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Abstract 

We show that the well-known Lyapunov sufficient condition for "input-to-state stability" (ISS) is also necessary, 
settling positively an open question raised by several authors during the past few years. Additional characterizations of 
the ISS property, including one in terms of nonlinear stability margins, are also provided. 
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1. Introduction 

In practice, control systems are very often affected by noise, expressed for instance as perturbations on 
controls and errors on observations. Thus, it is desirable for a system not only to be stable, but also to display 
the so-called "input/state" stability (ISS) properties. Intuitively, this means that the behavior of the system 
should remain bounded when its inputs are bounded, and should tend to equilibrium when inputs tend to 
zero. These notions are closely related to the topic of stability under perturbations (total stability), studied in 
the classical dynamical systems literature. 

In the later 1980s, one of the co-authors introduced a particular precise definition of input~state stability, 

and established a few basic results; see for instance [4-6]. These results then were applied in different areas, 
including observer design and new small-gain theorems; see for instance El, 3, 7, 8]. 

One of the main observations used in [4] as well as in subsequent papers has been the fact that a system is 
input/state stable if it admits an "ISS-Lyapunov function". This motivates checking the ISS property by 
investigating the ISS-Lyapunov functions for the given system. In this work, we show that it is also necessary 
for a input/state stable system to admit an ISS-Lyapunov function. The proof is based on a reduction to 
a question about systems with disturbances and relies on a new converse Lyapunov theorem for such systems 
proved in [2]. 

In the process of proving the main result, a number of other natural characterizations became available, 
including one in terms of nonlinear stability margins. The main theorem of this paper will state the 
equivalence of all these new notions, which will probably be of interest in themselves. 
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2. Input to state stability 

In this section we introduce the proper ty  of input /s tate  stability. Consider  the following general nonlinear  
system: 

Yc = f (x ,u ) .  (1) 

Here f :  ~" x R" ~ g~" is cont inuously differentiable and satisfies f(0,  0) = 0. 
Controls or inputs are measurable  locally essentially bounded  functions u : R ~> o ~ R ' .  The set of all such 

functions, endowed with the (essential) sup remum norm [I u II = sup{ lu(t)l, t >>. 0} ~< oo, is denoted by L~.  
(Everywhere, I ' l  denotes the usual Euclidean norm.) For  each ~ ~ R" and each u ~ L~,  we denote by x(t, 3, u) 
the trajectory of system (1) with initial state x(0) = ~ and the input u. This is defined on some maximal  
interval [0, T¢.,), with T¢,, ~< + ~ .  We recall that  a function 7 : R >~o ~ g~ ~>o is a af-function if it is 
continuous,  strictly increasing and 7(0) = 0; it is a af®-function if it is a a f - func t ion  and also 7(s) ~ oo as 
s ~  ~ and it is a positive-definite function if 7 ( s ) > 0  for all s > 0 ,  and 7 ( 0 ) = 0 .  A function 
/3: R ~>o x R ~o ~ ~ ~o is a afSf-function if for each fixed t >i 0 the funct ion/3( . ,  t) is a off-function, and for each 
fixed s >/0  it is decreasing to zero as t ~ or. 

Definition 2.1. System (1) is (globally) input~state stable if there exist a aft&°-function fl :~/>o x ~ ~>o ~ R and 
a a f - func t ion  7 such that,  for each input u e L~  and each ~ ~ II~", it holds that  

Ix(t,¢,u)l <<./3([~l,t) + ~(Null) (2) 

for each t ~> 0. 

No te  that, by causality, the same definition would result if one would replace l[ u II by H u, I[ in (2), where u, is 
the t runcat ion of u at t; i.e., u,(s) = u(s) if s <~ t, and u(s) = 0 if s > t. 

The definition is intended as a nonlinear  generalization of the bound  I x(t)J ~< L~ le ~* + c ]1 u ]l which holds 
for linear systems :~ = Ax + Bu when the matr ix  A is asymptot ical ly  stable. Using this definition, it was 
proved in [4, 6] that  a system can be stabilized by a smooth  feedback if and only if it is feedback equivalent to 
an ISS system. Thus,  the definition appears  to be natural ,  and the further character izat ions given later 
confirm this fact. 

