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This paper deals with nonlinear least-squares problems involving the fitting to data of 
parameterized analytic functions. For generic regression data, a general result establishes the 
countability, and under stronger assumptions finiteness, of the set of functions giving rise to 
critical points of the quadratic loss function. In the special case of what are usually called 
"single-hidden layer neural networks", which are built upon the standard sigmoidal activation 
tarth(x) (or equivalently (1 + e-X)-1), a rough upper bound for this cardinality is provided as well. 
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1. Introduct ion  

A very typical problem concerning function approximation and regression with 
so-called artificial neural networks, especially in applications dealing with learning 
and pattern recognition, is as follows. There is given a specification of  a wiring 
diagram (a labeled graph) that stipulates how information flows from node to 
node (nodes being typically called "neurons"),  and, for each such node, there is 
a rule that restricts the particular type of  combination (linear, polynomial, and 
so forth) of  the incoming signals that will be used as input to the node. These signals 
arrive from other nodes as well as from external sources. In addition, a transfer 
function ("activation") is specified for each node; this function indicates what  
computat ion is performed by that node on its input in order to produced the 
output  computed by the respective node. One of  the nodes acts as a designated 
"output  node", and its output  represents the response of  the whole network to 
the external inputs. Once such an architecture has been defined, it remains to set 
the numerical values of  the constants appearing as "weights" or "parameters" 
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(such as the coefficients of linear combinations or polynomials); for each choice of 
these parameters, a particular function of inputs is computed. The values of 
parameters are often obtained by minimization of a quadratic loss function 
which measures the goodness of fit to a given set of numerical data. 

By far the most common model in experimental work is that in which affine 
combinations are performed at the input of each internal node, each of which 
then computes an application of the "standard sigmoid" t a n h ( x ) =  (e x - e - X ) /  
(e x + e -x) - or equivalently, if a range of {0, 1} is preferred, then up to a rescaling 
and translation (1 + e-~) -1 . The output node then performs a final affine combina- 
tion of the outputs of the internal nodes. These are "single hidden layer networks", 
which compute functions of the following type: 

K 

~3(x,u) = co + Z ci tanh(Aiu + bi). 
i=1 

The inputs u are vectors in R m. The integer K (the "number of hidden units" in 
neural network terminology) is assumed to be fixed. The K(m + 2) + 1 parameters 
of the network (summarized by the vector "x"), namely the scalars Co,..., cK and 
bl , . . . ,  bK, and the m-row vectors A1, . . . ,  AK, are thought of as variables that will 
be tuned so as to make/3(x, ui) ~ Yi when given a set of inputs and corresponding 
target outputs. There are portions of the parameter space that give rise to degenera- 
cies. For instance, if one coefficient c; (i # 0) vanishes, then the loss function/3 is 
independent of the values of the corresponding A; and bi. If some Ai = 0 then 
the corresponding term is constant and can be absorbed into Co. If for some pair 
i # j it is the case that A,. = A} and bi = b.i, then the terms corresponding to i and 
j can be combined, and only the sum c; + cj is relevant, resulting also in a loss of 
dimensionality. Similarly, since tanh is an odd function, if (Ag, b i ) = - ( A j ,  b.i) 
then terms can be combined as well. Thus a natural parameter space is the set X 
consisting of all the bi's, c;'s, and A,7's for which these exceptional situations do 
not occur. 

Assume given a training or regression data set ("labeled sample") 

(u,y) = ((Ul,.. . ,Ulv),(Yl,.. . , ,YN)), 

where we interpret the ui's as input vectors ("regressors" in statistical terms) and 
the scalars Yi as targets or response vectors desired for the respective u~'s. The 
regression problem is that of minimizing (typically by means of steepest descent 
or other local search techniques) the quadratic loss 

1 N 
e l u , y l ( x )  : =  - y , )2  

i=1 

over X. It has been often remarked that, even for extremely simple cases (such as 
K = I  and supposing that the inputs are binary vectors) there arise critical points 
associated to non-global local minima, and thus the study of the set of critical 
points of E ('y) has been frequently put forward as a research topic; see 
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[3,4,8,14,17]. In this context it has also been observed many times that - as with 
other least-squares problems - pathological behavior will depend heavily on the 
training sets not being in "general position" in appropriate senses of probability or 
topological density (cf. [4,8,14]). In this paper, a combination of techniques from 
[1,11,16,19] - dealing with reconstruction of parameters from the functional form, 
the need for generic data (u, y) with large enough N, and the use of certain tools 
from analytic geometry and from model theory in logic - is used in order to 
obtain several characterizations of the critical set. 

One of the main results given in this paper (corollary 6.4) is that the set of critical 
. . ° . . 2 . 

points is fimte, and m pamcular less than 2 8(NKI (assuming that there are enough 
samples to make the problem not underdetermined, specifically that N > 
2K(m + 2) + 3, and for generic regression data). If the number of samples scales 
linearly on the number of nodes K, and assuming a constant input dimension, 
an upper bound of the type 

2cx -4 

results. (A lower bound of the type 2 c'Kl°gK also holds, due to symmetries in the 
problem: any exchange among the K terms in the sum preserves/3.) The finiteness 
results (not the above bound) can be generalized to more general "neural 
networks" and in fact many of the intermediate results apply equally well to 
completely general least-squares problems involving analytic functions. 

The paper is organized as follows. Section 2 presents the basic terminology. 
Section 3 provides a result showing that analytically parameterized classes of func- 
tions can be identified generically on the basis of just 2r + 1 samples, if r is the 
number of free parameters. This part of the paper depends on basic facts about 
real-analytic functions discussed in appendix A. Section 4 studies critical points for 
least-squares error criteria; this part of the paper relies upon elementary differential 
topology (Morse theory). Section 5 combines the results of sections 3 and 4. It estab- 
fishes, for generic analytic problems, the countability of the set of functions giving rise 
to critical parameter values. A refinement shows that this set is in fact finite, provided 
that the parametric class of functions be definable logically in terms of the exponential 
and certain other special analytic functions; this is shown on the basis of recent work 
in logic, dealing with "o-minimal logical theories", and discussed appendix B. Finally, 
section 6 specializes to single hidden layer networks, where one can use results on 
identifiability of parameters in order to obtain finiteness of the set of critical para- 
meters. At this point, a Khovanskii-type estimate gives immediately the bound men- 
tioned above. Though not strictly related to the previous results, we include in 
section 7 some observations regarding approximate interpolation problems for analy- 
tically parameterized families; we do so because the basic ideas are close, and the tech- 
niques used are essentially the same as those employed in the least-squares problem. 

