Input-Output Stability
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1 Introduction

A common task for an engineer is to design a system which reacts to stimuli
in some specific and desirable way. One way to characterize appropriate
behavior is through the formalism of input-output stability. In this setting
a notion of well-behaved input and output signals is made precise and the
question is posed: do well-behaved stimuli (inputs) produce well-behaved
responses (outputs)?

General input-output stability analysis has its roots in the development
of the electronic feedback amplifier of H.S. Black in 1927 and the subse-
quent development of classical feedback design tools for linear systems by H.
Nyquist and H.W. Bode in the 30’s and 40’s, all at Bell Telephone Labora-
tories. These latter tools focused on determining input-output stability of
linear feedback systems from the characteristics of the feedback components.
Generalizations to nonlinear systems were made by several researchers in
the late 50’s and early 60’s. The most notable contributions were those of
G. Zames, then at M.I.T., and [.W. Sandberg at Bell Telephone Laborato-
ries. Indeed, much of this chapter is based on the foundational ideas found
in [Sandberg, 1964] and [Zames, 1966], with additional insights drawn from
[Safonov, 1980]. A thorough understanding of nonlinear systems from an
input-output point of view is still an area of ongoing and intensive research.

The strength of input-output stability theory is that it provides a method
for anticipating the qualitative behavior of a feedback system with only rough
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information about the feedback components. This, in turn, leads to notions
of robustness of feedback stability and motivates many of the recent devel-
opments in modern control theory.

2 Systems and Stability

Throughout our discussion of input-output stability, a signal is a “reason-
able” (e.g., piecewise continuous) function defined on a finite or semi-infinite
time interval, i.e. an interval of the form [0,7") where T is either a strictly
positive real number or infinity. In general, a signal is vector-valued; its
components typically represent actuator and sensor values. A dynamical
system is an object which produces an output signal for each input signal.

To discuss stability of dynamical systems, we introduce the concept of a
norm function, denoted ||-||, which captures the “size” of signals defined on
the semi-infinite time interval. The significant properties of a norm function
are that 1) the norm of a signal is zero if the signal is identically zero,
and is a strictly positive number otherwise, 2) scaling a signal results in
a corresponding scaling of the norm, and 3) the triangle inequality holds, i.e.
[lur + uwal| < ||uil| + ||uz]|- Examples of norm functions are the p-norms.
For any positive real number p > 1, the p-norm is defined by

fully = ([ o)’ 1

where | - | represents the standard Euclidean norm. For p = oo, we define
[[ulloe := sup [u(t)] . (2)
>0

The oo-norm is useful when amplitude constraints are imposed on a problem,
while the 2-norm is of more interest in the context of energy constraints. The
norm of a signal may very well be infinite. We will typically be interested
in measuring signals which may only be defined on finite time intervals or
measuring truncated versions of signals. To that end, given a signal v and a
strictly positive real number 7, we use u, to denote the truncated signal
which is generated by appending zeros to u to extend it onto the semi-infinite
interval if necessary and then truncating, i.e. u, is equal to the (extended)
signal on the interval [0, 7] and is equal to zero on the interval (7, c0).
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Figure 1: Standard feedback configuration.

Informally, a system is stable in the input-output sense if small input
signals produce correspondingly small output signals. To make this concept
precise, we need a way to quantify the dependence of the norm of the output
on the norm of the input applied to the system. To that end, we define
a gain function as a function from the nonnegative real numbers to the
nonnegative real numbers which is continuous, nondecreasing, and zero when
its argument is zero. For notational convenience we will say that the “value”
of a gain function at oo is co. A dynamical system is stable (with respect to
the norm || ||) if there is a gain function v which gives a bound on the norm
of truncated output signals as a function of the norm of truncated input
signals, i.e.

ly-Il < ~y(llu-]l)  forall 7. (3)

In the very special case when the gain function is linear, i.e. there is at
most an amplification by a constant factor, the dynamical system is finite
gain stable. The notions of finite gain stability and closely related variants
are central to much of classical input-output stability theory, but in recent
years much progress has been made as well in understanding the role of more
general (nonlinear) gains in system analysis.

The focus of this chapter will be on the stability analysis of interconnected
dynamical systems as described in figure 1. The composite system in figure
1 will be called a well-defined interconnection if it is a dynamical system



with (2) as input and (y;) as output. The dynamical systems which make
up a well-defined interconnection will be called its feedback components.
For stability of well-defined interconnections, it is not necessary for either of
the feedback components to be stable nor is it sufficient for both of the feed-
back components to be stable. On the other hand, necessary and sufficient
conditions for stability of a well-defined interconnection can be expressed in
terms of the set of all possible input-output pairs for each feedback compo-
nent. To be explicit in this regard, we make some definitions. For a given
dynamical system ¥ with input signals u and output signals y, the set of its
ordered input-output pairs (u, y) is referred to as the graph of the dynamical
system and is denoted Gy. When the input and output are exchanged in the
ordered pair, i.e. (y,u), the set is referred to as the inverse graph of the
system and is denoted GL. Note that, for the system in figure 1, the inverse
graph of ¥y and the graph of }; lie in the same Cartesian product space
which we will call the ambient space. We will use as norm on the ambient
space the sum of the norms of the coordinates.

The basic observation regarding input-output stability for a well-defined
interconnection says, in informal terms, that if a signal in the inverse graph
of Y5 is near any signal in the graph of ¥; then it must be small. To formalize
this notion, we need the concept of the distance to the graph of ¥; from
signals = in the ambient space. This (truncated) distance is defined by

do(2,Gx,) == inf ||(z —2).]] . (1)

Egzl

Graph separation theorem: A well-defined interconnection is stable
if and only if there exists a gain function v which gives a bound on the
norm of truncated signals in the inverse graph of ¥y as a function of the
truncated distance from the signals to the graph of ¥, i.e.

S géz) = ||z/|| <~ ( d; (z,0s,) ) for all 7 . (5)

In the special case where ~ is a linear function, the well-defined intercon-
nection is finite gain stable.

