assignable iff every 
such system is such that the image of the ‘G’ 
matrix contains a unimodular. It is then asked 
whether this holds for systems of greater dimen- 
sion. The statement of the open question is some- 
what ambiguous, in that it is unclear whether one 
wants this to hold as stated above or for particular 

systems. In the discussion after the statement of 
Theorem 1, the above interpretation is the one 
used, but when posing the open problem, the 
statement for particular systems (as in Theorem 2) 
is probably intended. In any case, the answer to 
the question in the ‘global’ sense stated above is 
yes, and is included in [6]; a slightly weaker ver- 
sion, stated in terms of F- ‘G, had been proved in 
[S]. (The stronger statement, for particular sys- 
tems, is almost surely false.) We show here that 
the answer is still positive even if the ring is not 
projective free, as appear when considering fami- 
lies of systems parameterized by periodic func- 
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(ions (see [S]). Since we want to deal with arbitrary 
commutative rings, we must replace “contains a 
rank-one summand” for “contains a unimodular”; 
of course for projective-free rings the two are 
equivalent. 

The result to be given has been probably known 
for the last year to many of those working in this 
area, since it is the natural step after the paper [S] 
(where it was actually stated without proof in a 
short remark), and uses ideas from [2,4,6]. Thus 
we do not wish to claim (much) originality in 
presenting it here. However, there are a few non- 
trivial steps involved in the generalization to arbi- 
trary commutative rings. 

The construction is of interest in itself, in that 
it can be used to develop results on ‘dynamic’ 
pole-assignment. This is a ‘stabilized’ version of 
the pole-assignment property, and corresponds to 
the inclusion of memory in the feedback loop 
(details for instance in [8]). We relate this ex- 
tended notion to a generalization of the above 
property about summands. 

A remark on our approach; to avoid having to 
deal with matrix presentation of homomorphisms 
between non-free modules, and to make the proofs 
much simpler, we take the ‘coordinate-free’ ap- 
proach to definitions of systems used in [S]. Thus 
a system (see below) is given by a pair (1, B), 
where / is an endomorphism and B is a submod- 
ule; the usual ‘B’ (or ‘G’) matrix corresponds to 
any presentation of this submodule B. A feedback 
transformation corresponds then to specifying a 
new endomorphism g (the ‘/+ gk’ in the usual 
formalism) such that the image of /-g is in the 
submodule B. Further, in order to avoid having to 
introduce characteristic polynomials for endomor- 
phisms of non-free modules, we shall use a defini- 
tion of pole assignment which is different from the 
usual one. The new property will refer to triangu- 
larization of / under the feedback group, with 
arbitrary eigenvalues along the diagonal. This is a 
priori stronger than pole shifting, but is in fact 
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equivalent, because of the results provided here. 
(It clearly implies pole assignment, and it is shown 
to be equivalent to the ‘GCS’ property, which in 
turn is known to be implied by pole assignment.) 
For an intrcxduction to systems over rings, see the 
exposition in [l]. 

2. PA rings 

For the entire paper, R will be an arbitrary 
commutative ring. A system (over R) is a pair 
(f, B), where /: M + M is an endomorphism of 
a finitely generated projective module M of (con- 
stant) rank n. and B is a finitely generated sub- 
module of M. The module M is the stare-space of 
(f, B). The module M is decomposable if it splits 
into rank-l summands. We shall denote the com- 
position of linear maps /. g just by juxtaposition 
/!I- 

Let (1, B) and (g, C) be two systems, with 
state spaces M and N respectively. Then, (I. B) 
is equioolent fo (g, C), denoted (/, B) - (g, C), if 
there is an isomorphism T: N + M such that 

(Y’jvg)(N)c+(B)=C. 

This is an equivalence relation, and in particu- 
lar for any (1, B) and any g similar to f, (g, C) is 
equivalent to (/, B) for a suitable C. Fix now an 
arbitrary (1, B) for which M is decomposable. If 
u,, . . . , u, are in R, Ut( u,, . . . , u,) denotes the set 
of all those endomorphisms of M which, in terms 
of some decomposition of M into rank one projec- 
lives, have a matrix which is upper triangular with 
(Il.. . . , 0, in the diagonal. (We are identifying 
End(l) with R, for I of rank 1.) The system 
(f, B) is (urbitrurily) rriungulurizuble iff M is 
decomposable and for every u,, . . . , u, in R there 
are a g: M-r M in Ut(ui,..., u,,) and a C such 
that (I, B) - (g, C). It is well known that a tri- 
angularizable (hence, ‘pole-assignable’ in the usual 
sense) system is necessarily reuchuble, i.e. M is the 
smallest f-invariant submodule containing B [3,7]. 
A pole ussignuble (PA) ring R is one for which 
every reachable system is triangularizable. 

