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Abstract

This paper deals with nonlinear least-squares problems involving the fitting to data of
parameterized analytic functions. For generic regression data, a general result establishes
the countability, and under stronger assumptions finiteness, of the set of functions giving
rise to critical points of the quadratic loss function. In the special case of what are usually
called “single-hidden layer neural networks,” which are built upon the standard sigmoidal
activation tanh(x) (or equivalently (1 + e−x)−1), a rough upper bound for this cardinality
is provided as well.

1 Introduction

A very typical problem concerning function approximation and regression with so-called artifi-
cial neural networks, especially in applications dealing with learning and pattern recognition, is
as follows. There is given a specification of a wiring diagram (a labeled graph) that stipulates
how information flows from node to node (nodes being typically called “neurons”), and, for
each such node, there is a rule that restricts the particular type of combination (linear, poly-
nomial, and so forth) of the incoming signals that will be used as input to the node. These
signals arrive from other nodes as well as from external sources. In addition, a transfer function
(“activation”) is specified for each node; this function indicates what computation is performed
by that node on its input in order to produced the output computed by the respective node.
One of the nodes acts as a designated “output node,” and its output represents the response
of the whole network to the external inputs. Once than such an architecture has been defined,
it remains to set the numerical values of the constants appearing as “weights” or “parameters”
(such as the coefficients of linear combinations or polynomials); for each choice of these param-
eters, a particular function of inputs is computed. The values of parameters are often obtained
by minimization of a quadratic loss function which measures the goodness of fit to a given set
of numerical data.

By far the most common model in experimental work is that in which affine combinations
are performed at the input of each internal node, each of which then computes an application
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of the “standard sigmoid” tanh(x) = (ex−e−x)/(ex+e−x) —or equivalently, if a range of {0, 1}
is preferred, then up to a rescaling and translation (1+e−x)−1. The output node then performs
a final affine combination of the outputs of the internal nodes. These are “single hidden layer
networks,” which compute functions of the following type:

β(x, u) = c0 +
K∑
i=1

ci tanh (Aiu+ bi) .

The inputs u are vectors in Rm. The integer K (the “number of hidden units” in neural
network terminology) is assumed to be fixed. The K(m + 2) + 1 parameters of the network
(summarized by the vector “x”), namely the scalars c0, . . . , cK and b1, . . . , bK , and the m-row
vectors A1, . . . , AK , are thought of as variables that will be tuned so as to make β(x, ui) ≈
yi when given a set of inputs and corresponding target outputs. There are portions of the
parameter space that give rise to degeneracies. For instance, if one coefficient ci (i 6= 0)
vanishes, then the loss function β is independent of the values of the corresponding Ai and bi.
If some Ai = 0 then the corresponding term is constant and can be absorbed into c0. If for
some pair i 6= j it is the case that Ai = Aj and bi = bj , then the terms corresponding to i and j
can be combined, and only the sum ci + cj is relevant, resulting also in a loss of dimensionality.
Similarly, since tanh is an odd function, if (Ai, bi) = −(Aj , bj) then terms can be combined as
well. Thus a natural parameter space is the set X consisting of all the bi’s, ci’s, and Aij ’s for
which these exceptional situations do not occur.

Assume given a training or regression data set (“labeled sample”)

(u, y) =
(
(u1, . . . , uN ), (y1, . . . , , yN )

)
where we interpret the ui’s as input vectors (“regressors” in statistical terms) and the scalars
yi’s as targets or response vectors desired for the respective ui’s. The regression problem is
that of minimizing (typically by means of steepest descent or other local search techniques) the
quadratic loss

E(u,y)(x) :=
1
2

N∑
i=1

(
β(x, ui)− yi

)2

over X. It has been often remarked that, even for extremely simple cases (such as K=1 and
supposing that the inputs are binary vectors) there arise critical points associated to non-global
local minima, and thus the study of the set of critical points of E(u,y) has been frequently put
forward as a research topic; see [3, 4, 8, 14, 17]. In this context it has also been observed
many times that —as with other least-squares problems— pathological behavior will depend
heavily on the training sets not being in “general position” in appropriate senses of probability or
topological density (cf. [4, 8, 14]). In this paper, a combination of techniques from [1, 11, 16, 19]
—dealing with reconstruction of parameters from the functional form, the need for generic data
(u, y) with large enough N , and the use of certain tools from analytic geometry and from model
theory in logic— is used in order to obtain several characterizations of the critical set.

One of the main results given in this paper (Corollary 6.4) is that the set of critical points is
finite, and in particular less than 28(NK)2

(assuming that there are enough samples to make the
problem not underdetermined, specifically that N ≥ 2K(m+ 2) + 3, and for generic regression
data). If the number of samples scales linearly on the number of nodes K, and assuming a
constant input dimension, an upper bound of the type

2cK
4
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results. (A lower bound of the type 2c
′K logK also holds, due to symmetries in the problem:

any exchange among the K terms in the sum preserves β.) The finiteness results (not the
above bound) can be generalized to more general “neural networks” and in fact many of the
intermediate results apply equally well to completely general least-squares problems involving
analytic functions.

The paper is organized as follows. Section 2 presents the basic terminology. Section 3
provides a result showing that analytically parameterized classes of functions can be identified
generically on the basis of just 2r + 1 samples, if r is the number of free parameters. This
part of the paper depends on basic facts about real-analytic functions discussed in Appendix A.
Section 4 studies critical points for least-squares error criteria; this part of the paper relies upon
elementary differential topology (Morse theory). Section 5 combines the results of Sections 3
and 4. It establishes, for generic analytic problems, the countability of the set of functions giving
rise to critical parameter values. A refinement shows that this set is in fact finite, provided that
the parametric class of functions be definable logically in terms of the exponential and certain
other special analytic functions; this is shown on the basis of recent work in logic, dealing
with “o-minimal logical theories,” and discussed Appendix B. Finally, Section 6 specializes
to single hidden layer networks, where one can use results on identifiability of parameters in
order to obtain finiteness of the set of critical parameters. At this point, a Khovanskii-type
estimate gives immediately the bound mentioned above. Though not strictly related to the
previous results, we include in Section 7 some observations regarding approximate interpolation
problems for analytically parameterized families; we do so because the basic ideas are close, and
the techniques used are essentially the same as those employed in the least-squares problem.

2 Parametric Classes of Functions

Most of the technical results to be given in this note depend only upon the fact that the output
of a neural network is simply a joint function of external inputs and parameters. At this level,
we simply study regression problems for parametrized families of functions. Only towards the
end do we need to specialize to some cases in which the precise form of the parameterization
(“internal” structure) is relevant.