The idea behind this observation can be understood by considering the
signals that arise in the closed loop which belong to the inverse graph of ¥,
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i.e. the signals (y2,y1 + d2). (Stability with these signals taken as output is
equivalent to stability with the original outputs.) Notice that, for the system
in figure 1, signals in the graph of ¥; have the form (y2+dy, y1). Consequently,
signals z € géQ and z € Gy, which satisfy the feedback equations also satisfy

(z = 2)r = (di, =da)- (6)

and
[(z = 2)-[| = [[(dy, d2)-| (7)

for truncations within the interval of definition. If there are signals = in the
inverse graph of ¥, with large truncated norm but small truncated distance to
the graph of ¥, i.e. there exists some z € Gy, and 7 > 0 such that ||(z —2),]||
is small, then we can choose (di,d3) to satisfy (6) giving, according to (7),
a small input which produces a large output. This contradicts our definition
of stability. Conversely, if there is no z which is close to = then only large
inputs can produce large x signals and thus the system is stable.

The distance observation presented above is the unitying idea behind
the input-output stability criteria that are applied in practice. However,
the observation is rarely applied directly because of the difficulties involved
in exactly characterizing the graph of a dynamical system and measuring
distances. Instead, various simpler conditions have been developed which
constrain the graphs of the feedback components in a way that guarantees
the graph of ¥; and the inverse graph of ¥, are sufficiently separated. There
are many such sufficient conditions and in the remainder of this chapter we
will describe a few of them.

3 Practical conditions and examples

3.1 The classical small gain theorem

One of the most commonly used sufficient conditions for graph separation
constrains the graphs of the feedback components by assuming that each
feedback component is finite gain stable. Then, the appropriate graphs will
be separated if the product of the coefficients of the linear gain functions is
sufficiently small. For this reason, the result based on this type of constraint
has come to be known as the small gain theorem.
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Figure 2: Classical small gain theorem

Small gain theorem: If each feedback component is finite gain stable
and the product of the gains (the coefficients of the linear gain functions)
is less than one then the well-defined interconnection is finite gain stable.

Figure 2 provides the intuition for the result. If we were to draw an
analogy between a dynamical system and a static map whose graph is a set
of points in the plane, the graph of ¥; would be constrained to the darkly
shaded conic region by the finite gain stability assumption. Likewise, the
inverse graph of Y5 would be constrained to the lightly shaded region. The
fact that the product of the gains is less than one guarantees the positive
aperture between the two regions and, in turn, that the graphs are separated
sufficiently.

To apply the small gain theorem, we need a way to verity that the feedback
components are finite gain stable (with respect to a particular norm) and
determine their gains. In particular, any linear dynamical system that can
be represented with a real, rational transfer function G(s) is finite gain stable
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in any of the p-norms if and only if all of the poles of the transfer function
have negative real part. A popular norm to work with is the 2-norm. It
is associated with the energy of a signal. For a single-input, single-output
(SISO) finite gain stable system modeled by a real, rational transfer function
G(s), the smallest possible coefficient for the stability gain function with
respect to the 2-norm is given by:

7 = sup |G(jw)] - (8)

For multi-input, multi-output systems, the magnitude in (8) is replaced by
the maximum singular value. In either case, this can be established using
Parseval’s theorem. For SISO systems, the quantity in (8) can be obtained
from a quick examination of the Bode plot or Nyquist plot for the transfer
function. If the Nyquist plot of a stable SISO transfer function lies inside
a circle of radius 4 centered at the origin then the coefficient of the 2-norm
gain function for the system is less than or equal to 4.

More generally, consider a dynamical system that can be represented by
a finite dimensional ordinary differential equation with zero initial state :

& = flz,u) , z(0)=0

y = h(z,u) ®)
Suppose that f has globally bounded partial derivatives and that there exist
positive real numbers ¢; and {3 such that

oz, w)| < G|+ Laoful - (10)

Under these conditions, if the trajectories of the unforced system with nonzero
initial conditions,
&= f(z,0) z(0) =z, , (11)
satisfy
2(8)] < kexp(—At)[z] (12)

for some positive real number £ and A and any x, € IR" then the system
(9) is finite gain stable in any of the p-norms. This can be established using
Lyapunov function arguments that apply to the system (11).

Example 3.1 Consider a nonlinear control system modeled by an ordinary differential
equation with state € IR", input v € IR™ and disturbance d; € IR™ :

&= fle,v+d) . (13)



Suppose that f has globally bounded partial derivatives and that a control v = a(#) can
be found, also with a globally bounded partial derivative, so that the trajectories of the
system

&= f(z,a(z)) , z(0) = z, (14)

satisfy the bound
2(0)] < k exp(—Xt)]z| (15)

for some positive real numbers k& and A and for all 2z, € IR™. As mentioned above, for any
function h satisfying the type of bound in (10), this implies that the system

&t = fle,ax)+d) z(0) =0

16
y = h(z,d) (16)

yi=d= a—;”f(z,a(x) +dy) (17)

which satisfies the type of bound in (10) since & and f both have globally bounded partial
derivatives.

We will show, using the small gain theorem, that disturbances d; with finite 2-norm
continue to produce outputs y with finite 2-norm even when the actual input v to the
process is generated by the following fast dynamic version of the commanded input a(z) :

¢z = Az+4 Bla(z)+d2) 2(0) = —A~1 Ba(z(0))
v Cz . (18)

Here, € is a small positive parameter, the eigenvalues of A all have strictly negative real
part (thus A is invertible) and —CA~'B = I. This system may represent unmodeled
actuator dynamics.

To see the stability result, we will consider the composite system in the coordinates x
and ¢ = z + A"! Ba(z). We have, using the notation from figure 1 :

5, z = f(z,a(z)+u) z(0)=0 (19)
n = a(z)
and
- -1 -1 _
5, : ( = ¢'AC+A'Buy | ¢(0)=0 (20)
v = C¢

with the interconnection conditions

uy = yz +dy, Uy =y + ¢ tAdy . (21)



Of course, if the system is finite gain stable with the inputs d; and ¢! Ad, then it is also
finite gain stable with the inputs d; and ds. We have already discussed that the system
¥ in (19) has finite 2-norm gain, say ;. Now consider the system X in (20). It can be
represented with the transfer function

G(s) = C(sI—e1A)71A7IB
= eC(esl — A)~1A-'B (22)
=: €G(es) .