As remarked earlier, the definition of PA ring is 
often given in terms of characteristic polynomials, 
but will be equivalent to the one given here. Also, 
it is known that PA rings are such that all finitely 
generated projectives of constant rank are decom- 

posable [5]. Our definition of PA ring is consistent 
with the usage in [S]; for non-projective-free rings, 
however, this is at variance with the older 
terminology, (e.g. in [3]) as discussed in that refer- 
ence. 

The following situation will arise below. As- 
sume that /, g. 8 are endomorphisms of M, B is 
asubmoduleofM,and0(M)cB.Let~:=8+1. 
Since 

(w-g)(M)=(b)(M)CB. 

the following two properties are equivalent: 

t/T-q)(M)eB. (2.1) 

(b-s)(M)cB. (2.2) 

When T happens to be an automorphism such that 
TB - B, property (2.1) says precisely that T estab- 
lishes an equivalence (f, B) - (g, B). 

The main lemma is a generalization and sim- 
plification of the result in [4] (see also (61). to 
cover arbitrary commutative rings and, more im- 
portantly, non-free projective modules. When the 
module M is a direct sum M, 0 M2. we some- 
times identify M, and Ml with submodules of M 
in the canonical way. When necessary to prevent 
confusion, we display explicitely the inclusion 
maps L, and i2 of M, and M, respectively,and the 
corresponding projection maps n,, n2. 

Lemma. Assume thur M = M, @ Ml, wrrh M, E B. 
Let@~End(M)besuchthut8(M)cBund8~= 
0. Then, for uny p E End( M,) and uny o E 
End( M,) such rhur 

(f+/e-d(M,)cBt (2.3) 

[here is u g : M -+ M such Ihut (f. B) - (g. B), 
g 1 M, = p, and the mop induced by g on M/M, is 
0. 

Proof. Let 7 := 1 + 8. Then, ~(1 - 0) = 1 - B2 - 1, 
so in particular T is an automorphism. Since 
e(M) E B, for any b E B it holds that T(b) - 8(b) 
+ b, which is in B, and that b = ~(1 - e)(b) E TB; 
thus rB- B. We let g be the unique mapping 
with g] Ml :-p and g] M2:=n,f7 + a. Since 
(+XM) G M,, g indeed induces o on M/M,. 
To show that (f, B) is equivalent to (g, B) under 
T, we need to establish property (2.2). On M,, this 
holds by assumption (2.3), and for x in M2 we 
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have that 

and both terms are in M2, and hence in B as 
described. 0 

Codlary 1. Assume hot M - M, @ M2. wrth M, 
c B, M, decomposable. Suppose rhat the system 

(/I’ 4) := hh d/b%) + B)) 

(with srare-space M,) is triangulurizable, where n,, 
L,, are 4s obooe. Then ( /, B) is also rrionguluriz- 
able. 

Proof. Without loss. we assume that M, and M, 
(and hence M) have been decomposed into rank 
one summands. Pick any 4,. . . . , 4,. Let m := rank 
of Mr. By assumption, there is an endomorphism 

p’: M, + M, in Ut(4, ,..., u,,,) 

and a CC M, with (/,, B,) - (p’, C). Let T be as 
in the definition of equivalence, and denote p := 
$T-‘. Finally, take any 

u: M,-rM, inUt(o,,+, ,..., cl,,). 

