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Abstract . We give an example of a neural net withou t hidden layers
and with a sigmoid transfer funct ion, together with a training set of
binary vectors, for which the sum of the squared errors, regarded as
a function of the weights, has a local minimum which is not a global
minimum. The example consists of a set of 125 t raining instances,
with four weights and a th reshold to be learned. We do not know if
substantially smaller binary examples exist.

1. Introduction

Beckp xopegetiou (bp) is one of the most widely used techniques for neural net
learn ing. (Cf. Rumelhart and Hinton [3], Hinton [2] for an introduction an d
references to current work.) The method attempts to obtain interconnection
weights that minimize missclassificat ions in pat te rn re cognit ion problem s.

Though there are many variants of the basic scheme, they are all based
on the minimization of a cost function throug h the use of gradient descent
for a part icular nonlinear least squares fitting problem. Thus bp is sub ject
to the usual problems associated to local minima, an d indeed many experi
menters have found training instances in which bp gets st uck in such minima.
It is ofte n asserted, however, that even when these mi nima do occur their
domain of attraction is small, or that even if not true minima, the ob tained
networks tend nonetheless to classify correctly. In addition, it seems to be
"folk kn owledge" that no spur ious local minima can happen when there are
no hidden neurons . (The argument m ade in this last case is roughly that
the problem should be analogous to the standard quadrat ic least squares
pr oblem , in which neurons have a linear response m ap .)

We approach the problem from a purely mathem aticalpoint of view, ask
ing what are the constraints that the local minima st ructure will ultimately
impose on any bp -like method. In [4] we remarked that even for the case
of no hidden neurons there m ay be "bad" solutions of the gradient descent
algorithm, and this point was also raised by Brady, Raghavan, and Slawny in
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t he las t section of [1] . The main point of the latter reference is to deal with
the second of the above assertions. Through a careful and rigorous analysis
they show that even if a training set is separable, that is, if it is recognizable
by a percept ron , weights obtained through bp may not classify the data cor
rectly. (A m odification of the cost fun cti on , as desc ribed in [5] and discussed
b elow, allows one to avoid this pr oblem, however .) In addition, t he domain
of attracti on of such "bad" weight configurations is very large. So neit he r
of the above three asse rtions is , in fact , correct in general. Of course, it is
ent ire ly po ssible that "real" problems - as opposed to mathematically con
st ructed ones - will not share these pathologies. In that case, it becomes
even more urgent to characterize those features of such real problems that
are not included in the present formulation.

The constructions of spurious local minima that existed until now did
no t use binary but rather real-valued input s. Further, in one case ([1]) the
fact t hat outputs are not allowed to take limiting values ({-1 , I}, or {O, I},
depending on t he conventions,) is critical. Our main result will show that
there are indeed counterexample s with binary inputs and outpu ts, which a
sit uat ion oft en encountered in pract ice .

Precisely, we consider a network with n input neurons and one output
neuron . We let Xl, ... , X n be the connection weights, so that t he output b
computed by the net for an input vector a = (al' .. . , an) is given by

(1.1)

Her e 0 : IR --. IR is a sigmoid function, i.e. a strictly increasing smooth
function such that O(u) goes to - 1 as u --. - 00 and to 1 as u --. +00.

Sup pose we are given a finite sequence c = (c",e2
, . . • , em) of input-output

pairs d = (ai, bi ), where the ai are vectors in IRn
, and the bi are real numbers

b elonging to the closed interv al [-1,1] . We then want to choose the weights
X i so as to minimize the error function

E (Xl> X2,· .. , xn) = f [O(a{xl + a~x2 + ... + a~xn) - bir. (1.2)
i=l

·vVe will give an example showing that the function E can have local
minima that are not global m inima. This will show, in particu lar, that
any algo rithm for minimizing E which is based on some vers ion of gradient
descent may get st uck in a local minimum of E which is not the des ired
solution. This situati on is in marked cont rast wit h the case of Boltzmann
m achines, where the "folk fact " that , if th ere are no hidden neurons, then
there are no spur ious lo cal minima, actually is a true theorem. (Cf. , e.g. [6] .)