Identifying G(s) = C(sI — A)"*A~1 B, we see that if

Yo 1= sgp o(G(jw)) (23)

then
sup o(G(jw)) = evya . (24)

w

We conclude from the small gain theorem that if € < 7L then the composite system

2
(19)-(21) with inputs d; and d2 and outputs y; = a(z) and y2 = C( is finite gain stable.

3.2 The classical passivity theorem

Another very popular condition which is used to guarantee graph separation
is given in the passivity theorem. For the most straightforward passivity re-
sult, we must have that the number of input channels is equal to the number
of output channels for each feedback component. We then identify the rel-
ative location of the graphs of the feedback components using a condition
involving the integral of the product of the input and the output signals. This
operation is known as the inner product and is denoted (-, -). In particular,
for two signals u and y of the same dimension defined on the semi-infinite
interval,

(u,y) = /OOO uT()y(t)dt . (25)

Note that (u,y) = (y,u) and (u,u) = ||u||5. A dynamical system is passive
if, for each input-output pair (u,y) and each 7 > 0, (u,,y,) > 0. The ter-
minology used here comes from the special case where the input and output
are a voltage and a current, respectively, and the energy absorbed by the
dynamical system, which is the inner product of the input and output, is
nonnegative.
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Figure 3: General passivity-based interconnection

Again by analogy to a static map whose graph lies in the plane, passivity
of a dynamical system can be thought of as the condition that the graph is
constrained to the darkly shaded region in figure 3, i.e. the first and third
quadrant of the plane. This graph and the inverse graph of a second system
would be separated if, for example, the inverse graph of the second system
were constrained to the lightly shaded region in 3, i.e. the second and fourth
quadrant but bounded away from the horizontal and vertical axes by an
increasing and unbounded distance. But, this is the same as asking that
the graph of the second system followed by the scaling *-17, i.e. all pairs
(u, —y), be constrained to the first and third quadrant again bounded away
from the axes by an increasing and unbounded distance, as in figure 4a.
For classical passivity theorems, this region is given a linear boundary as in
figure 4b. Notice that, for points (u,,y,) in the plane, if uo - yo > €(u? + y?2)
then (uo,yo) is in the first or third quadrant and (€)™!uo| > |yo| > €|uol| as
in figure 4b. This motivates the following stronger version of passivity. A
dynamical system is input and output strictly passive if there exists a
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(a) (b)
Figure 4: Different notions of input and output strict passivity

strictly positive real number e such that, for each input-output pair (u,y)
and each 7 > 0, {ur,y) > e (|[url 3 + llye )

There are intermediate versions of passivity which are also useful. These
correspond to asking for an increasing and unbounded distance from either
the horizontal axis or the vertical axis but not both. For example, a dy-
namical system is input strictly passive if there exists a strictly positive
real number € such that, for each input-output pair (u,y) and each 7 > 0,
(ur,y-) > €||us]|3. Similarly, a dynamical system is output strictly pas-
sive if there exists a strictly positive real number € such that, for each input-
output pair (u,y) and each 7 > 0, (u,,y,) > €||y-|[3. It is worth noting
that input and output strict passivity is equivalent to input strict passive
plus finite gain stability. This can be shown with standard manipulations of
the inner product. Also, the reader is warned that all three types of strict
passivity mentioned above are frequently simply called “strict passivity” in
the literature.

Again by thinking of a graph of a system as a set of points in the plane,
output strict passivity is the condition that the graph is constrained to the
darkly shaded region in figure 5, i.e. the first and third quadrant with an
increasing and unbounded distance from the vertical axis. To complement
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Figure 5: Interconnection of output strictly passive systems
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such a graph, consider a second dynamical system which, when followed
by the scaling ‘-1’ is also output strictly passive. Such a system has a
graph (without the ‘-1’ scaling) which is constrained to the second and fourth
quadrant with an increasing and unbounded distance from the vertical axis.
In other words, its inverse graph is constrained to the lightly shaded region
of figure 5, i.e. to the second and fourth quadrants but with an increasing
and unbounded distance from the horizontal axis. The conclusions that we
can then draw, using the graph separation theorem, are summarized in the
following passivity theorem.

Passivity theorem: If one dynamical system and the other dynamical
system followed by the scaling -1 are

e both input strictly passive, OR
e both output strictly passive, OR
e respectively, passive and input and output strictly passive

then the well-defined interconnection is finite gain stable in the 2-norm.

To apply this theorem, we need a way to verify that the (possibly scaled)
feedback components are appropriately passive. For stable SISO systems
with real, rational transfer function G(s) it again follows from Parseval’s
theorem that if

Re G(jw) >0

for all real values of w then the system is passive. If the quantity Re G(jw)
is positive and uniformly bounded away from zero for all real values of w
then the linear system is input and output strictly passive. Similarly, if there
exists € > 0 such that, for all real values of w,

Re G(jw —¢€) >0 (26)

then the linear system is output strictly passive. So, for SISO systems mod-
eled with real, rational transfer functions, passivity and the various forms of
strict passivity can again be easily checked by means of a graphical approach
such as a Nyquist plot.
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More generally, for any dynamical system that can be modeled with a
smooth, finite dimensional ordinary differential equation

5 i {Eigﬂ(m , z(0)=0 (27)

if there exists a strictly positive real number € and a nonnegative function

V :IR" — IRso with V(0) = 0 satisfying

W o)) < —eh*(@)hiz) 29
W wgta) = W) (29)

then the system is output strictly passive. With e = 0, the system is passive.
Both of these results are established by integrating V' over the semi-infinite
interval.