The corollary will follow from the lemma if we 
show that, for some B with 8(M) c B and e2 = 0, 
equation (2.3) holds. since then the resulting g is 
similar to an element of Ut(a,,. . ., cl,,). We know 
from the choice of p that (jr - p)( Ml) is con- 
tained in nt( f( M2) + B). Since n, = 1 - n2, the 
latter is itself contained in /( M2) + B. Consider 
now the external direct sum M2 0 B and the 
surjective mapping 

M,@B+/(M,)+B 

given by (m, b) c, b -f(m). Since j, - p maps 
M, into /( M2) + B, by projectivity of M, there is 
a morphism 

k-(k,, k,): M,+M,@B 

such that nt/- p = k, -/X,. Let BE End(M) be 
defined by 8 := k, on Ml and 8 :- 0 on M2. Since 
k : Ml --* M2, it follows that e2 = 0 and e(M) E B. 
Further, 

(n,f+/e - P)(4) =k#,) c B, 

so equation (2.3) is indeed satisfied. 0 

Remark. Assume that M - M, TV M2, with M2 G B, 
and that (1, B) is reachable. Then, the above 
system (/,, B,) is also reachable. This can be 
proved by generalizing the proof in [4], or directly 
as follows. We claim that, for any positive integer 
k, and any x in M. 

P(x) = [(~l/ll)k.-'(~,/)]c~) 

+ k~2[(~1,~1)‘(~1/)l(Y,+l~ +yo 
i-0 

for suitable y,‘s in M2. This is true for k = 1, 
because 

/lx) =d/W + ~2(/b>). 

and the second term is in M2. In general, 

fk”W =/(fk(4) 

= (n,/)(/‘(x)) + element of M,, 

so the claim follows by induction. Note that if 
x = b is in B then 

h/)(b) = h,/)h(b)) + hl)(v)~ 

for some y in M2, and this is in 

hfdh(B)) + 75(f(M2))- 

Applying 11, to both sides, we conclude that 
n,(jk( B)) is in the smallest /,-invariant submod- 
ule of Ml which contains n,(B) and (nlf)(M2). 
Since the sum of the /k(B) is M, the remark is 
established. 

Following [2]. we shall say that a finitely gener- 
ated submodule B of a (finitely generated, of 
constant rank) projective M is go& if there is 
some / in End(M) such that (f, B) is reachable. 
A GCS ring will be one for which every good 
submodule B of a module M contains a rank 1 
summand of M. 

Theorem 1. The ring R is 4 ring PA ring i/and only 
i/it is 4 GCS ring. 

Proof. The necessity was proved in [5]. Assume 
now that R is GCS and that (f, B) is reachable. 
We prove the result by induction on the rank n of 
M. When n - 1, the result is trivial. Assume now 
that n > 1. Then A4 admits a decomposition M - 
Ml 0 M2, with M2 a rank 1 summand of M 
contained in B. The system (f,, B,) in the above 



corollary has rank n - 1. and is reachable by the 
preceding remark. It follows by induction that (/,. 
B,) is triangularizable. so by the corollary (/. B) 
also is. 0 

A recent paper [lo] establishes that a large class 
of rings of dimension 1 satisfy what is called there 
the ‘BCS property’, which trivially implies the 
GCS property, and are thus PA rings. 

3. Dynamic feedback 

Let (/, B) and (8, C) be two systems. with 
/: M + M and g : N -+ N. Their drrecr sum is by 
definition the system 

(/. B)e(g.C):=(/eg. B@C) 

supported by the projective M 8 N, where 

(/@g)(x* Y) = (/(xl. R(Y)) 

and B Q C is interpreted as a submodule of M @ 
N. This sum is reachable if each component is. 
Direct sum gives an associative operation on 
(equivalence classes of) systems. It corresponds to 
the use of memory elements in the feedback loop. 
with N being the state-space of the dynamic regu- 
lator. (See for instance [8], or the more detailed 
exposition in (11. for a discussion of the use of 
dynamic feedback in the control of families of 
systems and other types of systems over rings.) 
Again fix a system (1, B) as above. There is an 
analogue of Corollary 1 here: 

CoroIlmy 2. Assume that M = M, @ M,, with M, 
c M2 decomposable. With the notations in Corollary 
1, suppose rhar [here is a sysrem (g, C) such [hat 
(/,, B,) 8 (g, C) is ~riangularitable. Then, (/, B) 
@ (g, C) is also rriangularizable. 

Proof. Consider the following system (/: 8). We 
let 

hL=lG,&%?,, 

where Gi -M, @I N and where i2= M, (it is 
better to use the tilde notation for M, in order to 
avoid confusion when this is seen as a submodule 
of G). Consider the isomorphism 

r: M,eM,eN+M,eN@M, 

corresponding to the reordering of coordinates. 

Define then 

f-:=r(/eg)r? b:=r(fmC). 