In our example, all t he comp onents of the ai , and all the v, will be
binary (i.e. eq ual to 1 or - 1). If, as is sometimes the case, one wishes to
cons ider outputs bi that satisfy lbi l < 1 rather than WI = 1, then it is easy to
construct an example for this situation as well, since the property that E has
local minima that are not global minima is stable under small perturbations
of the funct ion E .
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This latter remark is of interes t because of the recent result obtain ed
by the authors (see [5]) where it is proved that if (1) one modifies the cost
function to be of a threshold-LMS ty pe, i.e. one does not penalize "overclas
sification," and (2) the training dat a is separable in t he sense of perceptrons ,
then it is t rue indeed t hat there are no local minima that are not global.
Moreover, if (1) an d (2) hold , then the gradient descent procedure converges
globally, from any ini ti al condition and in finit ely many steps, to the min
imum. But stability under small pe rturbations allows us to concl ude that
even if a threshold-LMS crite rion is used, there st ill will in general exist badly
behaved local minima (if (2) does not hold) .

In the example we use the sigmoid function tanh(u), which is up to a
sim ple rescaling the logisti c fun ction

1
1 + e- u '

(1.3)

which is routinely used when the binary values are taken to be {O,1} rather
than {1, -1} . We prefer the latter convention , since the mathemati cs be
come s much mo re symmetri c.

Remark 1.1. As describ ed, our set ting does not involve thresholds . How
ever, it is easy to transform our examp le with n inp ut neurons an d no thresh
olds into an example wit h n - 1 input neurons and thresholds . Indeed , it is
well known that the presence of a thresh old is equivalent to having one neu
ron who activation is always equal to 1. Since the sigmoid funct ion is od d ,
we can always change the sign of an inpu t vector, so as to make sure that
the first compo nent is 1, an d leave the error fun ction un changed , provided
t hat we also change the sign of the output .

The example given is rather complicate d, and it is very possible that a
simpler one exis ts . However, we have been unable so far to simplify our
const ruct ion.

Int uit ively, t he existence of local minima is due to the fact that the error
function E is the superposition of funct ions that may have minima at differ
ent points . In the more classical case of linear response un its, each of these
terms is a convex function , so no difficult y arises, because a sum of convex
functions is again convex. In cont ras t, sigmoidal units give rise to noncon
vex fun ctions, and so there is no guarantee that the sum will have a unique
minimum. In order to act ua lly exh ibit such an example, it is necessary to
obtain terms whose minima are far apart, an d to cont rol the second deri va
ti ves in such a way that the effect of such minima is not cancelled by the
other terms (as happens in the case of convex functions). T he calculations
are rather involved, an d we base t hem up on a cha nge of variables which con
verts the function E into a rational fun ction . Properties of local minima of
rational functions are decidable (t heory of real-closed fields), so in principle
this chan ge of variables is of some interest bes ides t he role that it plays in
the present paper.
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2. T he examp le

We let B: IR --+ IR be the function B(u) = tanh (u), i.e.

e" _ e- U

B(u) - ---
eU + e- U

(2.1)

(3.1)

We will t ake n = 5. (As indicated above in Remark 1.1, an obvious mod
ification of our example will th en yield an example with four input neur ons
plus a threshold.) The inputs will be the following 11 vectors:

VI (1, 1,1, - 1, -1),

V2 (1, 1, -1 , 1, -1),

V3 (1, - 1, 1, - 1, 1),

V4 (-1, 1,1, - 1, 1),

Vs (- 1, 1, 1,1, -1 ),

V6 (-1, -1 , - 1, 1, 1),

V7 (-1 , - 1, 1, -1 , 1),

Vs = (- 1, 1, - 1, 1, - 1),
Vg (1, - 1, - 1, 1, - 1),

VlO (1, - 1, -1 , - 1, 1),

Vn (1, 1, 1, 1,1).