Example 3.2 (This example is motivated by the work in Berghuis and Nijmeijer, Sys-
tems & Control Letters, 21:289-295. 1993). Consider a “completely controlled dissipative
Euler-Lagrange” system with generalized “forces” F'| generalized coordinates ¢, uniformly
positive definite “inertia” matrix I(¢), Rayleigh dissipation function R(¢) and, say posi-
tive, potential V' (¢) starting from the position ¢4. Namely, let the dynamics of the system
be given by the Euler-Lagrange-Rayleigh equations :

oL oL OR
—(¢,9) = ——(q,4¢ FT — —=(4 = i(0) =
g 01 = 5 @0 + og @ 10)=4a, q(0)=0 (30)
where L is the Lagrangian :
L(g,d) = 54" H@)d — V() - (31)

Along the solutions of (30), we have :

. oL oL oL 6.L OR
L = —i+ —¢= 1§ — —FT 4+ = 2
aq.q+aqq aq.q+ [a +3q. q (32)
oL OR — OR
= (ZZ4) - FT——,]': iTI(q)d —[FT——,]' 33
qq) [ K (6" I(q) 4) K (33)
—_— R . OR
_ _|pT L T_ :
= 2L4+V [F 8(1'](1 2V + [F aq.]q (34)



We will suppose that there exists € > 0 such that

R, .. . )
a—q-(Q)q > gl . (35)

Now let V4 be a function so that the modified potential:
V=V +Vs (36)

has a global minimum as ¢ = g4 and let the generalized “force” be

We can see that the system (30) combined with (37), having input Fj, and output ¢, is
output strictly passive by integrating the derivative of the defined Hamiltonian

H=34"1(¢)§ + Vmlg) = L + 2V +Vqy. (38)
Indeed the derivative is
o= |pr o2k q (39)

and, integrating, we get for each 7 :

<[FmT — %—g(qT)T] q> = H(r)— H(0) . (40)
Since H > 0, H(0) = 0 and (35) holds we get

(Frnrydr) > €llg-l]3 (41)

Now we know from the passivity theorem that if F),, is generated from negative dynamic
feedback of ¢, where the compensator is output strictly passive, then the composite feed-
back system, with the standard definitions of inputs and outputs, will be finite gain stable
using the 2-norm. One such compensator is simply the identity mapping. However, there
is interest in designing a linear, output strictly passive compensator which, in addition,
has no direct feed-through term. The reason is that if, in fact, there is no disturbance at
the input of the compensator we can implement the compensator with measurement only
of ¢ and without ¢. Indeed, in general

G(o)i = Glo)s (1) = Gosta - (42)

and the system G(s)s is implementable if G(s) has no direct feed-through terms. To design
an output strictly passive linear system without direct feed-through, let A be a matrix
having all eigenvalues with strictly negative real part so that, by a well-known result in
linear systems theory, there exists a positive definite matrix P satisfying :

ATP4+PA=—T. (43)
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Then, for any B matrix of appropriate dimensions, the system modeled by the transfer
function

G(s) = BT P(sT — A)™'B (44)

is output strictly passive. To see this, consider a state-space realization

z = Az+ Bu z(0)=0 (45)
y = BTPz
and note that
YTP: = —2Tz + 227PBu (46)
= —2'z + 2yTu. (47)
But, with (45) we have, for some strictly positive real number ¢,
2eyTy < alw. (48)
So, integrating (47) and using that P is positive definite, we get, for all 7,
(e ur) > cllys | (49)
As a point of interest, one could verify that
G(s)s = BT PA(sT— A)"'B+ BTPB . (50)

3.3 Simple nonlinear separation theorems

In this section we illustrate how allowing regions with nonlinear boundaries
in the small gain and passivity contexts may be useful. First we need a
class of functions that will help us describe nonlinear boundaries. A proper
separation function is a function from the nonnegative real numbers to the
nonnegative real numbers which is continuous, zero at zero, strictly increasing
and unbounded. The main difference between a gain function and a proper
separation function is that the latter is invertible and the inverse is another
proper separation function.

3.3.1 Nonlinear passivity

We will briefly discuss a notion of nonlinear input and output strict passivity.
To our knowledge, this notion has not been used much in the literature. The
notion that we have in mind simply replaces the linear boundaries in the input
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and output strict passivity definition by nonlinear boundaries as in figure 4a.
A dynamical system is nonlinearly input and output strictly passive if
there exists a proper separation function p such that, for each input-output
pair (u,y) and each 7> 0, (ur, g2} > |[ur| a0 (ltr 1) £ lyellap(1 13 1) (Note
that in the classical definition of strict passivity, p(s) = es for all s > 0.)

Nonlinear passivity theorem: If one dynamical system is passive and
the other dynamical system followed by the scaling ‘-1’ is nonlinearly
input and output strictly passive then the well-defined interconnection is

stable using the 2-norm.

Example 3.3 Let ¥; be a single integrator system:

Uy z1(0)=0

T

= r,l
v = T1. (O )
This system is passive since
T d T
0< b= [ Ghe@'a= [ nOuod = ). G
0 0

Let the X5 be a system which scales the instantaneous value of the input according to the
energy of the input:

iy = ul  23(0)=0

o 1 (53)
Y2 = us 1+|m2|0~25 .

This system followed by the scaling ‘-1’ is nonlinearly strictly passive. To see this, first
note that

za(t) = [uz,II3 (54)

which is a nondecreasing function of ¢. So,

o) = [0 ()

> _ u(t)dt 55
= 1+ |;732(T)|0'25 o 2() ( )
2
= W l[uz, 1[5 -
Now we can define 0.5
.08
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which is a proper separation function so that

(=y2,,u2,) > 2p(||ua, [|2)||ua,[|2 - (57)
Finally, note that
o = [ bt < s, | (58)
0 (14 2925(1))
so that
(=y2,,u2,) > p(l|uz, |[2)||uz, ]2 + p(lly2, ||2)||y2, |2 - (59)

The conclusion that we can then draw from the nonlinear passivity theorem is that the
interconnection of these two systems:

1
£, = - d S d
T (z1 +d2) <1+|x2|0.25) + dq
oS ) (60)
B = n
(o1 4 2) Ty
= —(xz RS
Yo 1 2 1+|z2|0«25

is stable when measuring input (d1, d2) and output (y1, y2) using the 2-norm.