Definition 2.2. A smooth  function V: R" ~ ~ ~o is called an ISS-Lyapunovfunction for system (1) if there exist 
afo~-functions ~1, ~2, and off-functions 0~3 and Z, such that  

~1(1~1) ~< V(~) ~< ~2(l~l) (3) 

for any ~ e R" and 

17V(~)-f(~, #) ~< - ~3(] ¢1) (4) 

for any CeR"  and a n y / ~ e  R"  so that  I~l >~ z(I/~l) • 

Observe  that  if V is an ISS-Lyapunov  function for (1), then V is a Lyapunov  function, in the usual sense, for 
the a u t o n o m o u s  system ~ = f ( x ,  0) obta ined when no controls are applied. 

No te  that  the first inequality in Eq. (3) states that  V is positive-definite (because ~1 (r) is nonzero for r ¢ 0) 
and proper,  that  is, "radially unbounded"  (because ~l(r) increases to infinity). The  second inequality in Eq. (3) 
is redundant ,  since the existence of a function ct2 is an immediate  consequence of continuity of V, but  it is 
useful to have the function ct2 explicitly for proofs, and when dealing with more  general stability consider- 
at ions (such as stability with respect to invariant  sets, or t ime-varying systems). Also, without  loss of  
generality, one can assume that  ~3 E a f~  (cf. [2, Remark  4.1]). Finally, observe that  Eq. (4) states that  the 
derivative 12 along trajectories is negative-definite for large enough x, given any control  magnitude.  
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In [4] as well as in the literature since the publication of that paper, the fact that a system is ISS has always 
been established by showing that there is an ISS-Lyapunov function. The main result of this paper will be 
that the converse holds as well: 

System (1) is ISS if  and only if it admits an ISS-Lyapunov function. 

There turns out to be also an interesting connection between the ISS and the robust stability. 
By a (possibly time-varying)feedback law for system (1) we will mean any (at least measurable) function 

k : R ~> o x R" ~ ~" for which the differential equation corresponding to using k as a feedback, 

k = f ( x ,  k(t, x)), (5) 

is well posed; that is, for each initial state x(0) there is an absolutely continuous solution, defined at least for 
small times, and any two such solutions coincide on their interval of existence. (For instance this will happen 
if k(t, ~) is continuous in ~ and measurable locally essentially bounded in t, and is locally Lipschitz in 

uniformly with respect to t on finite intervals.) 
Let p be any o,~oo-function. A feedback law will be said to be bounded by p if for each ~ ~ R", I k(t, ~)1 ~ P (I ~1 ) 

holds for almost all (recall that k is assumed to be only measurable) t ~> 0. 
We will say that system (1) is robustly stable if there exist a X'oo-function p (called a stability margin ) and 

a X'Z~a-function fl such that, for every feedback law bounded by p, it holds that 

tx(t)l ~ fl(fx(0)l,t) Vt ~ 0 (6) 

for every solution of the corresponding system (5). 

Remark 2.3. Note that the ISS is not a notion of local stability with respect to "small" perturbations. It is 
a global notion, and perturbations can be arbitrarily large (since the function p is in class X'~o). In some sense, 
this is analogous to exponential stability for linear systems, where a perturbation of the spectrum preserves 
global asymptotic stability. 

The main result in this context will be: 

System (1) is ISS if and only if it is robustly stable. 

After introducing several other notions, we will prove a theorem which will imply the above two claims as 
well as the equivalence with several other control systems properties. 

2.1. Restatements o f  the definition o f  l SS  

In this section, we introduce various notions and establish their equivalence with input/state stability. 

Remark 2.4. A smooth function V is an ISS-Lyapunov function for (1) if and only if there exist cti~#~ 
(1 ~< i ~< 4) such that (3) holds, and 

17V(~)f(~,#) <- - ~3(1~1) + ~,*(I/~1) • (7) 

This provides a "dissipation" type of characterization for the ISS property. Clearly (7) implies (4). Assume 
now that (4) holds with s o m e  tx3~o'~d'oo and geX ' .  Let ~4(r)=max{0,&a(r)} where ~,t(r)= 
max{ VV(~)f(~,lO + ~3(Z(I/~l)): 1/11 ~< r, I~1 ~< z(r)}. Then cq is continuous and ~t4(0) = 0, and one can 
assume that ct4 is a Jdoo-function (majorize it by one if it is not). Note then that (7) holds 
because 7a(r)>>-suPl~l=rVV(~)f((,#)+ot3(]~l) (consider the two separate cases I~l~>z(l~l) and 
r~l -< z(r~,P)). 