2. Parametric classes o f  funct ions  

Most of the technical results to be given in this note depend only upon the fact 
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that the output of a neural network is simply a joint function of external inputs and 
parameters. At this level, we simply study regression problems for parametrized 
families of functions. Only towards the end do we need to specialize to some 
cases in which the precise form of the parameterization ("internal" structure) is 
relevant. 

The main technical hypothesis that we make is that the functional form is 
analytic on inputs and parameters. ("Analytic" means real-analytic: an analytic 
function on an open subset of l~ t is one which admits a convergent power series 
representation, locally around each point of its domain. See appendix A for 
some basic facts about analytic functions.) Analyticity is essential if one wants to 
obtain results in the form stated here. Relaxing to simply differentiability or 
piecewise differentiability leads to far weaker conclusions. 

Definition 2.1 
An architecture .4 = (/34, X, U) is specified by two analytic manifolds X and U, of 
dimensions respectively r (the number of parameters) and m (the input dimension ), 
and an analytic function 

/3.4 : X x U  ~ ]R 

called the behavior of .4. 

The function computed by the architecture .4 corresponding to a given para- 
meter vector x0 E X is by definition the function 

/3 (Xo, . ) :  U--, 

The class of functions computed by .4 is defined as the set of functions 

u Xo e x} .  

When ,4 is clear from the context, we drop the subscript and write simply/3. 
Many of the results to be given will hold in general, but those involving finiteness 

claims will only be proved in the special cases when the function/3 is also (exponen- 
tial and/or restricted analytic) definable. These are functions which can be 
expressed in terms of logical operations involving exponentials (on all of Ii~), as 
well as other analytic functions but restricted to bounded domains; see 
appendix B for details. Similarly, definable sets are those defined in terms of 
such operations. A definable architecture is one for which X is a definable 
submanifold of IR r, U is a definable submanifold of R m, and /3~ is a definable 
function. 

Remark 2.2 
In particular, any "neural network" made up of linear (or polynomial) inter- 
connections, and employing either the activation tanh or the activation arctan, 
gives rise to a definable architecture. 
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3. Minimal  sample sizes 

Let A be an architecture, and let Uo be a subset of the input set U. Two para- 
meters x~ and x2 are said to be indistinguishable modulo Uo, and we write 

if 

XI u~X2 

u) u) 

for all u E U0. If this property holds with Uo = U, we write x~ ~ x2 and simply say 
that xt and x2 are indistinguishable; this means that fl(x~, u )=  fl(x~, u) for all 
u E Vo, that is, the behavior of  the architecture is the same, for all possible external 
inputs, whether the parameter is x I or x2. 

Given a parameter x0 E K, a distinguishing subset for it is a subset U0 of  U such 
that, for every x E K, 

XO ~o X ::=k XO "-' X. 

That is to say, if two parameters give rise to different functions, then they can be 
distinguished on the basis of these inputs. The distinguishing dimension D(.A) is 
the smallest integer ~ (possibly infinite) with the property that for each x0 C X 
there is some distinguishing subset of  size t~. 

The set U0 is a universal distinguishing set if it is a distinguishing subset with 
respect to all possible x0 E K. That is, for such a set V0, the relation " ~ "  is the 
same as simply ",.o." Equivalently, for a finite subset V0 = {u~,. . . ,us},  this 
means that the following mapping, which maps parameters into the vector of  out- 
puts corresponding to inputs in U0: 

x ( l iu l I I,) 
\ u,) ] 

is one-to-one from the quotient set X/,-., into W. The universal distinguishing dimen- 
sion UD(.A) is the smallest integer ~ (possibly infinite) with the property that there is 
some universal distinguishing subset of  size ~. Clearly D(A) _< tro(.A). 

Remark 3.1 
Similar concepts arise in different areas. In control theory (see e.g. [15, Chapter  5]), 
one studies the possibility of  separating internal states (corresponding to the para- 
meters in the current context) on the basis of input /output  experiments. In com- 
putational learning theory, there is an analogous concept of "teaching 
dimension" - see e.g. [7] - to model the smallest cardinality of  a set of  inputs 
that allows a teacher to uniquely specify the particular function being " taught"  
among all other functions of  interest. Related notions appear also in automata  
theory and sequential machines (cf. [5]), though in both the cases of computational 
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learning theory and automata, the emphasis is on discrete sets and combinatorics, 
as opposed to analytic parameterizations. [] 

The next result provides a simple upper bound on the size needed for (universal) 
distinguishing subsets. Moreover, the result shows that in a precise sense, almost 
every subset of this minimal cardinality (or, therefore, of any larger cardinality 
as well) has the desired property. 

By abuse of terminology, we shall say that a family Z of k-element subsets of U is 
(finitely) analytically thin if the set of vectors (u l , . . . ,Uk)•  U k so that 
{u l , . . . ,  uk} • Z is (finitely) analytically thin (cf. appendix A). 

Theorem 1 
Assume that A is an architecture for which U is connected. Then, 

D(.A) <~ r + 1 and UD(A) _< 2r + 1. 

Moreover, the set of universal distinguishing subsets of size 2r + 1, and, for each 
x0 • X, the set of distinguishing subsets for x0 of size r ÷ 1, have analytically 
thin complements. If in addition .A is definable, then these statements hold with 
"finitely analytically thin" instead of "analytically thin". 

/ ' roof 
Fix a parameter x 0 E X. As a first step, we characterize the distinguishing subsets of 
size r + 1 for the parameter x0. Consider the set of parameters that can be distin- 
guished from x0: 

w0 := {xcXtX Xo} 
and, for each element x • W0, the set of inputs that do not distinguish x from x0: 

B(x) := {ulu • U and x ~,x0}. 

For each such x • W0, B(x) is a semianalytic subset of U of dimension at most 
m -  1, since it is the set where the nonzero analytic function fl(x, u)-fl(Xo, U) 
vanishes and U is connected. Thus, the following subset of U'+~: 

r+l  

T(x) = { (u , , . . . ,u ,+ , )I  u, • t (x) v i =  1 , . . . , r  + 1} = H 
i=I 

has dimension at most (m - 1)(r + 1) (proposition A.2, part 3 in appendix A). 
Next, consider the following cr-analytic subset of Wo x Ur+l: 

G := {(x, ul, . . . ,Ur+l)tx • Wo, Ui • B(x) Vi= 1 , . . . , r +  1}. 