The main technical hypothesis that we make is that the functional form is analytic on inputs
and parameters. (“Analytic” means real-analytic: an analytic function on an open subset of Rl

is one which admits a convergent power series representation, locally around each point of its
domain. See AppendixA for some basic facts about analytic functions.) Analyticity is essential
if one wants to obtain results in the form stated here. Relaxing to simply differentiability or
piecewise differentiability leads to far weaker conclusions.

Definition 2.1 An architecture A = (βA,X,U) is specified by two analytic manifolds X and U,
of dimensions respectively r (the number of parameters) and m (the input dimension), and an
analytic function

βA : X× U → R

called the behavior of A. 2

The function computed by the architecture A corresponding to a given parameter vector
x0 ∈ X is by definition the function

βA(x0, ·) : U→ R .
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The class of functions computed by A is defined as the set of functions

{βA(x0, ·) : U→ R , x0 ∈ X} .

When A is clear from the context, we drop the subscript and write simply β.

Many of the results to be given will hold in general, but those involving finiteness claims will
only be proved in the special cases when the function β is also (exponential and/or restricted
analytic) definable. These are functions which can be expressed in terms of logical operations
involving exponentials (on all of R), as well as other analytic functions but restricted to bounded
domains; see Appendix B for details. Similarly, definable sets are those defined in terms of such
operations. A definable architecture is one for which X is a definable submanifold of Rr, U is a
definable submanifold of Rm, and βA is a definable function.

Remark 2.2 In particular, any “neural network” made up of linear (or polynomial) intercon-
nections, and employing either the activation tanh or the activation arctan, gives rise to a
definable architecture. 2

3 Minimal Sample Sizes

Let A be an architecture, and let U0 be a subset of the input set U. Two parameters x1 and x2

are said to be indistinguishable modulo U0, and we write

x1 ∼U0
x2 ,

if
β(x1, u) = β(x2, u)

for all u ∈ U0. If this property holds with U0 = U, we write x1 ∼ x2 and simply say that x1

and x2 are indistinguishable; this means that β(x1, u) = β(x1, u) for all u ∈ U0, that is, the
behavior of the architecture is the same, for all possible external inputs, whether the parameter
is x1 or x2.

Given a parameter x0 ∈ X, a distinguishing subset for it is a subset U0 of U such that, for
every x ∈ X,

x0 ∼U0
x ⇒ x0 ∼ x .

That is to say, if two parameters give rise to different functions, then they can be distinguished
on the basis of these inputs. The distinguishing dimension d (A) is the smallest integer κ
(possibly infinite) with the property that for each x0 ∈ X there is some distinguishing subset of
size κ.

The set U0 is a universal distinguishing set if it is a distinguishing subset with respect to
all possible x0 ∈ X. That is, for such a set U0, the relation “∼U0

” is the same as simply “∼.”
Equivalently, for a finite subset U0 = {u1, . . . , us}, this means that the following mapping,
which maps parameters into the vector of outputs corresponding to inputs in U0:

X→ Rs : x 7→

β(x, u1)
...

β(x, us)

 (1)
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is one-to-one from the quotient set X/∼ into Rs. The universal distinguishing dimension ud (A)
is the smallest integer κ (possibly infinite) with the property that there is some universal
distinguishing subset of size κ. Clearly d (A) ≤ ud (A).

Remark 3.1 Similar concepts arise in different areas. In control theory (see e.g. [15], Chap-
ter 5), one studies the possibility of separating internal states (corresponding to the parameters
in the current context) on the basis of input/output experiments. In computational learning
theory, there is an analogous concept of “teaching dimension” —see e.g. [7]— to model the
smallest cardinality of a set of inputs that allows a teacher to uniquely specify the particular
function being “taught” among all other functions of interest. Related notions appear also in
automata theory and sequential machines (cf. [5]), though in both the cases of computational
learning theory and automata, the emphasis is on discrete sets and combinatorics, as opposed
to analytic parameterizations. 2

The next result provides a simple upper bound on the size needed for (universal) distin-
guishing subsets. Moreover, the result shows that in a precise sense, almost every subset of this
minimal cardinality (or, therefore, of any larger cardinality as well) has the desired property.

By abuse of terminology, we’ll say that a family Z of k-element subsets of U is (finitely)
analytically thin if the set of vectors (u1, . . . , uk) ∈ Uk so that {u1, . . . , uk} ∈ Z is (finitely)
analytically thin (cf. Appendix A).

Theorem 1 Assume that A is an architecture for which U is connected. Then,

d (A) ≤ r + 1 and ud (A) ≤ 2r + 1 .

Moreover, the set of universal distinguishing subsets of size 2r + 1, and, for each x0 ∈ X, the
set of distinguishing subsets for x0 of size r + 1, have analytically thin complements. If in
addition A is definable, then these statements hold with “finitely analytically thin” instead of
“analytically thin.”

Proof. Fix a parameter x0 ∈ X. As a first step, we characterize the distinguishing subsets of
size r+ 1 for the parameter x0. Consider the set of parameters that can be distinguished from
x0:

W0 := {x ∈ X | x 6∼ x0}

and, for each element x ∈ W0, the set of inputs that do not distinguish x from x0:

B(x) :=
{
u
∣∣∣u ∈ U and x∼

u
x0

}
.

For each such x ∈ W0, B(x) is a semianalytic subset of U of dimension at most m − 1, since
it is the set where the nonzero analytic function β(x, u)−β(x0, u) vanishes and U is connected.
Thus, the following subset of Ur+1:

T (x) = {(u1, . . . , ur+1) | ui ∈ B(x) ∀i = 1, . . . , r + 1} =
r+1∏
i=1

B(x)

has dimension at most (m− 1)(r + 1) (Proposition A.2, Part 3 in Appendix A).

5



Next, consider the following σ-analytic subset of W0 × Ur+1:

G := {(x, u1, . . . , ur+1) |x ∈ W0, ui ∈ B(x) ∀i = 1, . . . , r + 1} .

Let π1 :W0 × Ur+1 →W0 be the projection on the W0 factor. For each x ∈ W0, π−1
1 (x)

⋂G =
T (x) has dimension at most (m− 1)(r + 1). Applying then Proposition A.2, Part 2, it follows
that

dimG ≤ r + (m− 1)(r + 1) = m(r + 1)− 1 .

Finally, consider the projection π2 of G on the Ur+1 coordinates. Its image is exactly the set
B consisting of those vectors (u1, . . . , ur+1) which give rise to non distinguishing sets U0 =
{u1, . . . , ur+1} for x0. As projections cannot increase dimension (by Proposition A.2, Part 1,
applied with f = π2), the set B must have dimension at most m(r+ 1)− 1, which allows us to
conclude the first part of Theorem 1.

If the architecture is definable, then the set B is definable, so from Fact B.3 and the above
dimension count it follows that B must be finitely analytically thin.

We now show the existence of universal distinguishing sets of cardinality 2r + 1 and that
almost all sets of that cardinality are universal distinguishing sets. For this, consider the
architecture

A′ = (β′,X× X,U)

where
β′((x1, x2), u) := β(x1, u)− β(x2, u).