The first five vectors will be repeated 15 times. The sixt h to tenth vectors
are repeated just once, and the eleventh vect or is repeated 45 times. The
outputs bi are always equal to 1.

We will show:

Theorem 1. Wi th the above choice of inp uts and outputs and of the sigmoid
func tion B, th e error function E has local m inima that are not global minima.

3. Proof of Theorem 1

If x = (Xl,"" xn), Y = (YI,"" Yn), are vectors in IRn
, we use (x , y) denote

the inner product of x and Y, i.e. (x, y) = I:~l XiYi. We use I to denote the
set {I , - I}, so I n is the set of all vecto rs of length n all whose components
are equal to 1 or - 1.

If a = (a\ ... , am) is a finite sequence of vectors in I", we let <Pa : IRn
--+

IR be the function given by

<Pa(X) = f '(B({aj, x)) - It
j = l

Our goal is to prod uce an example of a sequence a such that the fun ction <pa

has a local minimum which is not a global minimum .
In order to simplify our calculations, let us rewr ite the function <Pa in t he

form
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'Pa(X) = I: O'a(O((a,x)) _1)2,
a Eln

95

(3.2)

where the numbers O'a ar e nonnegative integers. (Precisely, each O'a is the
number of times that the vector a occurs in the sequence a .)

It is easy to verify that

(3.3)

Let us m ake the transformation T given by ~i = e2 X i (so that ~i takes val
ues in IR+, the set of posit ive real numbers), and use ~ to denot e a vecto r
(6"",~n) E lR~. Write

Then we have 'Pa(x) = 47Pa(O, where

'" O'a
7Pa = /Efn (1 + ~a)2 '

(3.4)

(3.5)

So it suffices find an a such that 7Pa has a local minimum that is not a global
mimm u m ,

Now pick, once and for all, a subset A of In such t hat no vector a E
I" satisfies a E A and - a E A. Suppose we are given a collection I of
nonnegati ve int egers la for a E A. Then we can cons ider the function

7PA ,-y (~ ) _ '" ( la + I -a )
- ~ (1+ ~a)2 (1+ ~ -a)2 .

(3.6)

It is clear t hat every such functi on is of the form 7Pa for some approp riate
choice of a .

It is convenient to rewrite (3.6) in the simpler form

i.e .

7PA,-y(~) = I: hb a' I -a, ~a ) ,
aEA

where

p +qu 2

h(p, q,u) = (1+u)2

(3.7)

(3.8)

(3.9)

It will be useful to understand the behavior of the function h(p, q, .) for
a parti cul ar pai r p, q of nonnegati ve int egers. Let us use I to denote differ
entiation wit h respect to u . T hen an easy computation shows that
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f 2( qu - p)
h(p, q,u) = ( )3' (3.10)

l+u

Therefore, we have

Lemma 3.1. If P > 0 and q > 0, then the function h(p, q, ') is globally
minimized at u = E, and the minimum value is ..ES....+ • Moreover, h(p, q, .) is

q p q

st rictly decreasing for u < E, and st rict ly increasing for u > E. In particular,
q q

u = ~ is the only cri tical point of h (p , q, -).

On the other hand, it is clear that , if pOl' q (but not both) vanis hes, then
the func t ion h (p , q, ,) does not have a minimum. Lemma 3.1 shows that one
can place this minimum at any rational point u of IR.+ by suit ably choosing
p and q.

If we now choose an a E I n and positive integers p, q, and consider the
function ~ ---> h(p, q, t ') , we see that this function is globally minimized at
all points ~ in the set S(a, p, q) of those ~ E IR.~ such that ~a = -{:f:q.