354 E.D. Sontag, Y. Wang / Systems & Control Letters 24 (1995) 351-359 

Remark 2.5. Noticing that/3 + y ~< max {2/3, 27}, one sees that an equivalent form of decay estimation for the 
ISS systems can be given as follows: system (1) is ISS if and only if there exist/3•off.o~ ° and 7•off such that 

Ix( t ,¢ ,u) l  <<. max{f l ( l~l , t ) ,Y( l lu l l )} ,  V~•R", Vu, Vt >1 0. (8) 

6 

The next lemma relates the ISS to the input/output stability property introduced in [4]. 

Lemma 2.6. Sys t em (1) is I S S  i f  and only i f  there ex is t  offAl-functions/30,/31 and a off- function y such that, 
f o r  any ~ • R "  and any input u, it holds that 

[x(t ,~,u)l  <<./3o(1¢1, t) +/31(llur[I,t - T )  + y(llurll) (9) 

f o r  any 0 <~ T <~ t, where u r is defined by u T = u - ur. 

Proof. Clearly, (9) implies (2). We now assume that there exist a offZce-function/3 and a off-function y such that 
(2) holds. Then one has the following inequality: 

Ix(t ,¢,u)l  <<. f l ( I x (T ,~ ,u ) l , t  - T ) +  y(llurll) 

~< fl(fl(l~l, T) + 7([lur[I),t - T) + ~(Llurll) 

for any ~ e •", any u and any 0 ~< T ~< t. Since fl(r + s, z) <~ fl(2r, z) + fl(2s, z) holds for any r, s, z >~ 0, it follows 
that 

Ix(t ,¢,u)[ <<. ~(2/3(1¢1, T ) , t  - T)  +/3(2y( I tur l l ) , t  - T) + 7(Hurl]). (10) 

Now define /30 by letting flo(S,t) = sup{f l (2/3(s ,z) , t  - r): 0 ~< r ~< t} + s/(l  + t). Then /3o(O,t) = 0 for any 
t t> 0; for each fixed t,/30 (s, t) is continuous and strictly increasing in s. Thus,/30 ( ' ,  t)• off for each t ~> 0. It is 
not hard to see that for each fixed s >1 O, flo(S, t) is decreasing in t. To show that flo(S, t) ~ 0 as t ~ oo for each 
fixed s, just notice that 

/3(2/3(s, T), t - T) ~< max {/3(2fl(s, t/2), 0),/3(2/3(s, 0), t/2)} 

holds for any s >~ 0, 0 ~< T ~< t, and both of the functions in the parentheses are off&°-functions. 
Let/31 be defined by ill(s, t) =/3(2y(s) , t ) .  Then/31•off~,  and it follows from (10) that (9) holds for any 

• R" , anyu ,  andany0<~  T~<t. [] 

The ISS property can also be described without using class offZa-functions, in a manner analogous to the 
standard definition of global asymptotic stability for systems with no controls. 

Lemma 2.7. Sys t em (1) is I S S  i f  and only i f  the fo l lowing two propert ies hold: 
1. For  each e > 0 there exis ts  a t5 > 0 such that 

lx(t,~,u)l ~< e Vt~>0 (11) 

f o r  all inputs u and initial states ~ with I~1 ~< • and 1lull <~ ~. 
2. There  exis ts  a off- function ), such that, f o r  any r, e > O, there is a T > 0 so that f o r  every  input u: 

Ix( t ,~,u) l  <<. e + y(llul]), (12) 

whenever  I¢l <<- r and t ~ T. 

This will be proved below. 