Fix any arbitrary x0, and consider the problem of finding a distinguishing set for (x0, x0) with
respect to the architecture A′. Any such set is also a universal distinguishing set for the original
A. As the parameter space is now of dimension 2r, the conclusion is obtained.

Remark 3.2 In the smooth (rather than analytic) case a local result is possible: there is a
dense open subset of X, and an open covering of this set, so that on each subset V of this
cover, some set of r inputs serves as a universal distinguishing set with respect to parameters
on V . This is easy to prove via an argument using the rank theorem. The global versions are
obviously false, however. This is illustrated by the following example: let X = U = (0,∞) and
β(x, u) := γ(x− u), where γ is a smooth map which is nonzero on (−∞, 0) and zero elsewhere.
Then every two parameters are distinguishable (if x 6= y then picking u := (x+ y)/2 results in
β(x, u) 6= 0 = β(y, u)). But there is no finite universal distinguishing set (even though r = 1):
given any bounded U0 ⊆ U, pick x, y ≥ sup{u | u ∈ U0}; then β(x, u) = 0 = β(y, u) for all
u ∈ U0. 2

4 Outputs at Critical Points of Error Function

Given a differentiable function E among two differentiable manifolds, and an element x in its
domain, (E)∗ [x] denotes the differential of E at the point x. In local coordinates this is just
the Jacobian, or, for real-valued functions E the gradient, evaluated at x.

Throughout this section, f is a fixed analytic mapping

f : X→ RN
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where X is an analytic manifold (typically, an open subset of some Euclidean space) and N is
some positive integer.

For each fixed y ∈ RN , we consider the function

Ey : X→ R : x 7→ 1
2
‖f(x)− y‖2 (2)

as well as the set of critical points of Ey:

My :=
{
x | (Ey)∗ [x] = 0

}
(3)

and its image under f :
Sy := f (My) . (4)

Note that, for each fixed y, My is a semianalytic subset of X (it can be characterized through
the vanishing of analytic functions) and thus Sy is what we call a σ-analytic subset of RN

(cf. Appendix A), for each fixed y. We will be interested in knowing when Sy is a countable
set, or equivalently, when it has zero dimension. (In this paper, by “countable” set we mean
denumerable or finite.)

Remark 4.1 In least-squares problems, the variables x represent parameters to be fit to data
specified by the target vector y, and one attempts to minimize Ey in order to find a best fit.
The local extrema of Ey are in particular points in the sets Ey(My), that is to say critical
values of Ey. For any fixed y ∈ RN , just from the smoothness of the function Ey one knows
that this set has measure zero (Sard’s Theorem). Since in addition Ey is analytic, this set of
critical values is countable, because it has measure zero and is a σ-analytic subset of R. (The
set of critical values is not necessarily discrete, however, as illustrated by f(x) = e−x sin(x)
with X = R, N = 1, y = 0.) However, here we are not interested in the image of My under Ey,
but rather in its image under f . This latter image may fail to be countable, at least for certain
target values y (example: f(x) = (cos(x), sin(x)), X = R, N = 2, y = (0, 0)). The next result
shows that such a situation holds only exceptionally. 2

From now on, we say that a property holds generically for points y in a manifold M if the
set where this property fails to hold is included in an analytically thin subset of M , that is, in
a countable union of submanifolds of strictly smaller dimension. (In particular, the set where
the property fails has measure zero, and also is of the first category. Furthermore, a countable
intersection of generic subsets is again generic.)

The following transversality fact will be essential to the further results:

Proposition 4.2 Generically for y ∈ RN , dimSy = 0.

Proof. We start by observing that there is a covering of X by countably many embedded
submanifolds Xi with the property that each restriction f |Xi has constant rank differential.
This can be proved by induction on the dimension r of X, as follows.

The case r = 0 (that is, when X consists of a countable union of points) is clear. Assume
that we proved the existence of such a covering for the case of maps on manifolds of dimension
r − 1. Assume now that X has dimension r. Without loss of generality, we assume that X
is connected; if this were not the case, we could start by decomposing X into its —at most

7



countably many— connected components; the existence of a good covering for each component
then implies the existence of a covering for the original set. Let q be the largest possible rank of
the differential of f . Let Xq−1 be the set of points in X where the rank is less or equal to q− 1.
This is a proper closed semianalytic subset of X. Since X is connected, Xq−1 is analytically
thin in X. Thus, by Fact A.1, it can be written as a (disjoint) union of embedded analytic
submanifolds, Xq−1 =

⋃{Mj , j ∈ J}, where J is countable. Each Mj has dimension at most
q − 1, so by inductive hypothesis, for each j there is a family of submanifolds {Mjk, k ∈ Ki},
Ki countable, which cover Mj and so that each f |Mjk

has constant rank. Then the family
consisting of X \ Xq−1 together with all the Mjk provide the desired covering of the original
space X. (If desired, the same proof can be used to provide a partition.)

Next we remark that we may assume, in addition, that the restrictions f |Xi are submersions
onto embedded submanifolds of RN . That is, there are embedded submanifolds Zi of RN so
that f(Xi) = Zi for each i, and so that the (constant) rank of the differential of f |Xi equals the
dimension of Zi, for each i. Indeed, pick any i. Locally, by the Rank Theorem, about each
x ∈ Xi there is a neighborhood of x in Xi so that f restricted to this neighborhood defines a
submersion into the image. Covering in this way each Xi, and picking countable subcoverings
(Lindelöf property), one obtains the desired conclusion.

Fix any y ∈ RN and, for each index i, let Eiy be the restriction of Ey to Xi. Let M i
y be the

set of critical points of Eiy and consider the respective images Siy := f
(
M i
y

)
. If (Ey)∗ [x] = 0

and x ∈ Xi then, since Eiy factors as Ey ◦ ψi, where ψi is the inclusion of Xi in X, also(
Eiy

)
∗

[x] = 0 .

Thus My is contained in the union of the sets M i
y. So Sy is contained in the union of the sets

Siy. Assume that, for each i, it is known that Siy is countable whenever y does not belong to the
analytically thin subset Qi of RN . It then follows that Sy is countable if y is not in Q =

⋃
Qi,

which again is analytically thin, and hence the desired conclusion holds. Thus we reduced the
problem to establishing the result for each Xi.

From the previous considerations, it is sufficient to treat the case in which f maps submer-
sively onto an embedded submanifold Z of RN . We assume from now on that this is the case.
For each y ∈ RN , let

Hy : Z→ R : z 7→ 1
2
‖z − y‖2

so that Ey = Hy ◦ f . If z = f(x) and (Ey)∗ [x] = 0 then

(Hy)∗ [f(x)] ◦ (f)∗ [x]

is zero. Since f is a submersion, that is, (f)∗ [x] is an onto map from TxX to Tf(x)Z, this means
that (Hy)∗ [f(x)] = 0. In other words, the elements of Sy are precisely the critical points of Hy

as a map on the submanifold Z.