3.3.2 Nonlinear small gain

Just as with passivity, the idea behind the small gain theorem does not
require the use of linear boundaries. Consider a well-defined interconnection
where each feedback component is stable but not necessarily finite gain stable.
Let ~; be a stability gain function for ¥; and let ~; be a stability gain
function for ¥;. Then the graph separation condition will be satisfied if the
distance between the curves (s,71(s)) and (72(r),r) grows without bound
as in figure 6. This is equivalent to asking whether it is possible to add to
the curve (s,71(s)) in the vertical direction and to the curve (y2(r),r) in the
horizontal direction by an increasing and unbounded amount, i.e. yielding
new curves ( s,71(8) + p(s) ) and ( Y2 (r) + p(r),r ) where p is a proper
separation function, in such a way that the modified first curve is never
above the modified second curve. If this is possible, we will say that the
composition of the functions v; and =, is a strict contraction. To say that
a curve (s,41(s)) is never above a second curve (J(r),r) is equivalent to
saying that 41(32(s)) < s or 42(31(s)) < s for all s > 0. (Equivalently, we
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Inverse (72(7“), r)

Graph of X, /\

Graph of X3

Figure 6: Nonlinear small gain theorem

will write 41 042 < Id or 43 041 < Id.) So, requiring that the composition of
~v1 and 7, is a strict contraction is equivalent to requiring that there exists
a strictly proper separation function p so that (v + p) o (v2 + p) < 1d,
(equivalently (y2 + p) o (1 + p) < 1d). This condition was made precise in
[Mareels and Hill, 1992]. (See also [Jiang, et. al., 1995].) Note that it is
not enough to add to just one curve since it is possible for the vertical or
horizontal distance to grow without bound while the total distance remains
bounded. Finally, note that if the gain functions are linear the condition is
the same as the condition that the product of the gains is less than one.

Nonlinear small gain theorem: If each feedback component is stable
(with gain functions v; and 72) and the composition of the gains is a
strict contraction then the well-defined interconnection is stable.

To apply the nonlinear small gain theorem we need a way to verify that
the feedback components are stable. To date, the most common setting for
using the nonlinear small gain theorem is when measuring the input and
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output using the co-norm. For a nonlinear system which can be represented
by a smooth, ordinary differential equation :

i o

where h(0,0) = 0, the system is stable (with respect to the co-norm) if there
exists a positive definite and radially unbounded function V' : IR* — IR>¢, a
proper separation function ¢ and a gain function 4 such that

O ) < (e + 40 (62)

Since V' is positive definite and radially unbounded, there exist additional
proper separation functions a and & such that

af[z]) < V(z) < a(fz]) . (63)

Also, since h is continuous and zero at zero, there exist gain functions ¢, and

¢, such that
7z, u)| < ¢a(l2]) + Pullul) - (64)

Given all of these functions, a stability gain function can be computed to be
1= deoa oaoy od 4 by (65)

For more details, the reader is directed to [Sontag, 1989].

Example 3.4 Consider the composite system

&t = Awx+ Bsat(z+d;), z(0)=0 (66)
0

z = —z4e(exp(lz|+d2)—1), 2(0)=
where z € IR", z € IR, the eigenvalues of A all have strictly negative real part, € is a

small parameter and sat(s) = sgn(s) min{|s|, 1}. This composite system is a well-defined
interconnection of the subsystems

& = Az+ Bsat(ui) z(0)=0

21 : (67)

o= |z
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and

z

—z+e(exp(uz)—1) z(0) =0

Y = z.

pIP (68)

A gain function for the X; system is the product of the co-gain for the linear system

Az + Bu z(0) =0

T

Lok &
which we will call 41, with the function sat(s), i.e. for the system X,
[ylleo < F18at(]|usllco) - (70)
For the system 34, it is easy to see that
[I2[loc < lel (exp (JJuzlleo) — 1) - (71)

We must have that the distance between the curves (s, §1sat(s)) and (|e| (exp (r) — 1),7)
grows without bound. Graphically, one can see that a necessary and sufficient condition
for this to be the case is that

(72)

3.4 General conic regions

There are many different ways to partition the ambient space in an attempt
to establish the graph separation condition in (5). So far we have looked at
only two very specific sufficient conditions, the small gain theorem and the
passivity theorem. The general idea in these theorems is to constrain signals
in the graph of ¥; to be inside some conic region, and signals in the inverse
graph of ¥, to be outside of this conic region. Conic regions more general
than those used for the small gain and passivity theorems can be generated
by using operators on the input-output pairs of the feedback components.
Let C and R be operators on truncated ordered pairs in the ambient
space and let v be a gain function. We say that the graph of ¥; is inside
CoNE(C, R, ~) if, for each (u,y) =: z belonging to the graph of ¥,

ICE)I < 7(IR(z7)[])  forall 7. (73)

On the other hand, we say that the inverse graph of X, is strictly outside
CONE(C, R, ~) if there exists a proper separation function p such that, for
each (y,u) =: x belonging to the inverse graph of ¥,

IC(z )| = v o (Id + p)([[R(z)[)) + p([lz-|])  forallr. (74
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We will only consider the case where the maps C and R are incrementally
stable, i.e. there exists a gain function 4 such that, for each z; and z; in
the ambient space and all 7,

1C(21,) = Clas,)]

< A(|ler, — w2, ]))
[IR(z1,) — Rzz,)|| < 7 (75)

(||$1‘r - x2‘r||) °

In this case, the following result holds.

Nonlinear conic sector theorem: If the graph of ¥, is in-
side CONE(C,R,~) and the inverse graph of ¥, is strictly outside
CoNE(C, R, ~) then the well-defined interconnection is stable.

In fact, when v and p are linear functions, the well-defined interconnection
is finite gain stable.