Remark 2.8. In Lemma 2.7, Property 1 can be replaced by 
1'. There exist a off~-function 8(') and a off-function ~ such that 

Ix(t ,~,u)l  <~ e + ~7(11u11), Vt  >1 O, Vu, whenever I~l ~< fi(e) and t >/0. (13) 
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Clearly Proper ty  1' implies P rope r ty  1. Next  we show that  Proper ty  1 implies P roper ty  1'. Pick r, s > 0, and 
consider  the trajectories x(t, ~, u) with I~l ~< s and Ilull ~ r. Applying Proper ty  2 with e = 1, one knows that  
there exists a T > 0 such that  

Ix(t, ¢, u)] ~< 1 + ~(r) (14) 

for all t />  T. Note  that  P rope r ty  2 also implies that  the system is forward complete,  that  is, T~,, = oo for all 
e e l "  and all u. By Propos i t ion  5.1 in [2"1, there is an L > 0 such that  [x(t,~,u)l <~ L for all 0 ~< t ~< T, all 
1¢] ~< s and all Iluli ~< r. Combin ing  this with (14), one concludes that  

I x ( t , ~ , u ) l ~ C ,  V t ~ 0 ,  I ( l ~ s ,  I lu l l~r ,  (15) 

where C = 1 + L + ?(r). Let (p(r) = inf{C ~> 0: Ix(t,~,u)l ~ C, Vt >I 0, Vl~l ~< r, Vllull ~ r}. Note  that  
¢p(r) < oo for each r />  0 because of (15). Clearly, ¢p is nondecreasing,  and Ix(t,~,u)l <~ ~0(1~1) + q~(llul[) for all 
¢, all u, and all t >/0. Also, it follows f rom Prope r ty  1 that  ¢p(r) ~ 0 as r ~ 0. Let ~(r) = 1/r ~2, tp(s)ds, for 
r ~> 0, and let ~(0) = 0. Then ~b is cont inuous,  and ¢p(r) ~< ~(r). N o w  we define ~b(r) = r + maxo ~ ~ ~(s). 
Then ~b is of  class o~"~, and Ix(t,~,u)l <<. ~(l~]) + ~([lull) holds for all t ~> 0, all ~ e ~ "  and all inputs u. Let 
,5(r) = tp- l ( r ) ;  then ,5(') is a :,~oo-function. Clearly, with such a choice of ,5 and ~ = ~b, it holds that  
Ix(t,~,u)l <~ e + ff(llull) for all I~l ~< ,5(e), all u, and all t ~> 0. [] 

Lemma 2.9. Property 2 in Lemma 2.7 is equivalent to the following: There exist a ~-funct ion ~, and a family of  
mappings { T~}, >o with the properties 
• for each fixed r > 0 ,  T~:R>o o . to  R>o is continuous and is strictly decreasing, and in particular, 

l i m ~  + o~ T,(s) = 0; 
• for eachfixed e > O, T~(e) is (strictly) increasing as r increases and lim,. ~ ~ T~(e) = ~ ;  such that,for each input 

u, Ix(t,~,u)l <~ e + ~'([lu[I) whenever [~l <<. r and t >~ T,(e). 

Proof. Sufficiency is clear. N o w  we show the necessity part .  This is very similar to the p roof  of  L e m m a  3.1 in 
[21, so only a sketch is given. Let 7 be given as in P roper ty  2 of  the ISS definition. For  each r, e > 0, let 
T,., = inf{z: Ix(t,~,u)] <~ e + Y(IJuII), Vt >1 3, V[~I ~< r}. Note  then that  Tr., < oo for any r,e > 0. Further ,  
T,,., ~< T~,., i fra ~< r2, and T,.,, > /T , .~  ife~ ~< e2. Also, P roper ty  1' implies that, for every fixed r, Tr., --, 0 as 
s ~ o0. Now,  for each r > 0 and s > 0, let T,(s) = (2/s)~/2 T~.,da. Then, for each fixed r > 0, T, is a continu-  
ous function, and T,(s)/> T,.,. Finally, for each r > 0 and s > 0, we let T,(s) = (r/s) + sup~>, Tr(a). One  can 
easily check that  the family { Tr}~ >o satisfies all condit ions in the lemma. [] 

We now return to prove  L e m m a  2.7. 