Let Q be the set of those y ∈ RN for which the map Hy is a Morse map, that is, it is
so that all of its critical points are nondegenerate (Hessian is nonsingular). It is well-known,
and easy to prove via a parametric Sard theorem, that the complement of Q has Lebesgue
measure zero. The proof is based on the fact that Hy has no degenerate critical points if and
only if y is not a focal point for Z, that is, it cannot be written as a “focus” of a set of nearby
points, or more precisely, the endpoint map (x, v) 7→ x + v from the normal bundle of Z to
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RN is an isomorphism. See [12], §6, or [13], Section 9.6 for details. Notice that RN \ Q is a
σ-analytic set, because it is the projection into the y variables of the semianalytic set of pairs
(x, y) for which the differential and the Hessian of Hy both vanish. Being a σ-analytic subset
and having measure zero, RN \Q must be analytically thin. For each y ∈ Q, all critical points
are nondegenerate, hence isolated; thus there can only be a countable number of them. This
completes the proof of Proposition 4.2.

5 Extremal Parameters

We now assume given an architecture A = (βA,X,U). Let N be a positive integer. A regression
data sequence of size N is by definition a pair of sequences

(u, y) =
(
(u1, . . . , uN ), (y1, . . . , , yN )

)
∈ UN × RN .

For each regression data sequence, we consider the quadratic loss function

E(u,y) : X→ R

defined by the formula

E(u,y)(x) :=
1
2

N∑
i=1

(
β(x, ui)− yi

)2
.

In other words, using the notations of Section 4, if we denote

fu : X→ RN : x 7→

 β(x, u1)
...

β(x, uN )


then E(u,y)(x) = Ey(x), where y is as above the vector with components y1, . . . , yN and Ey is
understood as the error function with respect to the function fu.

We are interested in studying the set of critical points of the map E(u,y). More precisely,
since indistinguishable parameters give rise to the same behavior, we look for an upper bound
on the number of equivalence classes that may give rise to critical values of the error function.

A class of parameters C will mean an equivalence class under ∼, using the notations in
Section 3. A class C will be said to be critical , with respect to a given regression data sequence
(u, y), if there is any parameter x0 ∈ C for which

(
E(u,y)

)
∗

[x0] = 0. We let ρ(u, y) be the
number of critical classes with respect to (u, y).

For each (u, y), we may consider the sets S(u,y) and M(u,y) equal respectively to the sets Sy
and My in Section 5 when applied to the map fu. A class C is critical if and only if the image
fu(C) is in S(u,y). For any {u1, . . . , uN} and any class C, the image fu(C) consists of just one
point. Thus

ρ(u, y) ≥ cardS(u,y) .

If, in addition, {u1, . . . , uN} happens to be a universal distinguishing set for A, then fu(x) =
fu(x′) if and only if x ∼ x′. So in that case

ρ(u, y) = cardS(u,y) .
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The next result says that (provided the data is “overdetermined” enough) the number of critical
classes is, in a generic sense, countable. Recall that r is the dimension of the parameter space
X.

Theorem 2 Assume that N ≥ 2r + 1. Then, generically in u, for generic y there are only
countably many critical classes.

Proof. Pick any sequence u = (u1, . . . , uN ) so that {u1, . . . , uN} is a universal distinguishing
set for A. By Theorem 1, there are such sets, and all sequences are like this except for those in
an analytically thin set B. As remarked above, ρ(u, y) = cardS(u,y). Combined with Proposi-
tion 4.2, this gives that, for all y except those in an analytically thin set Bu, the set of critical
classes is countable.

Remark 5.1 Let F be the complement of the set of regression data sequences of size N for
which there are countably many critical classes. With the notations in the above proof, F is
contained in the (σ-analytic, and therefore measurable) set

{(u, y) | u ∈ B or y ∈ Bu} ,

so by Fubini’s theorem it has zero measure. 2

5.1 The Definable Case

From now on, assume that A is a definable architecture. Consider the following formula
Φ(z, u, y) over the language L:

(∃x ∈ X) (β(x, ui) = zi, i = 1, . . . , N) and
(
E(u,y)

)
∗

[x] = 0 .

The set S(u,y) obtained as the image of the set of critical points of E(u,y) under fu is precisely
the set of points z defined by the formula Φ(u,y) obtained from Φ by fixing the variables (u, y).
Thus, by Fact B.2, the number of connected components of S(u,y) is bounded by some fixed
integer κ (which depends only on the architecture and will be fixed from now on). In particular,
if S(u,y) happens to be a countable set, then it must be a finite set of cardinality at most κ.
Recall that for universal distinguishing sets this cardinality is the same as ρ(u, y).

Suppose that N ≥ 2r+ 1. Let G be the set of regression data sequences of size N for which
ρ(u, y) ≤ κ. This set is definable. Indeed, it is S(Φ), where Φ(u, y) is the formula that states
that there exist κ vectors z1, . . . , zκ in RN with the property that, if x is a critical point of
E(u,y) then one of the equalities fu(x) = z1, . . . , fu(x) = zκ holds. On the other hand, by
Remark 5.1, we know that the complement F of G, which is also definable, has measure zero.
It follows from Fact B.3 that F is finitely analytically thin in the sense of the appendixes (i.e.,
a finite union of embedded submanifolds of positive codimension). We summarize as follows.

Theorem 3 Assume that N ≥ 2r+1 and that the architecture is definable. Then there is some
integer κ and a finitely analytically thin subset F ⊆ UN × RN so that, for each regression data
sequence of size N which is not in F , the number of critical classes is at most κ.
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6 The Single-Hidden Layer Network Case

In this section we specialize the results to the case of single-hidden layer networks. Let θ : R→ R
be a given function, to be called from now on an activation. For simplicity we’ll assume that θ
is an odd function (θ(−x) = −θ(x)), but results can be generalized in obvious ways at the cost
of somewhat more notational complication.

We’ll say that (A, b, c) is an (m,K) triple if A ∈ RK×m, b ∈ RK , and c ∈ RK+1, and use Ai
and bi, i = 1, . . . ,K, to denote the ith rows of A and b respectively, and ci, i = 0, . . . ,K, for
the rows of c. The triple is irreducible if the following properties hold:

ci 6= 0 for i = 1, . . . ,K
Ai 6= 0 for i = 1, . . . ,K

(Ai, bi) 6= ± (Aj , bj) for i, j = 1, . . . ,K, i 6= j .

We now define “single-hidden layer neural networks” (with the obvious nonredundancy con-
straints).

Definition 6.1 An (m,K) irreducible architecture with activation θ is an architecture A =
(β,X,U) of the following form:

• The input set U = Rm.