The small gain and passivity theorems we have discussed can be inter-
preted in the framework of the nonlinear conic sector theorem. For example,
for the nonlinear small gain theorem, the operator C is a projection onto the
second coordinate in the ambient space while R is a projection onto the first
coordinate; 7 is the gain function «; and the small gain condition guarantees
that the inverse graph of X, is strictly outside of the cone specified by this
C, R and ~.

In the remaining subsections we will discuss other useful choices for the
operators C and R.

3.4.1 The classical conic sector (circle) theorem

For linear SISO systems connected to memoryless nonlinearities, there is an
additional classical result, known as the circle theorem, which follows from
the nonlinear conic sector theorem using the 2-norm and taking

Cluy) = y+eu
R(u,y) = ru r>0 (76)
v(s) = s.

Indeed, suppose ¢ is a memoryless nonlinearity which satisfies

|p(w,t) + cu| < |rul for all ¢,u . (77)
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$(u,1)

—(e—r)

—(c+ r)x

Figure 7: Instantaneous sector

Graphically, the constraint on ¢ is shown in figure 7. (In the case shown,
¢ >r >0.) We will use the notation SECTOR[—(¢ + r), —(c — r)] for the
memoryless nonlinearity. It is also clear that the graph of ¢ lies in the
CoNE(C,R,~) with C,R,~ defined in (76). For a linear, time invariant,
finite dimensional SISO system, whether its inverse graph is strictly outside
of this cone can be determined by examining the Nyquist plot of its transfer
function. The condition on the Nyquist plot is expressed relative to a disk
D.,, in the complex plane centered on the real axis passing through the points
on the real axis with real part —1/(c+r) and —1/(¢ —r) as shown in figure

8.
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Figure 8: A disc in the complex plane

Circle theorem: Let r > 0 and consider a well-defined interconnection
of a memoryless nonlinearity belonging to SECTOR[—(c + r), —(c — r)]
with a SISO system having a real, rational transfer function G(s). If:

e r > ¢, (I(s) is stable and the Nyquist plot of G/(s) lies in the interior
of the disc D,,, or

e r = ¢, (§(s) is stable and the Nyquist plot of G(s) is bounded away
and to the right of the vertical line passing through the real axis at
the value —1/(c+r), or

e r < ¢, the Nyquist plot of G(s) (with Nyquist path indented into
the right-half plane) is outside of and bounded away from the disc
D.,, and the number of times the plot encircles this disc in the
counterclockwise direction is equal to the number of poles of G(s)
with strictly positive real part,

then the interconnection is finite gain stable.
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Case 1 is similar to the small gain theorem, while case 2 is similar to the
passivity theorem. We will now explain case 3 in more detail. Let n(s) and
d(s) represent, respectively, the numerator and denominator polynomials of
G/(s). Since the point (—1/¢,0) is inside the disc D,,, it follows from the
assumption of the theorem together with the well-known Nyquist stability
condition that all of the roots of the polynomial d(s) + cn(s) have negative
real part. Then we can write y = G(s)u = N(s)D(s)"'u where

d(s)
N(s) :=

d(s) + en(s)

and, by taking z = D(s) u, we can describe all of the possible input-output
pairs as

(u,y) = ( D(s)z, N(s)z ) ) (79)
Notice that D(s) + ¢N(s) =1 so that

w4 cyll2 = [I=]]2 - (80)

To put a lower bound on this expression in terms of ||ul|]; and [|y]|2, for
the purpose of showing that the graph is strictly outside of the cone defined
in (76), we will need the 2-norm gains for systems modeled by the transfer
functions N(s) and D(s). We will use the symbols vx and vp for these gains.
The condition of the circle theorem guarantees that vy < r~!. To see this,

note that
G(s)

(s) = T+ eG(s) (81)
implying
Gjw)
= — 82
TN R ‘1 + cG(jw) (82)
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But
L+ G = |GG = (cRe{G(jw)} +1)" + ¢ Im* {G(jw)}
— 1 Ret {Gljw)} - I {Gjwo))

= (& —r?) (Re{G(jw)H 62;2)2

T2

+ (¢ = r?) Im* {G(jw)} -

S
(83)
Setting the latter expression to zero defines the boundary of the disc D.,.
Since outside of this disc the expression is positive, it follows that vy < r~1.
Returning to the calculation initiated in (80), note that 4y < r~* implies
that there exists a strictly positive real number ¢ such that

c2—r

(1 - ey’ 27+ 2. (84)
So,
luteglls = lzlla = (1 — em)llzlls + eroll2l)
> (L—=e)n' lyllz + ellull2 (85)

> (r+llyllz + e(lfullz + [lyll2) -

We conclude that the inverse graph of the linear system is strictly outside of
the CONE(C, R,~) as defined in (76).

Note, incidentally, that N(s) is the closed loop transfer function from
dy to y; for the special case where the memoryless nonlinearity satisfies
é(u) = —cu. This suggests another way of determining stability: first make
a preliminary loop transformation with the feedback —cu, changing the orig-
inal linear system into the system with transfer function N(s) and changing
the nonlinearity into a new nonlinearity ¢ satisfying |q~$(u, t)| < r|ul, and then
apply the classical small gain theorem to the resulting feedback system.
Example 3.5 Let

175
(s —1)(s+4)% "
The Nyquist plot of G(s) is shown in figure 9. Since G(s) has one pole with positive real

G(s) = (86)

part only the third condition of the circle theorem can apply. A disc centered at -8.1
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Figure 9: The Nyquist plot for G(s) in example 3.5.

on the real axis and with radius 2.2 can be placed inside the left loop of the Nyquist
plot. Such a disc corresponds to the values ¢ = 0.293 and r = 0.079. Since the Nyquist
plot encircles this disc once in the counterclockwise direction, it follows that the standard
feedback connection with the feedback components G(s) and a memoryless nonlinearity

constrained to the SECTOR[-0.372,-0.214] is stable using the 2-norm.