P roof  of  I . e m m a  2.7. The  necessity par t  is clear. Assume now that  condit ions in L e m m a  2.7 hold. Let ,5 be as 
in P rope r ty  1', and without  loss of  generality, we assume that  9 in P rope r ty  1' and ~, in P roper ty  2 are the 
same function, denoted by y. Let ¢p(-) be the X~- func t ion  ,5-~. Then it holds that  

]x(t,~,u)] <~ ¢p(]~[) + 7([[ul]) Vt >~ O. (16) 

Let { Tr}r > o be as in L e m m a  2.9, and  for each r > 0, let ~,,(s) = TZ 1 (s) for s > 0, and for s = 0, we also denote  
~,,(0) = ~ .  Note  then that  ~,, is cont inuous  on (0, oo) and lim~-~o~b,(s)= 0o for each r > 0. Since 
1~1 ~< r,t  >~ T,(e) =~[x(t,~,u)[ <<. ~ + ~'(llull), and t = T,(~O,(t)) for t > 0, it follows f rom the above,  applied in 
par t icular  for t = T~(e) that  for t > 0: 

Ix(t,¢,u)[ <~ ~ ( t )  + ~'(flu[I) (17) 

for any  u and any  Ill ~< r. This fo rmula  also holds for t = 0 by the definition ~,,(0) = ~ .  
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Now for any s >~ 0 and t ~> 0, let ~(s,t) = min{infr.>~(t),~0(s)}. Then by (16) and (17), one has 

Ix(t,¢,u)l ~ ~(l~l,t) ÷ 7(llull). (18) 

Pick any function ~: ~.>o x ~.>o--' It~>.o with the following properties: (1) for any fixed t~> 0, ff ( - , t ) i s  
continuous and strictly increasing; (2) for any fixed s/> 0, @(s, t) decreases to 0 as t --* ~ ;  (3) ~7(s, t) >/~(s, t). It 
is an easy exercise to show that such a majorizing function ff for ~7(s, t) always exists; for details, we refer the 
reader to similar step in the proof of Proposition 2.5 in [2]. Finally, we let/3(s, t) = x / / ~ )  ~ t). Then/3 is 
of class ~Y'L#, and moreover, 

/3(s,t) >1 min{~o(s),~(s,t)), Vs >t O, Vt >10. (19) 

Combining (18) and (19), one concludes that Ix(t, (, u)l <~/3(1~1, t) + 7(llull) for all ~ ~ ~", all t ~> 0 and all 
inputs u. [] 

2.2. Robustness with respect to feedback 

Lemma 2.10. I f  there exists an ISS-Lyapunov function for system (1), then the system is robustly stable. 

Proof. Assume that V is an ISS-Lyapunov function. Let ~ (i = l, 2, 3) and ~ be as in Definition 2.2. Without 
loss of generality, we assume that X ~ l ~  (otherwise, replace g(r) by x(r) + r). Let p(z) = Z-~(r); then p e o,~ff~ 
as well, and DV(~)f(~,I~)<<.-~3(1¢1)~<-~3°~x(V(~))  whenever #~<P(I¢I), which implies that 
DV(~)f(~,k(~,t)) <<. - ~23(V(~)) for any feedback k bounded by p and for almost all t, where &3 = ~3°~2 ~- 
This implies that for any such feedback, and for every solution x(t) of the corresponding system (5), it holds 
that (d/d0 V(x(t)) <~ - a3(V(x(t~) for almost all t. A simple comparison principle (see e.g. [2]) implies that 
there exists some J~ffL~'-function,/3, which depends only on a3 and not on the particular k being used, such that 
V(x(t)) <~ ff(V(x(O)), t), Vt >~ 0, for every solution x(t) of(5) and feedback bounded by p, from which it follows 
that there exists some ~gLe-function/3 such that (6) holds for every solution of (5) whenever k is a feedback of 
the form considered. [] 

Note that the proof of Lemma 2.10 provides a slightly stronger conclusion than stated, namely, robustness 
holds even with respect to feedback laws that do not result in unique solutions. 