• With r = K(m + 2) + 1, and writing the elements of the Euclidean space Rr as triples
x = (A, b, c), the parameter set X is the subset of Rr consisting of irreducible triples.

• The behavior β has the following form:

β(x, u) = c0 +
K∑
i=1

ci θ (Aiu+ bi) . 2

The activation θ is said to satisfy the property IP (“independence property”) if, for each
positive integer l, any positive real numbers a1, . . . , al, and any real numbers b1, . . . , bl such
that

(ai, bi) 6= (aj , bj) ∀i 6= j ,

the set of dilated and translated functions R→ R

{1 , θ(a1s+ b1) , . . . , θ(als+ bl)}

is linearly independent.

The function θ = tanh, the standard sigmoid used in the neural networks experimental
literature, satisfies IP, as shown in [19]. A simple proof of this fact, as well as an extension to
far more general θ, is given in [1], from which we cite the following sufficient condition for θ to
satisfy IP:

Fact 6.2 Assume that θ extends to an analytic function defined on some subset D ⊆ C of the
form:

D = {z | |Im z| ≤ λ} \ {z0, z̄0}
for some λ > 0 so that Im z0 = λ, and where and z0 and z̄0 are singularities (there is a sequence
zn → z0 so that |θ(zn)| → ∞, and similarly for z̄0). Then, θ satisfies property IP. 2
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This condition encompasses many, or perhaps most, examples of interest in neural networks.
Observe that if θ has a meromorphic extension which has a unique pole of minimal positive
real part, then it satisfies the above hypotheses. This includes many rational functions as well
as tanh(s). Another useful example that satisfies the above sufficient condition, and hence also
property IP, is arctan(s).

Lemma 6.3 Let A = (β,X,U) be an (m,K) irreducible architecture with an activation θ which
satisfies property IP. Then, each equivalence class C under ∼ has cardinality exactly 2KK!.

Proof. It is shown in [1] (in the same manner as done for the corresponding result for tanh in
[19]) that two parameter vectors are equivalent, (A, b, c) ∼ (A′, b′, c′), if and only if (A′, b′, c′)
can be obtained from (A, b, c) by some permutation of the rows i = 1, . . . ,K of each of A, b, c,
and/or a sign reversal in each row, for some subset of these rows.

A parameter x = (A, b, c) will be said to be critical , with respect to a given regression data
sequence (u, y), if

(
E(u,y)

)
∗

[x] = 0, that is, if x ∈M(u,y).

Theorem 4 Let A = (β,X,U) be an (m,K) irreducible architecture with activation θ. Assume
that:

• N ≥ 2r + 1;

• θ is definable; and

• θ satisfies IP.

Then, there is some integer ρ = ρθ,r,N and a finitely analytically thin subset F ⊆ UN × RN
so that, for each regression data sequence of size N which is not in F , the number of critical
parameters is at most ρ.

Proof. Theorem 3 showed that there are κ and F so that, for each regression data sequence of
size N and not in F , the number of critical classes is at most κ. Lemma 6.3 provides a uniform
bound on the cardinality of classes. Thus the conclusion holds with ρ = 2KK!κ.

Observe that Theorem 4 applies, in particular, to the choices θ = tanh and θ = arctan.

6.1 Explicit Estimates for tanh

We now specialize to the case when θ = tanh, in which case we can use explicit estimates derived
from Khovanskii’s theory of sparse and exponential polynomials. The objective is to estimate
the cardinality of M(u,y), the set of critical parameters. To do so, we need to count the equations
defining the partial derivatives and to analyze the complexity of these equations. A potential
difficulty in applying Khovanskii’s techniques is that in general one must first reduce the problem
to one dealing with submanifolds of Euclidean spaces defined by exponential polynomials. Thus
we assume that a regression data sequence (u, y) is given, satisfying the genericity assumptions
of Theorem 4, so that the set M(u,y) is already known to be finite (and hence a manifold). Next
we compute explicitely the partial derivatives of E(u,y), as follows. As before, we write the
parameter vector in the form x = (A, b, c).

12



We start by considering the set of equations

(zij + 1)
(
1 + eLij

)
= 2 , i = 1, . . . ,K , j = 1, . . . , N , (5)

where, for each i, j, we are denoting

Lij = −2 (Aiuj + bi) ,

which is a linear function of the parameters. Note that Equation (5) is equivalent to

zij = tanh (Aiuj + bi) , i = 1, . . . ,K , j = 1, . . . , N .

For simplicity in displays, we use the following notation, for each j = 1, . . . , N :

ρj := c0 +
K∑
i=1

ci zij − yj

(this represents the value β(x, uj) of the output, corresponding to the parameters x and an
input vector uj). The derivatives with respect to the variables cµ provide the equations

N∑
j=1

ρj zµj = 0 , µ = 1, . . . ,K (6)

and, for the case µ = 0:
N∑
j=1

ρj = 0 . (7)

The derivatives with respect to the variables bµ provide the equations

N∑
j=1

ρj
(
1− z2

µj

)
= 0 , µ = 1, . . . ,K (8)

where we used the fact that tanh′(s) = 1 − tanh(s)2 and we cancelled the factor cµ (which is
necessarily nonzero in the irreducible case). Finally, derivatives with respect to the entries of
A give the equations

N∑
j=1

ρj
(
1− z2

µj

)
ulj = 0 , µ = 1, . . . ,K , l = 1, . . . ,m (9)

(again dropping the factor cµ).

Irreducibility of the triple x = (A, b, c) is equivalent to the solvability of the following set of
equations:

cµc̃µ = 1 , µ = 1, . . . ,K , (10)

‖Aµ‖2 ãµ = 1 , µ = 1, . . . ,K , (11)

‖(Ai +Aj , bi + bj)‖2 d̃ij = 1 , i = 1, . . . ,K − 1 , j = i+ 1, . . . ,K , (12)

and
‖(Ai −Aj , bi − bj)‖2 ẽij = 1 , i = 1, . . . ,K − 1 , j = i+ 1, . . . ,K , (13)
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where the c̃µ, ãµ, d̃ij , and ẽij represent a set of additional variables.

We now consider the set of equations (5) to (13) as a set of simultaneous constraints on the
variables

zij , ci, bi, Aij , c̃i, ãi, d̃ij , ẽij .

Let M̃(u,y) be the subset of Rν defined by these equations, where

ν = K (3 +N +m+K) .