Let 7q : Wo × U r+l -~ W0 be the projection on the W0 factor. For each x • W0, 
7r-{l(x) ['7 ~ = T(x) has dimension at most (m - 1)(r + 1). Applying then proposi- 
tion A.2, part 2, it follows that 

dim~7 _< r +  ( m -  1)( r+ 1) = m(r+ 1 ) -  1. 
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Finally, consider the projection 7r2 of ~ on the U ~+x coordinates. Its image is exactly 
the set B consisting of  those vectors ( u t , . . . ,  u~+t) which give rise to non-distin- 
guishing sets U0 = { u t , . . . ,  u~+z } for x0. As projections cannot  increase dimension 
(by proposi t ion A.2, part  1, applied w i t h f  = 7r2), the set B must  have dimension at 
most  m(r + 1) - 1, which allows us to conclude the first par t  of  theorem 1. 

I f  the architecture is definable, then the set B is definable, so f rom fact B.3 and 
the above dimension count  it follows that  B must  be finitely analytically thin. 

We now show the existence of  universal distinguishing sets of  cardinality 2r + 1 
and that  almost  all sets of  that  cardinality are universal distinguishing sets. For  this, 
consider the architecture 

A' : ( y , x  × x , u ) ,  

where 

x2), u) :=  u) -  (x2, u). 

Fix any arbitrary x0, and consider the problem of finding a distinguishing set for 
(x0, x0) with respect to the architecture .4'. Any such set is also a universal distin- 
guishing set for the original .4. As the parameter  space is now of  dimension 2r, the 
conclusion is obtained. [] 

Remark 3.2 
In the smooth  (rather than analytic) case a local result is possible: there is a dense 
open subset of  X, and an open covering of this set, so that  on each subset V of  this 
cover, some set of  r inputs serves as a universal distinguishing set with respect to 
parameters on V. This is easy to prove via an a rgument  using the rank theorem. 
The global versions are obviously false, however. This is illustrated by the following 
example: let X = U = (0, c~) and/3(x ,  u) := 7 ( x -  u), where "7 is a smooth  m a p  
which is nonzero  on (-cx~, 0) and zero elsewhere. Then every two parameters  are 
distinguishable (if x # y  then picking u : =  ( x + y ) / 2  results in ~ ( x , u ) #  
0 = 13(y,u)). But there is no finite universal distinguishing set (even though  
r =  1): given any bounded  U0 c_ U, pick x ,y  >_ sup{u [ u E U0}; then ~ ( x , u ) =  
0 = fl(y, u) for all u E U0. [] 

4. Outputs  at critical points  o f  error func t ion  

Given a differentiable function E among  two differentiable manifolds,  and an 
element x in its domain,  (E),[x] denotes the differential of  E at the point  x. In 
local coordinates this is just  the Jacobian,  or, for real-valued functions E the gra- 
dient, evaluated at x. 

Th roughou t  this section, f is a fixed analytic mapp ing  

f : X--+]R N , 

where X is an analytic manifold (typically, an open subset of  some Euclidean space) 
and N is some positive integer. 
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For each fixed y E R N, we consider the function 

gy : X--*N : x~½1lf(x)-Yll  2 

as well as the set of critical points of Ey: 

M,, := {x  i (E.,,),[x] = o} 

and its image under f :  

(2) 

(3) 

Sy := f(My). (4) 

Note that, for each fixed y, My is a semianalytic subset of  N (it can be characterized 
through the vanishing of  analytic functions) and thus @ is what we call a e-analytic 
subset of N N (cf. appendix A), for each fixed y. We will be interested in knowing 
when Sy is a countable set, or equivalently, when it has zero dimension. (In this 
paper, by "countable" set we mean denumerable or finite.) 

Remark 4.1 
In least-squares problems, the variables x represent parameters to be fit to data spe- 
cified by the target vector y, and one attempts to minimize E,, in order to find a best 
fit. The local extrema of  Ey are in particular points in the sets Ev(My), that is to say 
critical values of  Ey. For  any fixed y E ]~N, just from the smootlaness of  the function 
Ey one knows that this set has measure zero (Sard's Theorem). Since in addition E,, 
is analytic, this set of critical values is countable, because it has measure zero and is 
a a-analytic subset of  N. (The set of critical values is not necessarily discrete, how- 
ever, as illustrated by f (x )  = e-" sin(x) with X = N, N = 1, y = 0.) However, here 
we are not interested in the image of  My under Ey, but rather in its image unde r f .  
This latter image may fail to be countable, at least for certain target values y (exam- 
ple: f (x)  = (cos(x), sin(x)), N = Ii~, N = 2, y = (0, 0)). The next result shows that 
such a situation holds only exceptionally. [] 

F rom now on, we say that a property holds generically for points y in a manifold 
M if the set where this property fails to hold is included in an analytically thin 
subset of  M, that is, in a countable union of  submanifolds of strictly smaller dimen- 
sion. (In particular, the set where the property fails has measure zero, and also is of 
the first category. Furthermore, a countable intersection of generic subsets is again 
generic.) 

The following transversality fact will be essential to the further results: 

Proposition 4.2 
Generically for y E ll~ N, dim Sy = 0. 

Proof 
We start by observing that there is a covering of  N by countably many embedded 
submanifolds X,. with the property that each restriction fix, has constant rank 
differential. This can be proved by induction on the dimension r of N, as follows. 
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The case r = 0 (that is, when X consists of a countable union of  points) is clear. 
Assume that  we proved the existence of  such a covering for the case of  maps  on 
manifolds of  dimension r - 1. Assume now that  X has dimension r. Wi thout  loss 
of  generality, we assume that  J¢ is connected; if this were not  the case, we could 
start by decomposing X into its - at most  countably many  - connected com- 
ponents;  the existence of  a good covering for each componen t  then implies the 
existence of  a covering for the original set. Let q be the largest possible rank of  
the differential o f f .  Let X q-t be the set of points  in IN where the rank is less or 
equal to q -  1. This is a proper  closed semianalytic subset of  X. Since X is 
connected,  X u-1 is analytically thin in X. Thus,  by fact A.1, it can be written as a 
(disjoint) union of embedded analytic submanifolds,  X q-1 = (.J{Mj,j E J}, where 
J is countable.  Each Mj has dimension at most  q - 1, so by inductive hypothesis,  
for each j there is a family of  submanifolds {Mik, k E Ki}, Ki countable,  which 
cover MJ and so that  eachf[Mjk has constant  rank. Then the family consisting of  

q-I X \ X together with all the Mjk provide the desired covering of  the original 
space X. (If desired, the same p roof  can be used to provide a partit ion.) 

Next  we remark that  we may assume, in addit ion,  that  the restrictions f ix,  are 
submersions onto  embedded submanifolds oflR u. That  is, there are embedded  sub- 
manifolds Zi o f R  N SO tha t f (X/ )  = Zi for each i, and so that  the (constant) rank  of  
the differential of f i x  , equals the dimension of  Z~, for each i. Indeed, pick any i. 
Locally, by the Rank  Theorem,  about  each x E J¢; there is a ne ighborhood  of  x 
in Xi so that  f restricted to this ne ighborhood defines a submersion into the 
image. Covering in this way each J¢~, and picking countable  subcoverings (Lindel6f  
property),  one obtains the desired conclusion. 