Now suppose we choose n linearly independent vectors aI, . . . , an in I n,
an d pos it ive numbers Pi, qi , i = 1, ... ,n. Then the sets S(ai ,pi ,qi) intersect
at exact ly one point . (To see this , just notice that , under the transformation
T , the set S(a ,P,q) corr esponds to the hyperplane (a, x ) = ~log (~) . ) T his
point is then the global m inimum of the function . So we have established:

Lemma 3 .2. Let aI, . . . , an be linearly independent members of I n , an d let
PI , . . . , Pn, q1> ... , qn be positive numbers. Then the function Wgiven by

,T, _ n Pi + qie
a i

'1'(0 - ~ (1 + ~a')2 (3. 11)

has a uni que global minimum at the point {iII characte rized by ({iII )ai
~

for i = 1,2, .. . , n , and the value of W({iII) is equal to V iII, where

V iII =~ +~ + ...+ Pnqn . (3.12)
PI + qI P2 + q2 Pn + qn

We now specialize even further, and choose n = 5. Moreover, we choose
the five vecto rs a i to be such tha t three of their components are equal to 1, and
t he other two equal to - 1. For inst ance , we can choose a\ a2, a3

, a\ as to be,
resp ectively, the vect ors (1,1,1, - 1, -1), (1,1, -1,1, -1), (1, -1, 1, - 1, 1),
(- 1,1,1, -1 , 1) and (-1 ,1,1 ,1 , -1). From now on it will be assumed th at
n = 5 and the ai are th e five vectors list ed above. Finally, we choose all the
Pi to be equal to a number P, and all the qi equal to 1. Then it is clear that
the point ~p = (p,p,p,p ,p) is none other than ~iII' So we have:

Lemma 3.3. The fun ction W has a unique global minimum at [p, and its
value there is equal to ~.
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Not ice that th is value is very close to 5 if p is very large. On the other
hand, if ~1 denotes the point (1, 1,1, 1, 1) (i.e. the point of IR~ that corre
sponds to the origin under the transformation T ), then 1II(~1 ) = ~(p + 1).

Since Ptr ~ E.¥ , with equality holding only if p = 1, we see that 1II(~p) <
1II(~1) un less p = 1, in which case the point s ~p and ~1 coincide. More
over , when p is very large the value V I]! is approximately equal to 5, whereas
1II (~d = ~(p +1).

We now let Wbe the functi on

W(O = h(p,q, (i) , (3.13)

where the vector aE I n and the numb ers p, qare chosen so that the minima
of W(i.e . the points in the set S(a,p,q)) are very far from ~p , This can be
achieved by t akin g a= (1,1 ,1,1 ,1 ) to begin with, so th at the value of Wat
~p is 0.~~~')02 ' whereas the value at ~1 is t¥. Not ice t hat the cond ition on p,
q that would make ~p belong to S(a,p,q) would be p = pS q, so in part icular
p would have to be much larger than q, since we are going to choose p large.
We will choose p, qso that we are very far from this situation, by taking q
mu ch larger than p. Actually, to make mat ters even easier, we will take p
to be 0, and choose q "sufficiently large." (Precisely how large will be seen
below.)

We now let 1II* = 1II +W. In particular,

(3.14)

and

(3.15)

It is then clear that 1II * (~p ) > 1II * (~1 ) if p and qare large enough. For instance,
one can easily verify that

Now let us use B (p, p) to denot e the closed ball wit h center ~p and radius
p, provided that 0 < P < VSp, so that B (p,p) ~ IR~. Then it is clear that
the inequ ality

(3.16)

will hold for ~ E B (p,p ) if p is sufficiently small , In particular, this will imply
that, if the function has a local minimum in the interior of B (p,p), then this
is not a global minimum.
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We need to know how p can be chosen so that 3.16 will hold on B(p ,p).
We have

1II*(e) = 1II (e) + q, (e) (3.17)

~ 1II ((p) + q,(O (3.18)