Thus, (/. B) @I (g, C) is equivalent IO (/: g) by 
definition. and it is enough to prove that the latter 
is triangularizable. We apply Corollary 1 to this 
system. Let 

/; =+,fi,. 8, = +,(j-( ti2) + h). 

A calculation shows that then 

(A. i,) = t/1. B,) @ CR. Cl. 

Thus (6. ii) is triangularizable, and Corollary 1 
applies. Cl 

We shall say that (/, B) is k-triungularrzable, 
where k is a nonnegative integer, iff there is some 
(8, C) such that its state space N has rank k and 
(/. B) 8 (g. C) is triangularizable. Thus O-tri- 
angularizability is the same as the property we had 
earlier. It is not hard to establish that if the system 
is k-triangularizable for any single k. then it must 
be reachable (see [8]). 

Although we do not use this, it is worth re- 
marking that k-linearizability is equivalent to 
(1. f?) @ (0, N) being triangularizable for some N 
of rank k. Indeed, if (g, C) is as above, then 
(/. B) @ (g, N) is also triangularizable, but this 
latter sum is equivalent to (/, 8) 0 (0. N ). 

Let a : Jcr+ JV be given. We shall say that the 
ring R is a PA-a ring if the following property 
holds: if (/, 8) is a reachable system with state 
space of rank n, then it is a( n)-triangularizable. It 

is well known (again see for instance [S]) that 
eoery rrng is a PA-n2 ring. From a computational 
complexity point of view, this may be undesirable 
(memory requirements grow as the square of the 
dimension of the system). It would be better IO 

find rings which are PA-a rings with some a such 
that, say, a = O(n). As a very preliminary step in 
that direction, we present the following approach, 
suggested by the material in the previous section. 

The ring R is a GCS-k rmg iff the following 
property holds: whenever E is a gcxxI submodule 
of a (finitely generated, of constant rank) projec- 
tive M, then there exists a (finitely generated) 
projective N of rank k such that B $ N contains a 
rank k + 1 decomposable summand of M Q N. 
(So, GCS-0 is the same as GCS.) 



Theorem 2. I/ R is a GCS-k ring (hen II is a 
PA-( n - 1) k rrng. 

Proof. As in Theorem 1, we proceed by induction 
on the rank n of the state space M of the given 
reachable system. We need’ to establish that (/, B) 
is (n - l)k-triangularizable. For n = 1. this is again 
trivial. Assume the result proved for all systems of 
rank less than n. Let (/‘, f?‘) be any reachable 
system with state space M’ of rank n. Since B’ is 
good, there is a projective N of rank k and a 
decomposition. 

M:-M’@N=M,@M 2 

such that M, is decomposable of rank k + 1 con- 
tained in B @ N. Consider now the system 

(j. B) := (1’. B’) 8 (0, N). 

This is reachable since both factors are. Let 
(/,, B,) be the system induced on M, as in the 
above corollary. Note that M, has rank (n + k) - 
(k + 1) = n - 1. and that (/,, B,) is reachable by 
the remark in the previous section. By induction, 
(f,, B,) is then (n - 2)k-triangularizable. By 
Corollary 2, (1. B) is then also (n - 2)k - 
triangularizable. It follows that (/‘, B’) is (n - 
2)k + k = (n - l)k-triangularizable, as desired. •I 

4. Find remarks 

One should emphasize, in relation to the search 
in 191 for conditions for given systems to be tri- 
angularizable (or, not equivalently for single sys- 
tems, ‘pole assignable’ in the usual sense) that the 
usual conditions in terms of summands of B are 
only ‘first order’, in the following sense. If (/, B) 
is a pole-assignable system in the sense of [3.9], 
etc., then it is also true - by an argument almost 
as that in [3] - that, /or each integer k < n, there 
is a rank-k summand of M which is contained in 
the k-th reachability module 

B+/(B)+ ..+ +f’-l(B). 

(The usual condition is just the case k = 1 of this.) 

This is because one may assume without loss that 
/ is invertible (standard argument) and then may 
assign the polynomial z’(z - l)n-k. We omit de- 
tails since we wish to avoid introducing determi- 
nants in this short note. 

Finally, we point out that the result in Section 
3 of [9] follows from the well known ‘Hautus 
reachability conditions’ from linear systems the- 
ory. These can be applied for rings because re- 
achability can be checked locally. Some details are 
given in [8]. 
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