Fix any y E ]R u and, for each index i, let E~ i, be the restriction of  Ey to Xi. Let My 
be the set of  critical points of  E~, and consider the respective images Sy := f (Mji,). I f  
(Ey),[x] = 0 and x ~ iKi then, since E~, factors as Ey o ~b,., where ~bg is the inclusion of  
X; in N, also 

(E~,).[x] = 0. 

Thus  My !s contained in the union of  the sets M~,. So Sy is contained in the union  of  
the sets S~,. Assume that, for each i, it is known that  S) is countable  whenever y does 
not  belong to the analytically thin subset Q~ of  ~N. It then follows that  Sy is coun- 
table i f y  is not  in Q = (.J Qi, which again is analytically thin, and hence the desired 
conclusion holds. Thus  we reduced the problem to establishing the result for each 

Xi. 
F r o m  the previous considerations, it is sufficient to treat the case in w h i c h f  maps  

submersively onto  an embedded  submanifold  Z of  ]R N. We assume f rom now on 
that  this is the case. For  each y E ]R N, let 

H v : Z--*IR : z H  1-[z 2 - y l l  2 

so that  Ey = Hv of .  If  z = f ( x )  and (Ey).[x] = 0  then 

(H:,).[f(x)] o (f) ,[x] 
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is zero. S i n c e f  is a submersion,  that  is, ( f ) .  [x] is an onto  map  f rom TxX to Tf(.,)Z, 
this means that  (Hv).[f(x)J = 0. In other  words, the elements of Sy are precisely the 
critical points  of  H~, as a map  on the submanifold Z. 

Let Q be the set of  those y E Ii~ N for which the map  Hy is a Morse  map,  that  is, it 
is so that  all of  its critical points are nondegenerate  (Hessian is nonsingular).  It is 
well-known, and easy to prove via a parametr ic  Sard theorem, that  the complement  
of  Q has Lebesgue measure zero. The p roo f  is based on the fact that  H,, has no 
degenerate critical points if and only if y is not  a focal point  for Z, that  is, it 
cannot  be written as a "focus"  of  a set of  nearby points,  or more  precisely, the end- 
point  m a p  (x, v ) ~ x  + v f rom the normal  bundle  of  Z to IR ~ is an isomorphism.  
See [12, §6] or [13, section 9.6] for details. Notice that  11~ N \ Q is a o'-analytic set, 
because it is the projection into the y variables of  the semianalytic set of  pairs 
(x,y) for which the differential and the Hessian of  Hy both vanish. Being a o-- 
analytic subset and having measure zero, I~ N \ Q must  be analytically thin. For  
each y E Q, all critical points are nondegenerate, hence isolated; thus there can only 
be a countable number of  them. This completes the proof  of proposition 4.2. [] 

5. Extremal parameters 

We now assume given an architecture .,4 = (/34,X,U). Let N be a positive 
integer. A regression data sequence of  size N is by definition a pair of  sequences 

(u,y) = ( ( u , , . . . , U N ) , ( y l , . . . , , y N ) )  e U ~x l l~  N. 

For  each regression data sequence, we consider the quadrat ic  loss function 

E ("'y) : X-~N 

defined by the formula 

1 N 
E("'Y)(x) := ~ ~ (/3(x, u i ) -y i )  2. 

i=1 

In other  words, using the notat ions of  section 4, if we denote  

f , :  X - , R  N : X ~ - +  

\ UN) 

then E("+)(x) = Ev(x), where y is as above the vector with components  Yl , . - .  ,Y^, 
and E y is unders tood as the error function with respect to the function f , .  

We are interested in studying the set of  critical points  of  the map  E ("'y). More  pre- 
cisely, since indistinguishable parameters  give rise to the same behavior, we look for 
an upper  bound  on the number  of  equivalence classes that  may  give rise to critical 
values of  the error function. 
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A class of  parameters C will mean an equivalence class under  ~-,, using the nota-  
tions in section 3. A class C will be said to be critical, with respect to a given 
regression data  sequence (u,y), if there is any parameter  x0 E C for which 
(E("'Y)).[Xo] = 0. We let p(u,y) be the number  of  critical classes with respect to 
(u,y). 

For  each (u, y), we may consider the sets S(,,,y) and M(u,y) equal respectively to the 
sets Sy and My in section 5 when applied to the map  fu. A class C is critical if and 
only if the imagefu(C) is in S(,,,y). For  any {u~, . . . ,  UN) and any class C, the image 
f,,(C) consists of  just  one point. Thus  

p(u, y) > card S(,,,y). 

If, in addit ion,  { u l , . . . ,  uN} happens to be a universal distinguishing set for .,4, then 
f , (x)  = f , ( x ' )  if and only if x ,.~ x'. So in that  case 

p(u,y) = card S(,,,y). 

The next result says that  (provided the data  is "overdetermined"  enough) the 
number  of  critical classes is, in a generic sense, countable. Recall that  r is the dimen- 
sion of  the parameter  space X. 

Theorem 2 
Assume that  N >_ 2r + 1. Then,  generically in u, for generic y there are only coun- 
tably many  critical classes. 

Proof 
Pick any sequence u = (u l , . . . ,  UN) SO that  {ul , . .  •, uN} is a universal distinguishing 
set for A. By theorem 1, there are such sets, and all sequences are like this except for 
those in an analytically thin set B. As remarked above, p(u, y) = card S(,,s). Com- 
bined with proposi t ion 4.2, this gives that, for all y except those in an analytically 
thin set B,,, the set of  critical classes is countable.  [] 

Remark 5.1 
Let F be the complement  of  the set of  regression data  sequences of  size N for which 
there are countably many  critical classes. With the notat ions  in the above proof,  F 
is contained in the (~r-analytic, and therefore measurable) set 

{ (u , y ) }u  E B or y E B~,}, 

so by Fubini 's  theorem it has zero measure. 

5.1. The definable case 

F r o m  now on, assume that  .A is a definable architecture. Consider  the following 
formula ~(z, u,y) over the language L: 

(3x E I()(/3(x, ui) = zi, i = 1 , . . . , N )  and (E(~"Y)).[x] = O. 
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The set S(u,y) obtained as the image of  the set of critical points  of  E (u'y) under  f ,  is 
precisely the set of  points z defined by the formula e#(,,,y) obtained f rom ff by fixing 
the variables (u, y). Thus,  by fact B.2, the number  of  connected components  of  S(,,,y / 
is bounded  by some fixed integer t~ (which depends only on the architecture and will 
be fixed f rom now on). In particular, if S(,,y ) happens to be a countable set, then it 
must  be a finite set of  cardinality at most  ~. Recall that  for universal distinguishing 
sets this cardinality is the same as p(u, y). 