There is a one-to-one correspondence between the set M(u,y) and the set M̃(u,y), since Equations
(10) to (13) provide unique values for the “tilde variables” in terms of the original variables.
The advantage of working with the extended set M̃(u,y) is that this is a subset of Euclidean
space defined by a finite set of equations, each of them a polynomial on the variables or on
the exponentials of the linear functions Lij . Since the set M̃(u,y) is known to be finite, we can
apply the estimates provided for precisely such equations by Khovanskii in [9], page 91. (A
priori, these estimates can be applied to any set of equations provided that the set of solutions
is already known to define a submanifold.) Let q = NK, the number of distinct linear functions
appearing in the exponentials. Then Khovanskii’s estimates (in his notations, “k” is zero) gives
the following upper bound for the cardinality of M̃(u,y):

2
q(q−1)

2 δν (νδ)q (14)

where δ is the maximum degree of the equations. Note that δ = 4, which is achieved by
the terms of the type cizijz2

µj which appear in Equation (8). Note that if N ≥ 2r + 1, then
N > m+ 3, so we have an upper bound estimate as follows.

Corollary 6.4 Let A = (β,X,U) be an (m,K) irreducible architecture with activation tanh.
Assume that N ≥ 2r+1. Then, there is a finitely analytically thin subset F ⊆ UN×RN so that,
for each regression data sequence of size N which is not in F , the number of critical parameters
is at most 28(NK)2

. 2

7 Interpolation Capabilities

In the context of solving least-squares problems, it seems of interest to ask how many parameters
are necessary in order to be able to obtain an arbitrarily small error on a given number of
samples. We formalize this question as follows.

A sequence of elements (u1, . . . , uN ) will be said to be I-shattered by the architecture A if
for every possible sequence of target values (y1, . . . , yN ),

inf
x∈X

E(u,y)(x) = 0 .

Thus, shattering in this sense means that all possible values can be approximately obtained.
This property may be too restrictive, for instance if β is a bounded function (as happens
for neural networks if parameters in the output layer are required to be small). A weaker
requirement is that, for some ε > 0, the sequence be ε-I-shattered by A, meaning that one
requires this property only for all those sequences of target values y1, . . . , yN for which |yi| < ε
for all i.
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Observe that I-shattering amounts to asking that the mapping in Equation (1) has a dense
image, and ε-I-shattering is the same as the requirement that the image of this map intersect
(−ε, ε)N densely.

The interpolation dimension id (A) is the supremum (possibly infinite) of the integers N for
which there is an ε > 0 and some sequence of length N that can be ε-I-shattered by A. (Note
that if one would define id (A) using I-shattering rather than ε-I-shatterings the dimension
would be no greater; thus the upper bound to be given below holds in that case as well.)

We next show that a parameter count provides the right upper bound. This fact is not
true in general, and the assumption of definability is essential; such a result is in general false,
even for networks obtained from analytic activations that qualitatively look very much like tanh
(strictly increasing, limits at ±∞, etc); see [16] for such counterexamples.

Theorem 5 For every definable architecture A, id (A) ≤ r.

Proof. If a sequence (u1, . . . , uN ) can be ε-I-shattered, then the image of the map in Equation
(1) intersects (−ε, ε)N densely, for some ε > 0. By Corollary B.4 in Appendix B this image,
being a definable set, must have nonempty interior. But the map is analytic, so then Sard’s
Theorem implies that its differential must have full rank N at some point. In particular, it
must then be the case that N ≤ r, establishing the result.

Remark 7.1 Note that the inequality id (A) ≤ r is trivial in the case of bounded parameters,
assuming only that βA is smooth. That is, if one takes any class of functions of the type
{βA(x0, ·), ‖x0‖ ≤ γ}, then the image of the map (1) (with domain ‖x‖ ≤ γ) is compact, hence
closed. Thus the image cannot intersect (−ε, ε)N densely unless it contains all of (−ε, ε)N . Now
Sard’s theorem again provides the conclusion. 2

Remark 7.2 As an example, take an (1,K) architecture with activation θ = tanh. The above
result says that id (A) ≤ 3K + 1. This fact had also been proved, for this very special case,
by an ad-hoc argument in [16], where it was also shown that id (A) ≥ 2k − 1. Determining in
this example the precise value of id (A) in the interval 2K − 1, . . . , 3K + 1 would seem to be
an open question. 2

Remark 7.3 Observe that it is possible for id (A) to be far smaller than r. For instance, for
“neural nets” consisting of a string of linearly ordered nodes, (see Fig. 1) i.e., β(x, u) is an

- h - h - . . . - h
Figure 1: Linearly Ordered Nodes

iteration of functions θ(a1θ(a2θ(. . . (aku + bk) . . .) + b2) + b1), r = 2(k − 1), but id (A) = 2,
independently of the number of nodes, since all the functions βA(x, ·) : R → R are necessarily
monotone. 2
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A Some Facts about Real-Analytic Functions

In this appendix we describe various elementary facts regarding (real-)analytic functions in a
manner suitable for reference in the main text.

Let M be any analytic manifold of dimension l. (In this paper, “manifold” always means
second-countable manifold.) Recall that an embedded submanifold Z of M , of dimension q, is
a connected subset which, locally around each of its points and up to analytic diffeomorphisms,
looks like a “slice” {(x1, . . . , xl) | xq+1 = . . . = xl = 0}. When q = l, this is just an open set.

Assume now that the submanifold Z has positive codimension, that is, q ≤ l− 1. From the
definition, it follows that for some open subset M0 ⊆ M , Z is a closed subset of M0 (in the
relative topology). Observe that Z is nowhere dense, that is, its closure has empty interior.
(That is, if U is any open subset of M , then Z

⋂
U cannot be dense in U : if U does not intersect

M0 then this is clear; otherwise U
⋂
M0 is a nonempty open set and we may assume without

loss of generality that U ⊆M0; then U = (U \Z)
⋃

(U
⋂
Z), so either U \Z is a nonempty open

set, and we are again done, or U
⋂
Z = U , but in this latter case Z would contain an open set

and hence could not have positive codimension.) Also, such a Z has measure zero.

For simplicity, if Z is a countable union of embedded analytic submanifolds of M of dimen-
sion ≤ q, and q is the smallest such integer, we say that Z is a σ-analytic subset of M and call
q the dimension of Z. (It is not hard to verify that the dimension is well-defined, in the sense
that it doesn’t depend on the particular union of countably many submanifolds being used.)
The σ-analytic subset Z of M will be said to be analytically thin if dimZ < dimM , Such a
set has zero measure and is of the first category (a countable union of nowhere dense sets), as
remarked above. Conversely, if a σ-analytic subset and it has measure zero then it must be
analytically thin (otherwise it contains a submanifold of full dimension, that is, an open subset
of M). We also use the following terminology: a subset Z of M is finitely analytically thin if it
is a finite union of embedded analytic submanifolds of positive codimension.