A particular case of the above setup is as follows. Fix any smooth function ~0. Then, for any d(t)e.t¢e = the 
set of all measurable functions from ~> o to ~ = [ - 1, 1] ' ,  the function k(t, ~) = d(t)~o(() is an admissible 
feedback law. We view the system 

~(t) = f (x(t), d(t) qg(x(t ) ) ) = O(x(t), d(t) ) (20) 

as a "system with disturbances d(t)". 
For such systems, there is a natural definition of uniform global asymptotic stability (UGAS): this means the 

system must be uniformly stable (that is, for some ~l~o-function b(.), and for each e >~ 0, the estimate 
Ix(t, ~,d)l ~< e holds for all dE ~¢e, [~1 <~ fi(e), and t >~ 0) and uniformly attractive (that is, for each r,e > 0, there 
is a T > 0 such that, Ix(t, ~,d)[ < e for every d ~ ,  Ill < r and t >~ T). This definition, when restricted to the 
current context, is exactly the same as saying that an estimate like the one in Eq. (6) must hold, for every 
solution, when using any d(t)e,¢l~, where/3 does not depend on the particular d. 

We say that system (1) is weakly robustly stable if there exists a smooth function ~o, satisfying ~(1¢1) ~< ~o(~) 
for some ~ff~-function ff (that is, ¢p is positive-definite and proper or "radially unbounded"), so that the 
corresponding system (20) is UGAS. 

Note that for any J~"~-function p, there exist a smooth function ~0 : ~" ---, R >, o and a ~e'~-function ~k such that 
~k({~[) ~< ~o(~) ~< P([~I) for all ~ " .  [Proof Let p be a Jl~-function. Let fi(r) = p(x/r). Note that # is still of 
class o~ff~. Pick any smooth ~ff~-function a with a(r) ~< #(r). Let ~o(~) = a(1¢12). Then ~0 is the desired function, and 
we may take ~k(r) = a(r2).] Given p, pick any smooth positive-definite proper function ~o in this manner. Now 
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d(t)tp(l) is just a particular type of feedback bounded by p. Consequently, if there exists an ISS-Lyapunov 
function for system (1), then (1) is weakly robustly stable. We have then proved the following result. 

Lemma 2.11. I f  system (1) is robustly stable, then it is also weakly robustly stable. 

The following two lemmas provide the key connections between the ISS, robust stability, and existence of 
the ISS-Lyapunov functions. 

Lemma 2.12. I f  system (1) is ISS, then it is also weakly robustly stable. 

Proof. Assume that (1) is ISS. Then by Remark 2.5, there exist some ~f'~a-function fl and some ) i -funct ion 
2: such that (8) holds for any ~, any u and all t >/0. Let ~(r) = fl(r, 0). Then ct is a ) i-function.  Without loss of 
generality, one can always assume that 0t(r) > r for all r > 0 (otherwise, one can replace ct(r) by max {~(r), a2r}) 
and thus ~ is ) i~.  Similarly, one can assume that 7 is also )i®. It follows that ~-  ~ is ~ff, and ~ - ~ (r) < r for all 
r > 0. Now let tr(r) be a )i~-function satisfying a(r) < 7-1(¼ ct -1 (r)) for all r > 0. For  instance, one can simply 
let tr(r) be ½7-1(¼~-~(r)). Arguing as in the proof of Lemma 2.11, there exist a smooth function ~0 and 
a ) i~-function $ such that ~(lll) ~< ~o(~) ~< cr(l~l) for all 3. Now for the fixed function tp, consider system (20). 
In what follows we show that with the ~0 chosen above, system (20) is UGAS. Let x,(t ,  i ,d)  denote the 
solution of (20) with initial state I and disturbance d. To prove the desired conclusion, we first show that 

7(Id(t)~(x,(t,~,d))l) ~< ½ill a.e. t ~> 0 (21) 

for any i e l~  n and any deJt '~. For  this it is enough to show, because of the monotonicity of 7, that 

7(tP(x,(t,¢,d))) <~ ½Ill Vt >~ 0. (22) 