Suppose that  N _> 2r + 1. Let G be the set of  regression data  sequences of  size N 
for which p(u,y) <_ ~. This set is definable. Indeed, it is S((b), where ~?(u,y) is the 
formula  that  states that  there exist ~ vectors z~ , . . . ,  z~ in 1~ u with the proper ty  
that,  if x is a critical point  of  E ("'y) then one of  the equalities f , (x )  = zl, . . . ,  
f , (x )  = z~ holds. On the other hand,  by remark  5.1, we know that  the complement  
F of  G, which is also definable, has measure zero. It follows f rom fact B.3 that  F is 
finitely analytically thin in the sense of  the appendixes (i.e., a finite union of  
embedded  submanifolds of  positive codimension).  We summarize as follows. 

Theorem 3 
Assume that  N >_ 2r + 1 and that  the architecture is definable. Then  there is some 
integer ~ and a finitely analytically thin subset F C_ U N x Nu so that,  for each 
regression data sequence of  size N which is not  in F, the number  of  critical classes 
is at most  ~. D 

6. T h e  s i n g l e - h i d d e n  layer  n e t w o r k  case 

In this section we specialize the results to the case of single-hidden layer net- 
works. Let 0 : R ~ ~ be a given function, to be called f rom now on an activation. 
For  simplicity we will assume that  0 is an odd function (O(-x) = -O(x)), but  results 
can be generalized in obvious ways at the cost of  somewhat  more  notat ional  
complication.  

We will say that  (A, b, c) is an (m, K) triple if A E R K×'', b E R K, and c E R r+l,  
and use A; and bi, i = 1 , . . . ,  K, to denote the ith rows of  A and b respectively, and 
ei, i = 0 , . . . ,  K, for the rows ofc .  The  triple is irreducible if the following properties 
hold: 

c i ¢ O  for i = l , . . . , K ,  

A i ¢ O  for i = l , . . . , K ,  

(A,,bt) ¢ 4- (Aj, bj) for i,j = 1 , . . . ,  K, i C j .  

We now define "single-hidden layer neural ne tworks"  (with the obvious nonredun-  
dancy constraints). 

Definition 6.1 
An (m, K) irreducible architecture with activation 0 is an architecture A = (/3, X, U) 
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of  the following form: 

• The input  set U = 1~ m. 
• With r = K(m + 2) + 1, and writing the elements of  the Euclidean space IR r as 

triples x = (A, b, c), the parameter  set IK is the subset of  II~ r consisting of  irredu- 
cible triples. 

• The  behavior/3 has the following form: 

K 

/3(x,u) : Co + ciO(A,u + hi). [] 
i=l 

The activation 0 is said to satisfy the property IP (" independence proper ty")  if, 
for each positive integer 1, any positive real numbers  a l , . . . ,  at, and any real num-  
bers b l , . . . ,  b~ such that  

(ai, bi) • (aj, bj) V i ¢ j ,  

the set of dilated and translated functions R ~ R 

{1, O(a,s + b,), . . . ,  O(ats + bt)} 

is linearly independent .  
The function 0 = tanh, the s tandard sigrnoid used in the neural networks experi- 

mental  literature, satisfies IP, as shown in [19]. A simple p ro o f  of  this fact, as well as 
an extension to far more  general 0, is given in [1], f rom which we cite the following 
sufficient condi t ion for 0 to satisfy IP: 

Fact 6.2 
Assume that  0 extends to an analytic function defined on some subset D C_ C of  the 
form: 

D -- {z[ {Imz[ < A) \ {z0,g0} 

for some A > 0 so that  Im z0 = A, and where z0 and ~'0 are singularities (there is a 
sequence z, ~ z0 so that  ]0(z,,)] ~ c~, and similarly for g0). Then 0 satisfies 
proper ty  IP. [] 

This condit ion encompasses many,  or perhaps most ,  examples of  interest in 
neural networks.  Observe that  if 0 has a meromorph ic  extension which has a 
unique pole of  minimal  positive real part,  then it satisfies the above hypotheses.  
This includes many  rational functions as well as tanh(s).  Ano the r  useful example 
that  satisfies the above sufficient condition,  and hence also proper ty  IP, is arctan(s). 

Lemma 6.3 
Let .A = (/3, X, U) be an (m, K) irreducible architecture with an activation 0 which 
satisfies property IP. Then, each equivalence class C under  ~ has cardinality exactly 
2KKk 
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Proof 
It is shown in [1] (in the same manner  as done for the corresponding result for tanh  
in [19]) that  two parameter  vectors are equivalent, (A, b, c) ,.o (A', b', c'), if and only 
if (A', b', c') can be obtained f rom (A, b, c) by some permuta t ion  of  the rows 
i =  1 , . . . , K  of  each of  A,b,c,  and/or  a sign reversal in each row, for some 
subset of  these rows. I--1 

A parameter  x = (A, b, c) will be  said to be critical, with respect to a given 
regression data sequence (u, y), if (E("'Y/), [x] = 0, that  is, if x E M(,,y I. 

Theorem 4 
Let A = (/3, X, U) be an (m, K) irreducible architecture with activation 0. Assume 
that: 

• N > 2 r +  I; 
• 0 is definable; and 
• 0 satisfies IP. 

Then, there is some integer p = Po,r,N and a finitely analytically thin subset 
F C_ U N x I~ s so that,  for each regression data  sequence of  size N which is not  in 
F,  the number  of  critical parameters  is at mos t  p. 

Proof  
Theorem 3 showed that  there are ~; and F so that,  for each regression data  sequence 
of  size N and not  in F, the number  of  critical classes is at most  r~. L e m m a  6.3 pro- 
vides a uni form bound  on the cardinality of  classes. Thus  the conclusion holds with 
p = 2/¢K! ~. [] 

Observe that  theorem 4 applies, in particular,  to the choices 0 = tanh and 
0 = arctan. 