In studying analytic sets and mappings, it is useful to introduce the notion of a semianalytic
subset Z of an analytic manifold M . This is a set Z so that, for each z ∈ M , there is some
neighborhood U of z so that Z

⋂
U is in the Boolean algebra generated by a finite family of

subsets of the form {fj(x) > 0}, for some analytic functions fj : U → R, j = 1, . . . , Jz. It is easy
to see from the definition of embedded submanifold that if Q ⊆M is such a submanifold, then
Q is a countable union of compact semianalytic subsets. It follows that every σ-analytic subset
of M is a countable union of compact semianalytic subsets. Conversely, every semianalytic
subset is a countable union of embedded submanifolds; see for instance Property 8(e) in [18].
In conclusion, being a σ-analytic subset is the same as being a countable union of semianalytic
subsets (or of compact semianalytic subsets). We will use the following very special consequence
of general stratification theorems (see for example Theorem 9.2 in [18], as well as [2]):

Fact A.1 Let M and N be analytic manifolds and f : M → N an analytic mapping. Assume
that Z is a compact semianalytic subset of M . Then there is a partition of N into a countable
union of connected analytic embedded submanifolds Qj , and a partition of Z into a countable
union of connected analytic embedded submanifolds so that each such submanifold is diffeo-
morphic to Rnj ×Qj , for integers nj ≥ 0 and suitable indices j ∈ JZ , and on each such set the
mapping f is (up to the same diffeomorphism) the projection Rnj ×Qj → Qj . 2

Observe that it also follows from Fact A.1 that the image f(Z) is a σ-analytic subset of N
(since it is a union of a subfamily of the Qj ’s). Note that if Z is a σ-analytic subset of M ,
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then the above discussion shows that dimZ = q if and only if Z can be written as a countable
union of embedded submanifolds in such a way that the maximum of the dimensions of the
submanifolds is q.

The next statements amount to saying that naive parameter counts are well-justified when
dealing with analytic mappings.

Proposition A.2 Assume that M , N , and Mi, i = 1, . . . , k, are analytic manifolds. Let
f : M → N be an analytic mapping. Then:

1. If Z is a σ-analytic subset of M , then f(Z) is a σ-analytic subset of N , and dim f(Z) ≤
dimZ.

2. For all Z ⊆M ,
dimZ ≤ dim f(Z) + max

y∈N

[
dim f−1(y)

⋂
Z
]
.

3. If Zi is analytically thin in Mi, for i = 1, . . . , k, then Z = Z1 × . . . × Zk is analytically
thin in M1 × . . .×Mk and

Z = Z1 × . . .× Zk ⊆M1 × . . .×Mk

satisfies dimZ =
∑
i dimZi.

Proof. In order to calculate the dimension of f(Z), it is enough, by the above considerations, to
do this when Z is a relatively compact semianalytic subset, and thus the dimension inequality
follows by Fact A.1.

To prove the statement about fibres f−1(y), we proceed as follows. Note that each such
fibre is semianalytic, so its dimension is well-defined. Write Z as a countable union of compact
semianalytic subsets Zi; then

max
y

[
dim f−1(y)

⋂
Z
]

= max
y,i

dim
[
f−1(y)

⋂
Zi
]
.

Fix any i, and apply Fact A.1 with Zi instead of Z. Thus q = maxy dim
[
f−1(y)

⋂
Zi
]

is the
largest of the nj ’s, while dimZi is at most q+ t, t = largest dimension of the Qj ’s, j ∈ JZ , and
f(Z) has dimension t. This shows that

dimZi ≤ dim f(Z) + max
y∈N

[
dim f−1(y)

⋂
Zi
]
≤ dim f(Z) + max

y∈N

[
dim f−1(y)

⋂
Z
]

from which, since dimZ = maxi dimZi, the conclusion follows.

Finally, to prove that dimZ1 × Z2 = dimZ1 + dimZ2, simply note that Z1 × Z2 equals
a union of the type Zj1 × Zk2 , for countable coverings by submanifolds for each of Z1 and Z2

respectively, and dimensions add as they should for submanifolds.
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B Some Facts about Order-Minimality

Here we summarize certain recent facts from model theory used in order to prove the results
given in the text.

Pick any positive integer l, and a cube C = [−k, k]l in Rl. Assume that g is a real-valued
function which is (real-)analytic in a neighborhood of C. By the 0-restriction of g to C we
will mean the function f : Rl → R which equals 0 outside C and equals g on C. A restricted
analytic (ra) function is any function obtained in this manner. Below we formally state what
it means for a function to be (“exp-ra”) definable —informally, these are functions that can be
defined in terms of a first-order logic sentence involving the standard propositional connectives,
existential and universal quantification, algebraic operations, and symbols for the exponential
function as well as all ra functions. Of course, tanh is definable, since y = tanh(x) if and only
if (y + 1)(1 + ex) = 2. Any ra function is in particular definable. The function arctan(x) is
also definable, since y = arctan(x) if and only if −π/2 < y < π/2 and sin (y) = xcos (y),
where sin and cos denote the restrictions of sin and cos to [−π/2, π/2]. Compositions such
as arctan(exp(exp(x))) are also allowed. (However, the function sin(x) is not definable.)

Formally, consider the structure

L = (R,+, ·, <, 0, 1, exp, {f, f ∈ ra}) ,

and the corresponding language for the real numbers with addition, multiplication, and order, as
well as one function symbol for real exponentiation and one for each restricted analytic function.
The set of (first order) formulas over L is the set of all well-formed logical expressions obtained
by using propositional connectives, real numbers as constants, the operations of addition and
multiplication, the relations < and =, and exp and restricted analytic functions as functions;
quantification is allowed over variables. (This is an example of a formula Φ(x, y) over L:

∀z
[
e7z2ey − πxz ≥ arctan(ex)

]
.

We write Φ(x, y) to indicate the fact that the only free –i.e., non-quantified– variables in the
formula are x and y.) Each such formula will be interpreted over the real numbers, that is, all
variables are assumed to take real values. Thus all quantifiers are implicitely assumed to be
over R. Given a formula Φ with free variables x1, . . . , xl, we write S(Φ) for the subset of Rl

that it defines. A definable set is a set of the form S(Φ), for some first order formula Φ over
the language L. For instance, the above Φ(x, y) gives rise to:

S(Φ) =
{

(x, y) ∈ R2 | (∀z ∈ R)
[
e7z2ey − πxz ≥ arctan(ex)

]}
.

Similarly, the truth of a formula Φ with no free variables is defined as the truth of the statement
obtained when quantifying over the reals. By abuse of notation, when giving such a formula, we
will also allow other symbols, such as “−” or “≥” which could be in turn defined on the basis
of the above primitives, or even symbols for any set already known to be definable. A (exp-ra)
definable function is a function f : M → N whose graph is a definable set in the above sense,
and where N and M are definable subsets of two spaces Rl1 and Rl2 respectively.