Pick any l e  I~'\  {0} and d ~ t ' ~ ,  and use simply x(t) to denote x,(t ,  ¢, d). Notice then that 7(tp(x(t))) ~< ¼Ill 
for all t small enough, since y(~o(x(0)))-..<7(~r(lll))<¼~-l(lll)<¼1~l. Now let t l = i n f { t > 0 :  
7(~o(x(t))) >½Ill}. Assume that tl < ~ .  Then (22) holds for all t~[0,t~), from which it follows that 
?(Id(t)q~(x(t))l)<-.. ½~(1~1), for almost all t e [0 , t 0 .  By (8), one sees that Ix(t)l ~</~(1¢1,0)~< or(Ill) for all 
0 ~< t ~< tl, which, in turn, implies that 7(ko(x(t0)l) ~< ~(a(IX(tl)l)) <~ ¼~-~(Ix(tl)l) ~< ¼1¢1. This contradicts 
the definition oft~ (by continuity, from the definition it must hold that 7(ko(x(tl))[) i> ½1~1. Thus, tt = ~ ,  and 
(22) is proved. 

Claim. For each r > 0 there is some 7",/> 0 so that 

t >~ T,, I~[ <~ r =~ [x~,(t, ~, d)l ~< ½r. (23) 

To establish this claim, note that, from (8) and (21), it follows that Ix~(t, l, d)l ~< max {fl(l~l, t), ½[~l} for all ¢. 
On the other hand, since f le) iLe,  for each r > 0 there exists 7", > 0 such that fl(r, t) < ½r for all t >~ 7",. This 
T, satisfies the requirements of the claim. 

Now pick any e > 0. Let k be a positive integer such that 2-kr  < e. Let r~ = r and r,. = ½r~_ ~ for i t> 2, and 
let z = 7",, + T~ + -.. + T,~. Then for t/> z, it holds that Ix~(t,~,d)[ <~ r/2 k < t; for all Ill ~< r, all de~¢~ and 
all t/> z. This shows that the origin is a uniform attractor for system (20). 

To show the uniform stability for the system, notice that (8) and (21) imply that Ix,(t, l,  d)l ~< fl(l![, 0) for all 
t ~> 0, all l ~  ~, and all de . l td .  We conclude that system (20) is UGAS. [] 

Lemma 2.13. I f  system (I) is weakly robustly stable, then there exists an ISS-Lyapunov function for the system. 

Proof. This is an easy consequence of the converse Lyapunov theorem for systems with bounded disturban- 
ces proved in [2]. The details are as follows. Assume that system (1) is weakly robustly stable. Then there 
exists a smooth function ~0: R n ~ R, such that ~0(0 >/~(li l)  for some )i~o-function ~b, for which system (20) is 
UGAS, as defined earlier. It then follows from the converse Lyapunov result in [2] that there exists a uniform 
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smooth Lyapunov function V for system (20), that is, a smooth V so that, for some positive-definite 
~ffo~-functions ~i,i = 1,2,3, it holds that ~a(l~l) ~< V(~) ~< ~2(1~1) V ~  ~ and 

VV(~).f(~,d~o(~)) <~ - a3(l~l) v~e~" ,  Vldl <~ ~. (24) 

Note  that from (24), it follows that 

(25) 

whenever Jr] ~< q~(¢). Since ~k(l~J) ~< q~(¢), (25) holds whenever ]vl ~< qJ(l¢l). Let z(r) = ~ - l ( r ) .  Clearly, Z is 
a function as required for Definition 2.2, and thus, V is an ISS-Lyapunov function for (1). [] 

The next lemma provides a Lyapunov-l ike criterion for input/state stability. It was introduced and proved 
in [4]. To make this work self-contained, we provide the statement together with its proof  in this paper. 

Lemma 2.14. I f  system (1) admits an ISS-Lyapunov function, then it is ISS. 

Proof. Assume system (1) admits an ISS-Lyapunov function V. Let ct i (i = 1, 2, 3) and X be as in Definition 2.2. 
Fix a point  ~ e R" and an input function u. Let x(t) denote the corresponding trajectory x(t, ~, u). Consider the 
set: S = {q: V(r/) ~< e}, where c = ~2 ° Z(NulL). 

Claim: If there exists to/> 0 such that X(to)eS, then x(t)~S for all t >~ to. 
Proof. Assume that this is not  true. Then there exist some t > to and some e > 0 such that V(x(t)) > c + e. 