3.4.2 Coprime fractions

Typical input-output stability results based on stable coprime fractions are
corollaries of the conic sector theorem. For example, suppose both ¥; and
Yy are modeled by transfer functions G1(s) and G3(s). Moreover, assume
there exist stable (in any p-norm) transfer functions Ny, Dy, Ni, D1, Ny and
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Dy such that Dy, D, and D, are invertible and

Gl - NlDl_l :Dl_lﬁl

Gy = NoDj! (87)

Id - DlDQ - NlNQ .
Let C(u,y) = Dy(s)y — Ni(s)u, which is incrementally stable in any p-norm,
let R(u,y) = 0 and let v = 0. Then, it turns out that the graph of ¥; is
inside and the inverse graph of ¥, is strictly outside CONE(C, R, v) and thus
the feedback loop is finite gain stable in any p-norm.

To verify these claims about the properties of the graphs, first recognize
that the graph of ¥; can be represented as

Gy, = ( Di(s)z, Ni(s)z ) (88)

where z represents any reasonable signal. Then, for signals in the graph of
DI
C(D1(8)zr, N1(8)z;) = D1(s)N1(s)zr — N1(s)D1(s)z, = 0. (89)

Conversely, for signals in the inverse graph of ¥,

Dl(s)Dg(s)zT — Nl(S)NQ(S)ZT

lo( M)z, i)z )| = |
= = 0
(3)e. . Dato )|

for some strictly positive real number e¢. The last inequality follows from the
fact that Dy and NV, are finite gain stable.

Y

€

Example 3.6 (This example is drawn from the work in Potvin, M-J., J. Jeswiet, and
J.-C. Piedboeuf, Trans. of NAMRI/SME. vol. XXII, pp. 373-377,1994.) Let X; represent
the fractional Voigt-Kelvin model for the relation between stress and strain in structures
displaying plasticity. For suitable values of Young’s modulus, damping magnitude, and
order of derivative for the strain, the transfer function of ¥; is given by

1
1+

91(s) =

B
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1
Integral feedback control, ga(s) = ——, may be used for purposes of asymptotic tracking.
s

Here we can take

1 1+
Ni(s) = s+ 1 . Dy(s) = 5+(1 oy 1)
B T (e R B

It can be shown that these fractions are stable linear operators, and thereby incrementally
stable, in the 2-norm. (This fact, in essence, is equivalent to proving nominal stability and
can be shown using Nyquist theory.) Moreover, it is easy to see that D1 Dy — N1 Ny = 1
so that the feedback loop is stable, in fact finite gain stable.

3.4.3 Robustness of stability and the gap metric

It is clear from the original graph separation theorem that if a well-defined in-
terconnection is stable, i.e. the appropriate graphs are separated in distance,
then modifications of the feedback components will not destroy stability if
the modified graphs are close to the original graphs.

Given two systems X; and ¥ define 6(¥1,%) = a if « is the smallest
number for which

r€Gy, = d.(2,Gy,) <alz|, forallr.

—

The quantity 6(-,-) is called the “directed gap” between the two systems
and characterizes basic neighborhoods where stability as well as closed loop
properties are preserved under small perturbations from the nominal system
Y1 to a nearby system X.

More specifically, if the interconnection of (X, Y;) is finite gain stable,
we define the gain By, 5, to be the smallest real number such that

d ' d
H( L ”) I- < ﬂmu( ) I., forall 7.
U1 d2

If ¥ is such that

5(2172)621722 <1,
then the interconnection of (¥, 3,) is also finite gain stable.
As a special case let X, ¥, 3, represent linear systems acting on fi-
nite energy signals. Further, assume that there exist stable transfer func-
tions N, D where D is invertible, G; = ND™! and normalized so that
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DT(=s)D(s) + NT(—s)N(s) = Id. Then, the class of systems in a ball
with radius 4 > 0, measured in the directed gap, is given by CONE(C, R, ~),
where R = Id and

C=1d- ( N(s) )H+(DT(—3),NT(—3))

where I1, designates truncation part of the Laplace transform of finite energy
signals to the part with poles in the left half plane. At the same time, if
By, x, < 1/v, then it can be shown that ¥, is strictly outside the cone
CoNE(C, R, ) and, therefore, stability of the interconnection of ¥ with ¥,
is guaranteed for any ¥ inside CONE(C, R, ~).

Given ¥ and ¥, the computation of the gap reduces to a standard H..-
optimization problem (see [Georgiou and Smith, 1990]). Also, given 3, the
computation of a controller 5 which stabilizes a maximal cone around ¥; re-
duces to a standard Hs-optimization problem ([Georgiou and Smith, 1990])
and forms the basis of the H.,-loop shaping procedure for linear systems
introduced in [McFarlane and Glover, 1989].

A second key result which motivated introducing the gap metric is the
claim that the behavior of the feedback interconnection of ¥ and ¥, is “sim-
ilar” to that of the interconnection of ¥; and ¥, if and only if the distance
between ¥ and ¥, measured using the gap metric, is small (i.e., ¥ lies within
a “small aperture” cone around ¥;). The “gap” function is defined as

- —

6(%1, %) = max{é6(X1,%),6(%,%1)}

—

to “symmetrize” the distance function 6(-,-) with respect to the order of the
arguments. Then, the above claim can be stated more precisely as follows:
for each € > 0 there exists a ((€) > 0 such that

6(X1, %) <((e) = [z — @1l; < efld]|-

where d = (2) is an arbitrary signal in the ambient space and = (resp. z1)

represents the response (dll;:yz) of the feedback interconnection of (X, ;)

(resp. (X1,%2)). Conversely, if ||z — z1]|; < €||d|| for all d and 7, then
5(21,2) S €.
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4 Defining terms

Ambient space: The Cartesian product space containing the inverse graph
of ¥y and the graph of ¥;.

Distance (from a signal to a set): Measured using a norm function.
The infimum, over all signals in the set, of the norm of the difference between
the signal and a signal in the set. See equation (4). Used to characterize
necessary and sufficient conditions for input-output stability. See section 2.

Dynamical system: An object which produces an output signal for each
input signal.