~+ W(e) (3.19)
p+1

5p • ea
(3.20)

p + 1 + q(1 + ea)2

5p • (e)2 (3.21)p+1+ Q1] ,

where
U 1

1](u) = 1 +U = 1 - 1 +u· (3.22)

Clearly, 1] is an increasing function of u for u E JR+ . On t he other hand,
the function ea = ele2e3e4eS is bounded below on B(p,p) by (p - p)S , so the
lower bound

1II*(e) ~ P~ l + <i[l- l+ (:_ p)Sr (3.23)

holds t hroughout B(p , p). Suppose we choose p, p such tha t p ~ 2 and 4p < p.
Then #r > i · Also, (p_ p)S > 7, and so 1II*(e) ~ i+~ throughout B (p,p) .
If we choose <i = kp ; then 3.16 will hold for eE B (p,p ) as long as k ~ 3. So
we have shown

Lemma 3.5 . If p ~ 2, <i ~ 3p, °< p < ~, then Inequality 3.16 holds
throughout the ball B (p, p).

We now have to show that, by suitably choosing p, p and <i, we can satisfy
the hypotheses of t he previous lemma and also guarantee that III* will have
a local minimum in the interior of B( p,p) . The crucial point here is that
III has a minimum at (p. The addit ion of Wshould not dist urb this fact
too mu ch, because Wis nearly constant in the neighborhood of (p, and the
Hessian matrix of III at (p is nond egenerate. To mak e this precise, we need
to have an upper bound on the gradient of q, and a lower bound on the
second derivative of III . Ind eed , once we have established tho se bounds, the
following lemma gives us th e desired result. In the st at ement , II . .. 11 denotes
th e usual Eucl idean norm, and Dvf, D~f denote, respectively, the first and
second dire ctional derivatives of th e function f in the direction of the unit
vector v E IRn

.

Lemma 3.6 . Let I , 9 be C 2 functions on a closed ball B ~ IRm of radius
r cente red at a point x E IRm

. Assum e that A, C are constant s such that
IIVg(x)11:::; A for all x E B , an d D~f(x) ~ C for all x E B and all unit
vectors v E IRm

. Then , if Vf(x) = 0, and Cr > 2A , it follows t hat the
fun cti on f +9 has a local minimum in the inter ior of B .
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P roof. Let F = j + g. Let S be the boundary of B . We show that
F( x) > F( x) for all xES. The bound on V9 implies that Ig(x) - g(x)I ~ Ar
for XES, so g(x) 2 g(O) - Ar for all such S. If XES , write x = x + rv with
va unit vector. Let j(t) = j(x+tv) for 0 ~ t ~ r . Then the derivative j'(t)
vanishes at t = 0 and has a derivative bounded below by C . So j'(t) 2 Ct for
o~ t ~ r. But then j(r) 2 j(O) + c;', i.e. j(x) 2 j(x) + c;' . We then get
F(x) 2 F(x) + c;' - Ar. Since Cr > 2A, we have shown that F(x) > F(O)
for all xES. •

Lemma 3.6 enables us to get an a priori idea on how large one has to
take r. Suppose we compute D;j(x) for all v, and Vg(x), and we find that
C = inf{D;j(x) : IIvII = I}, ..1.= II V g(x)lI. Then it is clear that, no matter
how we choose r, the constants A and C '!:re going to satisfy C ~ C, A 2 A,
so the smallest r can possib ly be is r = 2J. In the case of interest to us, the
functions j, 9 and the point x depend on the parameter p, and the numbers
A, C behave like p-s and p-3, respectively. So r should be chosen so that
r '" p-2 .