6.1. Explicit estirnates for tanh 

We now specialize to the case when 0 = tanh, in which case we can use explicit 
estimates derived f rom Khovanskii ' s  theory of  sparse and exponential  polynomials.  
The objective is to estimate the cardinality of  M(,,y), the set of  critical parameters.  
To  do so, we need to count  the equations defining the partial derivatives and to 
analyze the complexity of  these equations.  A potential  difficulty in applying 
Khovanskii ' s  techniques is that  in general one must  first reduce the problem to 
one dealing with submanifolds o f  Euclidean spaces defined by exponential  poly- 
nomials.  Thus  we assume that  a regression data  sequence (u, y) is given, satisfying 
the genericity assumptions of  theorem 4, so that  the set M(,,y) is already known to 
be finite (and hence a manifold).  Next  we compute  explicitly the partial derivatives 
of  E (u'y), as follows. As before, we write the parameter  vector in the form 
x = ( A , b , c ) .  
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We start by considering the set of equations 

( z / j + l ) ( l + e  tU) = 2 ,  i = I , . . . , K , j = I , . . . , N ,  (5) 

where, for each i,j, we are denoting 

Lij = -2(Aiuj + bi), 

which is a linear function of the parameters. Note that equation (5) is equivalent to 

z O. = tanh(Aiuj+bl) ,  i = I , . . . , K , j = I , . . . , N .  

For simplicity in displays, we use the following notation, for each j  = 1 , . . . ,  N: 

K 

PJ : :  Co q- Z ci gq -- YJ 
i=l 

(this represents the value/3(x, uj) of the output, corresponding to the parameters x 
and an input vector UJ)- The derivatives with respect to the variables c u provide the 
equations 

N 

~_, pjzuj = 0 ,  # = I , . . . , K  (6) 
j= t  

and, for the case # = 0: 
N 

pj = 0. (7) 
j=l  

The derivatives with respect to the variables b, provide the equations 
N 

y ~  pj(1-zZuj) = 0 ,  # = 1 , . . . , K ,  (8) 
j=l  

where we used the fact that tanh'(s) = 1 - tanh(s) 2 and we cancelled the factor c~ 
(which is necessarily nonzero in the irreducible case). Finally, derivatives with 
respect to the entries of A give the equations 

N 

Z pj(1-z~j)u  0 = O, # = I , . . . , K ,  l = l , . . . , m  (9) 
j = |  

(again dropping the factor cu). 
Irreducibility of the triple x = (A, b, c) is equivalent to the solvability of the 

following set of equations: 

c~,5 u = 1, # =  I , . . . , K ,  (10) 

IlAullzS~, = 1, # = i , . . . , g ,  (11) 

II(A, + A,,b, + bj)lt =d0 = 1, i =  1 , .  , g -  1, j = i + 1 , . . .  ,K ,  (12) 
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and 

[[(A,-Aj, b,-bj)[[2 o = 1, i = l , . . . , g - l , j = i + l , . . . , g ,  (13) 

where the ~,, fi~,, d0., and e,7 represent a set of additional variables. 
We now consider the set of equations (5) to (13) as a set of simultaneous 

constraints on the variables 

Zr, Ci, bi, AO', ci, gti, dij, eij. 

Let M(,,,y) be the subset of R ~ defined by these equations, where 

u = K ( 3 + N + m + K ) .  

There is a one-to-one correspondence between the set Mo,,y ) and the set A)(,,,y), since 
equations (10) to (13) provide unique values for the "tilde variables" in terms of the 
original variables. The advantage of working with the extended set hT/(,,,y) is that this 
is a subset of Euclidean space defined by a finite set of equations, each of them a 
polynomial on the variables or on the exponentials of the linear functions L,j. 
Since the set A]rC,,,y ) is known to be finite, we can apply the estimates provided for 
precisely such equations by Khovanskii in [9, p. 91]. (A priori, these estimates 
can be applied to any set of equations provided that the set of solutions is already 
known to define a submanifold.) Let q = NK,  the number of distinct linear func- 
tions appearing in the exponentials. Then Khovanskii's estimates (in his notations, 
"k"  is zero) gives the following upper bound for the cardinality of M(,,,,,): 

2 q(q-l)/2 ¢5 v (ur) q, (14) 

where 6 is the maximum degree of the equations. Note that 6 = 4, which is achieved 
2 which appear in equation (8). Note that if by the terms of the type cizozoj 

N _> 2r + 1, then N > m + 3, so we have an upper bound estimate as follows. 

Corollary 6.4 
Let .4 = (3,X,U) be an (m,K)  irreducible architecture with activation tanh. 
Assume that N > 2 r +  1. Then, there is a finitely analytically thin subset 
F C_ U N x N~v so that, for each regression data sequence of size N which is not in 
F, the number of critical parameters is at most 28(~vr)2. [] 

7. In te rpo la t ion  capabil i t ies 

In the context of solving least-squares problems, it seems of interest to ask how 
many parameters are necessary in order to be able to obtain an arbitrarily small 
error on a given number of samples. We formalize this question as follows. 

A sequence of elements (u l , . . . ,  uN) will be said to be 1-shattered by the archi- 
tecture -4 if for every possible sequence of target values (Yl,. • •, YN), 

inf E(u'y)(x) = O. 
xEX 
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Thus, shattering in this sense means that all possible values can be approximately 
obtained. This property may be too restrictive, for instance if/3 is a bounded func- 
tion (as happens for neural networks if parameters in the output layer are required 
to be small). A weaker requirement is that, for some e > 0, the sequence be e-l- 
shattered by .A, meaning that one requires this property only for all those sequences 
of target values Yl, . . .  ,YN for which lY;I < e for all i. 

Observe that I-shattering amounts to asking that the mapping in equation (I) 
has a dense image, and e-I-shattering is the same as the requirement that the 
image of this map intersect ( -e ,  e) ~v densely. 

The interpolation dimension I9(,4) is the supremum (possibly infinite) of the 
integers N for which there is an e > 0 and some sequence of length N that can 
be e-I-shattered by ,4. (Note that if one would define to(A) using I-shattering 
rather than e-I-shatterings the dimension would be no greater; thus the upper 
bound to be given below holds in that case as well.) 

We next show that a parameter count provides the right upper bound. This fact 
is not true in general, and the assumption of definability is essential; such a result is 
in general false, even for networks obtained from analytic activations that qualita- 
tively look very much like tanh (strictly increasing, limits at 4-c~, etc.); see [16] for 
such counterexamples. 

Theorem 5 
For every definable architecture .A, to(A) < r. 