Feedback components: The dynamical systems which make up a well-
defined interconnection.

Finite gain stable system: A dynamical system is finite gain stable if
there exists a nonnegative constant such that, for each input-output pair, the
norm of the output is bounded by the norm of the input times the constant.

Gain function: A function from the nonnegative real numbers to the
nonnegative real numbers which is continuous, nondecreasing and zero when
its argument is zero. Used to characterize stability. See section 2. (Some
form of) the symbol 7 is usually used.

Graph (of a dynamical system): The set of ordered input-output pairs
(u,y).
Inner product: Defined for signals of the same dimension defined on the

semi-infinite interval. The integral from zero to infinity of the component-
wise product of the two signals.

Inside (or strictly outside) CONE(C,R,v): Used to characterize the
graph or inverse graph of a system. Determined by whether or not signals in
the graph or inverse graph satisty certain inequalities involving the operators
C and R and the gain function . See equations (73) and (74). Used in the
conic sector theorem. See section 3.4.

Inverse graph (of a dynamical system): The set of ordered output-
input pairs (y,u).
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Norm function (||-||): Used to measure the size of signals defined on the
semi-infinite interval. Examples are the p-norms p € [1, 00| (see equations

(1) and (2)).

Parseval’s theorem: Used to make connections between properties of
graphs for SISO systems modeled with real, rational transfer functions and
frequency domain characteristics of their transfer functions. Parseval’s the-
orem relates the inner product of signals to their Fourier transforms if they
exist. For example, it states that, if two scalar signals v and y, assumed to
be zero for negative values of time, have Fourier transforms @ (jw) and g(jw)
then | e
(wy) = 5= [ 5 Gw)atje)ds

Passive:  Terminology motivated from electrical network theory. A dy-
namical system is passive if the inner product of each input-output pair is
nonnegative.

Proper separation function: A function from the nonnegative real
numbers to the nonnegative real numbers which is continuous, zero at zero,
strictly increasing and unbounded. Such functions are invertible on the non-
negative real numbers. Used to characterize nonlinear separation theorems.
See section 3.3. (Some form of) the symbol p is usually used.

Semi-infinite interval: The time interval [0, c0).

Signal: A “reasonable” vector-valued function defined on a finite or semi-
infinite time interval. By “reasonable” we mean piecewise continuous or
measurable.

SISO systems: An abbreviation for single input, single output systems.

Stable system: A dynamical system is stable if there exists a gain function
such that, for each input-output pair, the norm of the output is bounded by
the gain function evaluated at the norm of the input.

Strict contraction: The composition of two gain functions v; and 3 is
a strict contraction if there exists a proper separation function p such that
(1 4+ p) o (v2+ p) < Id. Recall that Id(s) = s and 31 0 F2(s) = 1 (F2(s)).
Graphically, this is the equivalent to the curve (s,71(s) + p(s)) never being
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above the curve (y2(r) + p(r),r). This concept is used to state the nonlinear
small gain theorem. See section 3.3.2.

Strictly passive: We have used various notions of strictly passive including
input-, output-, input and output-, and nonlinear input and output- strictly
passive. All notions strengthen the requirement that the inner product of
the input-output pairs be positive by requiring a positive lower bound that
depends on the 2-norm of the input and/or output. See section 3.2.

Truncated signal: A signal defined on the semi-infinite interval which
is derived from another signal (not necessarily defined on the semi-infinite
interval) by first appending zeros to extend the signal onto the semi-infinite
interval and then keeping the first part of the signal and setting the rest of
the signal to zero. Used to measure the size of finite portions of signals.

Well-defined interconnection: An interconnection of two dynamical
systems in the configuration of figure 1 which results in another dynamical
system, i.e. one in which an output signal is produced for each input signal.
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6 For further information

As mentioned at the outset, the material presented in this chapter is based
on the results in [Sandberg, 1964], [Zames, 1966(a,b)] and [Safonov, 1980].
In the latter, a more general feedback interconnection structure is considered
where nonzero initial conditions can also be consider as inputs.

Other excellent references on input-output stability include The Analysis
of Feedback Systems, 1971, by J.C. Willems and Feedback systems: input-
oulput properties, 1975, by C. Desoer and M. Vidyasagar. A nice text ad-
dressing the factorization method in linear systems control design is Con-
trol Systems Synthesis: a Factorization Approach, 1985, by M. Vidyasagar.
A treatment of input-output stability for linear, infinite dimensional sys-
tems can be found in chapter 6 of Nonlinear Systems Analysis, 1993, by M.
Vidyasagar. That chapter also discusses many of the connections between
input-output stability and state-space (Lyapunov) stability. Another excel-
lent reference is Nonlinear Systems, 1992, by H. Khalil.

There are results similar to the circle theorem that we have not discussed.
These results go under the heading of “multiplier” results and apply to feed-
back loops with a linear element and a memoryless, nonlinear element with
extra restrictions such as time invariance and constrained slope. Special cases
are the well-known Popov and off-axis circle criterion. Some of these results
can be recovered using the general conic sector theorem although we have
not taken the time to do this. Other results, like the Popov criterion, im-
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pose extra smoothness conditions on the external inputs which are not found
in the standard problem. References for these problems are Hyperstability
of Control Systems, 1973, V.M. Popov and Frequency domain criteria for
absolute stability, 1973, by K.S. Narendra and J.H. Taylor.

Another topic closely related to these multiplier results is the struc-
tured small gain theorem for linear systems which motivates much of the
p-synthesis control design methodology. This is described, for example, in
p-Analysis and synthesis toolbox, 1991, by G. Balas, J. Doyle, K. Glover, A.
Packard and R. Smith.

There are many advanced topics concerning input-output stability that
we have not addressed. These include the study of small-signal stability,
well-posedness of feedback loops, and control design based on input-output
stability principles. Many articles on these topics frequently appear in con-
trol and systems theory journals such as I[EEE Transactions on Automatic
Control, Automatica, International Journal of Control, Systems and Control
Letters, Mathematics of Control, Signals, and Systems, to name a few.

35