We want to app ly Lemma 3.6 with n = 5, x = t; j = \lI , 9 = Wand
r = p. The hypothesis that V j(x) = 0 holds since j has a minimum at X.
Nat urally, the bounds on V9 and D; hold for some choice of t he constants
A, C, with C not necessarily positive. We have to show that, by suitably
choosing p, qand p, we can sat isfy the condition Cr > 2A. (This will imp ly
in particular that C > 0.) Obviously, the condition that C> 0 is related to
the fact that the vectors a i are linearly independent so that, in each direction,
at least one of the five functions whose sum is \lI is strictly convex near [po
To make this precise, we must study th e quadratic form Q given by

s
Q(v) = 2:(ai,v)2 for v E IRs.

i=l

(3.24)

Then Q is clearly nonnegative. Since the ai form a basis of IRs, Q(v) can never
vanish unless v = o. So there exists a constant c > 0 such that Q(v) 2 cllvl1 2

for all v . It will be useful to know an explicit value of c. A crude est imate,
which will be sufficient for our purposes, is the bound (d. Appendix A):

(3.25)

We now get a lower bound for the second derivative of \lI on some neigh
borhood of ~p. An elementary calculation gives the formula (d. Appendix
B):

D~\lI(O = U(p, v, 0 - V(p, v, 0,

where

(3.26)

(3.27)
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where Zdenotes the vector

(3.28)

(3.29)V (VI V2 VS )
Z= eI 'e2' ...,es '

and Fis defined similarl y.

Now assume that V is a unit vector . We will get a lower bound for D~\lJ(O

on a ball B (p,p) by getting a lower bound for U and an upper bound for the
absolute value of V. Not ice that, near [p, e' is approximately equal to p,
and all the components of eare also approximately equal to p. So, if p is large
enough so that we can ignore the "1" in 1+ p, then U(p, v, 0 is approxim ate ly
equal to 2Q(V)p-3. So we have an approxim ate bound U(p, v, 0 ~ ~p-3. On
t he ot her hand, V(p , v, e) is a difference of two expressions, each of which
is bounded in absolute value by a cons tant times p- 3. However, these two
expressions are equal at [p, which means in particular that the lead ing powers
of p canc el, and V(p , v , 0 is actually O(p-4) for enear [p. To make all this
pr ecise, notice that on B (p,p) we have the bounds

(3.30)

Using this, we easi ly get :

for eE B( p,p). So, if we wri te u = ~ , we have

whe re

(3.32)

Also,

(1+U)9
(1 - U)6

(3.33)

so that

where

(3.34)

(3.35)
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(3.36)

(3.39)

(3.37)

[
u (1 +U)3]4

.\2(U) = P+ (1 _ U)2 .

vVe therefore have the bound
2(p + l)eai - e ai - p~ai 1 p
......:::..---.:....:'----:----':--c----=-...;;- > - .\(-)

(1 + ~ai)4 - p »"
where the function .\ is given by

.\(u) = ~~~~~. (3.38)

Notice that .\(0) = 1, so the bound (3.37) says that the left -hand side of
(3.37) is approximately bounded below by p-l if e is small. Then

p

U(p,v,O ~ ~.\(~)QG)
p p ..

if ~ E B(p, p). In view of t he lower bound for Q, we have

Q(z) ~ Hz112,

so that

Q(:::') > 1 .
~ - 3(p -p)2

Therefore
11.( £!.)

U(p,v, 0 ~ -f-,
p

for ~ E B(p ,p), where

A(u) = 2.\(u) .
3(1 -u)2

We now get an upper bound for lV(p,v,O I on B(p,p). Clearly,

I
v2

· 1 II vl1
2

(e 'aJ
) ::; (p - p)2 .

Also, we can write

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

l
eai

- pC
i I

(1 +~a? - (3.45)

(3.46)

(3.47)

(3.48)

(3.49)

where
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(1 +U)4
Vl(U) = (1 - U)6'

On the other hand, the inequality

yields

so that

where

(
(1 + U)3 (1 - U)3 )

V2 ( u) = max (1 _ u)2 - 1, 1 - (1 +u)2 .

Combining all t hese bounds we get

V(~)
IV(p,v,e)1 ~ ----3 '

P

where

Finally, we get

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)

(3.58)

as long as eE B(p,p).
Since A(O) = ~ > 0 and v(O) = 0, the lower bound for D~W(e) given by

the preceding formula is positive if ; is small enough.