Let ~ = inf{t/> to: V(x(t)) >~ c + e}. It then follows that Ix(01/> z(llull), which in turn, implies that 

V ( x ( t ) )  <.  - ~3(Ix(r) l )  < 0. 
t=r  

Thus, V(x(t))>~ V(x(z)) for some t in (to, 0.  This contradicts the minimality of ~, and hence, x(t)~S for all 
t >~ to, as claimed. [] 

Proof  of Lemma 2.14 (Continued). Now let t~ = inf{t/> 0: x(t)~S} <~ ~ .  Then it follows from the above 
argument that V(x(t)) <<. ~2oz(Null) for all t >/ t t .  This implies that 

[x(t)l~<7(q[u[j) Vt>~tl ,  (26) 

where 7 = ~1°~2°Z .  For  t < tbx(t)q~ S, which implies that Ix(t)l >/z([lull) for all t ~< tl. Consequently,  one 
has 

d rl=x(t) dt V(x(t)) = DV(tl)f(q,u) ~< - ~3([x(t)l) <~ - ~3°c~21(V(x(t))), a.e. t ~< t l .  

First of all, this inequality guarantees that x(t) is defined for all t >~ 0. Secondly, a s tandard comparison 
principle [2] implies that  there exists some )g.~e-function/~ which only depends on ~t2 and eta, such that  
V(x(t)) <<. fl(V(~),t) for t ~< t~, from which it follows that 

Ix(t)[ ~</~(l¢l,t) vt  <~ t , ,  (27) 

where fl(r, t) =- ~ 1/~(~2(r), t). Combining (26) and (27), one concludes that  Ix(t)[ ~< fl(]~[, t) + 7(Ilu[I) for all 
t t> 0. Not ing  that in the above proof, the functions fl and 7 do not  depend on each individual initial state ~ or 
the input u, one concludes that the system is ISS. [] 

Summarizing all the above, we have our  main result. 
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Theorem 1. The following properties are equivalent for any system: 
1. It is ISS. 
2. It admits an ISS-Lyapunov function. 
3. It is robustly stable. 
4. There exist o~g'~?functions flo, fll and a Otr-function ? so that (9) holds. 
5. There exists a :ge'-function Y, such that for any e > O, (11) and (12) hold for properly chosen 6 and T. 
6. It is weakly robustly stable. 

Proof. We have: 1 ¢~ 4 (see Lemma 2.6); 1 ~ 5 (see Lemma 2.7); 1 =~ 6 (see Lemma 2.12); 6 ~ 2 (see Lemma 
2.13); 2 =~ 1 (see Lemma 2.14); 2 =~3 (see Lemma 2.10); 3 =~6 (see Lemma 2.11). [] 

Acknowledgement 

We thank an anonymous  referee for many useful suggestions on improving the presentation. 

References 

[1] Z.-P. Jiang, A. Teel and L. Praly, Small gain theorem for ISS systems and applications, to appear in: Math. Control Signals Systems. 
[2] Y. Lin, E.D. Sontag and Y. Wang, A smooth converse Lyapunov theorem for robust stability, submitted. (See also IMA Preprint 

# 1192, Institute for Mathematics and Its Applications, University of Minnesota, 1993.) 
[3] L. Praly and Z.-P. Jiang, Stabilization by output feedback for systems with ISS inverse dynamics, Systems Control Lett. 21 (1993) 

19 34. 
[4] E.D. Sontag, Smooth stabilization implies coprime factorization, IEEE Trans. Automat. Control AC-34 (1989) 435-443. 
I-5] E.D. Sontag, Some connections between stabilization and factorization, in: Proc. IEEE Conf. Decision and Control, Tampa (1989) 

990--995. 
[6] E.D. Sontag, Further facts about input to state stabilization, IEEE Trans. Automat. Control AC-35 (1990) 473-476. 
[7] J. Tsinias, Sontag's "input to state stability condition" and global stabilization using state detection, Systems Control Lett. 20 (1993) 

219-226. 
1-8] J. Tsinias, Versions of Sontag's input to state stability condition and the global stabilizability problem, SIAM J. Control Optim. 31 

(1993) 928-941. 