Proof 
If a sequence (u l , . . . ,  Uu) can be e-I-shattered, then the image of the map in 
equation (1) intersects ( - e , e )  u densely, for some e > 0. By corollary B.4 in 
appendix B this image, being a definable set, must have nonempty interior. But 
the map is analytic, so then Sard's Theorem implies that its differential must 
have full rank N at some point. In particular, it must then be the case that 
N < r, establishing the result. [] 

Remark 7.1 
Note that the inequality to(A) _< r is trivial in the case of bounded parameters, 
assuming only that 3.4 is smooth. That is, if one takes any class of functions of the 
type {3.4(x0, "), [[x0H _< 7), then the image of the map (1) (with domain Ilxl[ _< 7) is 
compact, hence closed. Thus the image cannot intersect ( -¢,  e) ~v densely unless it con- 
tains all of ( - e ,  e) N. Now Sard's Theorem again provides the conclusion. [] 

Remark 7.2 
As an example, take an (1, K) architecture with activation 0 = tanh. The above 
result says that to(A) < 3K + I. This fact had also been proved, for this very 
special case, by an ad-hoc argument in [16], where it was also shown that 
xD(A) > 2k - 1. Determining in this example the precise value Of ID(A) in the inter- 
val 2K - 1 , . . . ,  3K + 1 would seem to be an open question. [] 
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Figure 1. Linearly ordered nodes, 

Remark 7.3 
Observe that  it is possible for ID(.A) to be far smaller than r. For  instance, for 
"neural  nets" consisting of  a string of  linearly ordered nodes (see figure 1), i.e., 
f l(x,u) is an iteration of  functions O(alO(a20(... (aku + bk). . .)  + b2) + bl), 
r = 2(k - 1), but  ID(.A) = 2, independent ly of  the number  of  nodes, since all the 
functions fl.a(x, .) : • ~ R are necessarily monotone .  [] 

Appendix A: S o m e  facts about real-analytic functions 

In this appendix we describe various elementary facts regarding (real-)analytic 
functions in a manner  suitable for reference in the main text. 

Let M be any analytic manifold  of  dimension l. (In this paper,  "mani fo ld"  
always means second-countable manifold.)  Recall that  an embedded  submanifold  
Z of  M,  of  dimension q, is a connected subset which, locally a round  each of  its 
points  and  up to analytic diffeomorphisms,  looks like a "slice" { ( x t , . . . , x t ) [  
Xq+l . . . . .  xt = 0). When  q = l, this is just  an open set. 

Assume now that  the submanifold  Z has positive codimension,  that  is, q _< l - 1. 
F r o m  the definition, it follows that  for some open subset M0 c_ M, Z is a closed 
subset of  M0 (in the relative topology).  Observe that  Z is nowhere  dense, that  is, 
its closure has empty interior. (That  is, if U is any open subset of  M,  then Z n U 
cannot  be dense in U: if U does not  intersect M0 then this is clear; otherwise 
U N M0 is a nonempty  open set and we may  assume wi thout  loss of  generality 
that  U C M0; then U = ( U \ Z )  U ( U N Z ) ,  so either U \ Z  is a nonempty  open 
set, and we are again done,  or U N Z = U, but  in this latter case Z would contain  
an open set and hence could not  have positive codimension.)  Also, such a Z has 
measure zero. 

For  simplicity, if Z is a countable union of  embedded  analytic submanifolds  of  
M of  dimension _< q, and  q is the smallest such integer, we say that  Z is a or-analytic 
subset of  M and call q the dimension of  Z.  (It is not  hard  to verify that  the dimen- 
sion is well-defined, in the sense that  it does not  depend on the particular union of  
countably  many  submanifolds  being used.) The  o-analytic subset Z of  M will be 
said to be analytically thin if d im Z < dim M,  Such a set has zero measure and is 
of  the first category (a countable  union of  nowhere  dense sets), as remarked 
above. Conversely, if a G-analytic subset and it has measure zero then it must  be 
analytically thin (otherwise it contains a submanifold  of  full dimension,  that  is, 
an open subset of  M). We also use the following terminology: a subset Z of  M is 
finitely analytically thin if it is a finite un ion  of  embedded  analytic submanifolds  
of  positive codimension.  
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In studying analytic sets and mappings, it is useful to introduce the notion of  a 
semianalytic subset Z of an analytic manifold M. This is a set Z so that, for each 
z E M, there is some neighborhood U of  z so that Z N U is in the Boolean algebra 
generated by a finite family of subsets of the form ~.(x) > 0}, for some analytic 
functionsfj  : U ~ ~ , j  = 1 , . . . ,  J_.. It is easy to see from the definition of  embedded 
submanifold that if Q c_ M is such a submanifold, then Q is a countable union of  
compact semianalytic subsets. It follows that every a-analytic subset of M is a 
countable union of  compact semianalytic subsets. Conversely, every semianalytic 
subset is a countable union of embedded submanifolds; see for instance property 
8(e) in [18]. In conclusion, being a a-analytic subset is the same as being a countable 
union of semianalytic subsets (or of compact semianalytic subsets). We will use the 
following very special consequence of  general stratification theorems (see for 
example theorem 9.2 in [18], as well as [2]): 

Fact A.1 
Let M and N be analytic manifolds and f : M ---, N an analytic mapping. Assume 
that Z is a compact semianalytic subset of M. Then there is a partition of N into a 
countable union of  connected analytic embedded submanifolds Qj, and a partition 
of Z into a countable union of connected analytic embedded submanifolds so that 
each such submanifold is diffeomorphic to II~"J x Qj, for integers rtj ~ 0 and suitable 
indices j E Jz, and on each such set the mapping f is (up to the same 
diffeomorphism) the projection ~"J x Qj ---> Qj. [] 

Observe that it also follows from fact A. 1 that the image f(Z) is a a-analytic 
subset of N (since it is a union of a subfamily of the Qj's). Note that if Z is a a- 
analytic subset of M, then the above discussion shows that dim Z = q if and 
only if Z can be written as a countable union of  embedded submanifolds in such 
a way that the maximum of the dimensions of the submanifolds is q. 

The next statements amount  to saying that naive parameter counts are well- 
justified when dealing with analytic mappings. 

Proposition A.2 
Assume that M, N, and Mi, i = 1 , . . . ,  k, are analytic manifolds. L e t f  : M ---, N be 
an analytic mapping. Then: 

1 If Z is a a-analytic subset of M, then f(Z) is a a-analytic subset of N, and 
d i m f ( Z )  < dim Z. 

2 For  all Z C_ M, 

d i m Z  < d i m f ( Z )  + max[dimf-l(y) RZ]. 
-- yEN 

3 If Z; is analytically thin in Mi, for i = 1 , . . . , k ,  then Z = Z~ × . . .  x Zk is 
analytically thin in M~ x . . .  x Mk and 

Z = Zt x...xZkC_Ml x. . .xMk 

satisfies dim Z = ~ i  dim Zi. 



264 E.D. Sontag / Critical points for least-squares problems 

Proof 
In order to calculate the dimension o f f ( Z ) ,  it is enough, by the above considera- 
tions, to do this when Z is a relatively compact semianalytic subset, and thus the 
dimension inequality follows by fact A. 1. 