Next we need an upper bound for \7~. We have (d. Appendix B):

a~ 2qe a

aei = M1 +ea)3'

so that

(3.59)

In particular, if eE B(p,p), and q= kp, we have the bound
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where
1

fJ-(u) = (1 - U)6 '

If we let
1\(~) - I/ ( ~ )

C = p P
3 'P

A = 2kfJ-(!!'-) ,
p5 p

and
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(3.60)

(3.61)

(3.62)

(3.63)

Cp
J( = 2A' (3.64)

then t he hyp othesis of Lemma 3.6 will be satisfied if J( > 1. On the other
hand,

p2p[1\(~) - I/(~ ) ]

J( = 2;fJ-(~) p (3.65)

Since 1\(0) = ~, 1/(0) = 0, fJ- (0) = 1, it is clear that, for any fixed p and
k, the inequality J( > 1 will hold if p is sufficient ly large. Moreover, if one
chooses k = 3, then th e conditions of 3.5 will also hold if p is sufficiently
large.

To prove Theorem 1, all we need to do is to verify that the conditions of
3.5 as well as the inequality J( > 1 hold for k = 3 for some choice of p, not
just for p sufficiently large, but for p = 15. So all we need is to find a value
of p such that 4p < 15, with the property that , if we plug in p = 15 and
k = 3 in Equation 3.65, then J( > 1. For each p, it is clear that t here is a
smallest p such that J( > 1. Let this p be denoted by p(p). Then a direct
comp utation shows that, for p in the range between 0.08 and 0.14, the value
of p(p) is equal to 15. (As a function of p, p(p) decreases for p < 0.08 an d
increases again for p > 0.14, so P = 15 is t he best value that can be obtained
from our est imates.) This completes the proof of Theorem 1. •
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Appendix A . Derivation of Formula (3.25)

The bound we seek is t he smallest singul ar value of A (where A is the matrix
whose rows are the vectors a\ . . . , as), i.e. t he sm allest eigenvalue of AtA .
It can be computed numerically, an d turns out to be approximately 1/2.52.
T he following simple argument gives the bound used in t he text.

Set Uj = (a j
, v). Using the explicit formulas for the a j we find that

(A.l)

(A .2)

(A.3)

(AA)

and

(A.5)

This system can easi ly be inverted , resul t ing in the following expressions for
the v's in te rms of the u's:

If we now square each equat ion and sum, we get

411v l12= 2u ; + 4u; + 4u~ + 2u~ + 2u; + S,

(A.6)

(A.7)

(A.8)

(A.9)

(A.I0)

(A.H)

(A.12)

where S is the sum of the cross terms, which turns out to be given by

S = - 4UI U2 - 4UIU3 - 2UIU4 - 2UIUS +

+6U2U3 + 4U2U4 + 2U2US+ 2U3U4 + 4U3US·

Using the bound ab :::; a2 ~ b2 for each of the terms in the above sum, we get

(A.13)

•
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Appendix B. App endix: D er ivation of Fo rmulas (3.26) and (3.58)

We use th e identity

aea_ ai ea
aei - ei '

valid if a= (aI, .. .,an ) E lRn
•

If f is a function

then

of rqea(1 + ea)2 - r ea(1 +ea)(p + qea)

aei (1+ ea)4
2ai qea- pea
ei (1+ ea)3

Setting p = 0, q = q, a = U, we get (3.58).
If we now multiply (3) by Vi and sum over i, we get

v 2ai qea- pea
Dv f =2(Z,a) ei (1+ea)3 ·

Different iati on with respect to ei yields

(B.1)

(B.2)

(B.3)

(B.4)

a
aei (DvJ)

If we mult iply by Vi and add over i, we get

(B.6)

If we now set q = 1, a = a j , and sum over i , we obtain Formula (3.26). •
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