When the exponential is left out, definable sets are precisely those called “finitely sub-
analytic” in [20]. Restricted analytic functions were introduced in [22]. (The definition in
that reference is slightly different from the one we gave in the previous section: it assumes
that the functions g have a convergent power series representation valid on all of the cube
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C = [−k, k]l, but a standard compactness argument shows that the two definitions are equiva-
lent.) Gabrielov showed in [6] that the theory of real numbers with restricted analytic functions
is model-complete, which means that every formula is equivalent to one that involves only ex-
istential quantification. (We do not give the precise statements here, as they are not needed
for explaining the further material.) In a recent major development, Wilkie showed in [25, 26]
that using exponentiation (but now leaving out the ra functions), model-completeness obtains
as well. Finally, in [22] and [23], it was shown that the full theory (ra as well as exponentials)
is model-complete, and hence order-minimal:

Fact B.1 ([22], Theorem 6.9, and [23]) The theory of L is order-minimal , that is, for each
formula Φ having just one free variable, S(Φ) is a subset of R consisting of a finite union of
intervals (possibly unbounded or just points). 2

The terminology reflects that such finite unions are the smallest Boolean algebra of subsets
that can be defined using order. The forthcoming book [21] by van den Dries deals in detail
with order-minimal theories. Sets definable (in any dimension) for order-minimal theories ad-
mit finite cell decompositions into topological submanifolds. In particular, this applies to
parametric versions. Decompositions can be obtained which are uniform on parameters, and
in particular the number of connected components is uniformly bounded. To be more precise,
assume given a formula Φ(Λ, x), where Λ denotes a set of p variables and x denotes a set of
q variables, for some integers p and q. For each fixed λ ∈ Rp, we may consider the formula
Φλ(x) = Φ(λ, x) on the free variables x, and the respective definable set. It then follows from
the general theory (see [10, 21]):

Fact B.2 Given a formula Φ as above, there is an integer κ so that for all λ ∈ Rp, the number
of connected components of S (Φλ) is at most κ. 2

When dealing as here with a language whose primitives stand for analytic functions, the
cell decomposition results can be stated in a stronger fashion. By [22], Theorem 8.8, one knows
that each definable subset is a finite union of what are called in that paper analytic cells, each
of which is definable and definably-isomorphic to an Euclidean space. The definition of analytic
cell in that paper implies that each such cell is an embedded analytic submanifold. Thus one
also has the following result:

Fact B.3 Let S be a definable subset of Rq. Then, either S contains an open subset or it is
finitely analytically thin. 2

Observe that a function such as sin(x) (seen as a function of x ∈ R) is not definable, so
there is no contradiction with the fact that its set of zeroes is not finitely analytically thin.
(The zero set is of course analytically thin, consistent with the analyticity of sin(x).)

Note that a finitely analytically thin subset is nowhere dense (as it is a finite union of
nowhere dense subsets). So this follows from Fact B.3:

Corollary B.4 If S is a definable subset of Rq, then either it has nonempty interior or it is
nowhere dense.
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Études Sci. Publ. Math. 67(1988): 5-42.

[3] Blum, E.K., “Approximation of Boolean functions by sigmoidal networks: Part I: XOR
and other two-variable functions,” Neural Computation 1(1989): 532-540.

[4] M. Brady, R. Raghavan and J. Slawny, “Backpropagation fails to separate where percep-
trons succeed,” IEEE Trans. Circuits and Systems 36(1989): 665-674.

[5] Conway, J.B., Regular Algebra and Finite Machines , Chapman and Hall, London, 1971.

[6] Gabrielov, A., “Projections of semi-analytic sets,” Functional Anal. Appl., 2(1968): 282-
291.

[7] Goldman, S.A., and M.J. Kearns, “On the complexity of teaching,” Proc. Forth ACM
Workshop on Computational Learning Theory , July 1991, pp. 303-314.

[8] Gori, M., and A. Tesi, “On the problem of local minima in back-propagation,” Tech. Report
RT-DSI 6/90, Univ. di Firenze, April 1990.

[9] Khovanskii, A.G., Fewnomials, American Mathematical Society, Providence, R.I., 1991.

[10] Knight, J., A. Pillay, and C. Steinhorn, “Definable sets in ordered structures, II” Trans.
Amer. Math. Soc. 295 (1986): 593-605.

[11] Macintyre, A., and E.D. Sontag, “Finiteness results for sigmoidal ‘neural’ networks,” in
Proc. 25th Annual Symp. Theory Computing , San Diego, May 1993, pp. 325-334.

[12] Milnor, J.W., Morse Theory Princeton University Press, 1963.

[13] Palais, R., and C-l. Terng, Critical Point Theory and Submanifold Geometry , Springer-
Verlag, Berlin, New York, 1988.

[14] Poston, T., C-N Lee, Y-J Choie, and Y. Kwon, “Local minima and backpropagation,” in
Int. Joint Conf. Neural Networks , Seattle, IEEE Press, 1991, pp. 173-176.

[15] Sontag, E.D., Mathematical Control Theory: Deterministic Finite Dimensional Systems ,
Springer, New York, 1990.

20



[16] Sontag, E.D., “Feedforward nets for interpolation and classification,” J. Comp. Syst. Sci.
45(1992): 20-48.

[17] Sontag, E.D. and H.J. Sussmann, “Backpropagation can give rise to spurious local minima
even for networks without hidden layers,” Complex Systems 3 (1989): 91-106.

[18] Sussmann, H.J., “Real analytic desingularization and subanalytic sets: An elementary
approach,” Trans. Amer. Math. Soc. 317(1990): 417-461.

[19] Sussmann, H.J., “Uniqueness of the weights for minimal feedforward nets with a given
input-output map,” Neural Networks 5(1992): 589-593.

[20] van den Dries, L., “A generalization of the Tarski-Seidenberg theorem, and some nonde-
finability results,” Bull. AMS 15(1986): 189-193.

[21] van den Dries, L., “ Tame topology and 0-minimal structures”, preprint, University of
Illinois, Urbana, 1991-2.

[22] van den Dries, L., and C. Miller, “On the real exponential field with restricted analytic
functions,” Israel J. Math. 85 (1994): 19-56.

[23] van den Dries, L., A. Macintyre, and D. Marker, “The elementary theory of restricted
analytic fields with exponentiation,” Annals of Math. 140 (1994): 183-205.

[24] Williamson, R.C., and U. Helmke, “Approximation Theoretic Results for Neural Net-
works,” in Proceedings of the Australian Conference on Neural Networks , 1992, pp. 217-
222. (Also, “Existence and uniqueness results for neural network approximations,” IEEE
Transactions on Neural Networks 6(1995): 2-13.)

[25] Wilkie, A.J., “Some model completeness results for expansions of the ordered field of reals
by Pfaffian functions,” preprint, Oxford, 1991, submitted.

[26] Wilkie, A.J., ”Smooth 0-minimal theories and the model completeness of the real expo-
nential field,” preprint, Oxford, 1991, submitted.

21