To prove the statement about fibres f -~  (y), we proceed as follows. Note that 
each such fibre is semianalytic, so its dimension is well-defined. Write Z as a coun- 
table union of compact semianalytic subsets Z;; then 

max [d imf- I  (y) A Z] = max d im[ f - l (y )  fl Zi]. 
y y,i 

Fix any i, and apply fact A.1 with Z; instead of  Z. Thus q = maXy d i m [ f  -~ (y) N Zi] 
is the largest of  the nj's, while dim Zi is at most q + t, t = largest dimension of the 
Q/s,j c Jz, a n d f ( Z )  has dimension t. This shows that 

d imZi  _< d i m f ( Z )  +max[dimf-l(y) A Z i ] y e N  L - < d i m f ( Z )  +max[dimf-~(y) nZ] 

from which, since dim Z = max~ dim Z~, the conclusion follows. 
Finally, to prove that dim Z1 x Z2 = dim ZI + dim Z2, simply note that Zl x Z2 

equals a union of the type Z{ x Z~, for countable coverings by submanifolds 
for each of  Zt and Z 2 respectively, and dimensions add as they should for 
submanifolds. [] 

Appendix B: Some facts about o r d e r - m i n i m a l i t y  

Here we summarize certain recent facts from model theory used in order to prove 
the results given in the text. 

Pick any positive integer l, and a cube C = I -k ,  k] / in tR ~. Assume that g is a real- 
valued function which is (real-)analytic in a neighborhood of  C. By the O-restriction 
ofg  to C we will mean the func t ion f  : R t ~ N which equals 0 outside C and equals 
g on C. A restricted analytic (RA)function is any function obtained in this manner. 
Below we formally state what it means for a function to be ("exp-Rn") definable - 
informally, these are functions that can be defined in terms of a first-order logic 
sentence involving the standard propositional connectives, existential and universal 
quantification, algebraic operations, and symbols for the exponential function as 
well as all RA functions. Of course, tanh is definable, since y = tanh(x) if and 
only if (y + 1)(1 + e t) = 2. Any RA function is in particular definable. The function 
arctan(x) is also definable, since y = arctan(x) if and only if -7r/2 < y < 7r/2 and 
SIN(y) = XCOS(y), where SIN and cos denote the restrictions of  sin and cos to 
[-~r/2,Tr/2]. Compositions such as arctan(exp(exp(x))) are also allowed. (How- 
ever, the function sin(x) is not definable.) 

Formally, consider the structure 

L = (N, + , . ,  <, 0, 1, exp, { f , f  C RA}), 

and the corresponding language for the real numbers with addition, multiplication, 
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and order, as well as one function symbol for real exponentiation and one for each 
restricted analytic function. The set of (first order) formulas over L is the set of  all 
well-formed logical expressions obtained by using propositional connectives, real 
numbers as constants, the operations of  addition and multiplication, the relations 
< and =, and exp and restricted analytic functions as functions; quantification is 
allowed over variables. (This is an example of  a formula ~(x, y) over L: 

VZ [e 7z2e~' - 7cxz > arctan(eX)]. 

We write ~(x, y) to indicate the fact that the only free - i.e., non-quantified - vari- 
ables in the formula are x and y.) Each such formula will be interpreted over the 
real numbers, that is, all variables are assumed to take real values. Thus all quan- 
tifiers are implicitly assumed to be over ~. Given a formula • with free variables 
x l , . . . ,  xt, we write S(~) for the subset of R t that it defines. A definable set is a 
set of  the form S(~I,), for some first order formula ~ over the language L. For  
instance, the above eg(x,y) gives rise to: 

S(~) = {(x,y) E R 2 I (Vz E R) [e 7 2 e  - -  7rXZ > arctan(eX)]}. 

Similarly, the truth of  a formula • with no free variables is defined as the truth of  
the statement obtained when quantifying over the reals. By abuse of notation, when 
giving such a formula, we will also allow other symbols, such as " - "  or " > "  which 
could be in turn defined on the basis of the above primitives, or even symbols for 
any set already known to be definable. A (exp-RA) definable func t ion  is a function 
f :  M --, N whose graph is a definable set in the above sense, and where N and 
M are definable subsets of two spaces lt~ II and R t2 respectively. 

When the exponential is left out, definable sets are precisely those called "finitely 
subanalytic" in [20]. Restricted analytic functions were introduced in [22]. (The 
definition in that reference is slightly different from the one we gave in the previous 
section: it assumes that the functions g have a convergent power series representa- 
tion valid on all of the cube C = [-k,  k] t, but a standard compactness argument 
shows that the two definitions are equivalent.) Gabrielov showed in [6] that the 
theory of  real numbers with restricted analytic functions is model-complete, 
which means that every formula is equivalent to one that involves only existential 
quantification. (We do not give the precise statements here, as they are not needed 
for explaining the further material.) In a recent major development, Wilkie 
showed in [25,26] that using exponentiation (but now leaving out the RA functions), 
model-completeness obtains as well. Finally, in [22] and [23], it was shown that the 
full theory (RA as well as exponentials) is model-complete, and hence order- 
minimal: 

Fact B.1 ([22, theorem 6.9] and [23]). 
The theory of  L is order-minimal ,  that is, for each formula ~ having just one free 
variable, S(ff) is a subset of II~ consisting of a finite union of  intervals (possibly 
unbounded or just points). [] 
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The terminology reflects that such finite unions are the smallest Boolean algebra 
of subsets that can be defined using order. The forthcoming book [21] by van den 
Dries deals in detail with order-minimal theories. Sets definable (in any dimension) 
for order-minimal theories admit finite cell decompositions into topological subma- 
nifolds. In particular, this applies to parametric versions. Decompositions can be 
obtained which are uniform on parameters, and in particular the number of con- 
nected components is uniformly bounded. To be more precise, assume given a for- 
mula I,(A, x), where A denotes a set ofp variables and x denotes a set ofq variables, 
for some integers p and q. For each fixed A E R p, we may consider the formula 
ff~(x) = ~5(A, x) on the free variables x, and the respective definable set. It then fol- 
lows from the general theory (see [10,21]): 

Fact B.2 
Given a formula q~ as above, there is an integer n so that for all A c 11~ p, the number 
of connected components of S(ff:~) is at most n. 

When dealing as here with a language whose primitives stand for analytic 
functions, the cell decomposition results can be stated in a stronger fashion. By 
[22, theorem 8.8], one knows that each definable subset is a finite union of what 
are called in that paper analytic cells, each of which is definable and definably- 
isomorphic to an Euclidean space. The definition of analytic cell in that paper 
implies that each such cell is an embedded analytic submanifold. Thus one also 
has the following result: 

Fact B.3 
Let S be a definable subset of ]~q. Then, either S contains an open subset or it is 
finitely analytically thin. 

Observe that a function such as sin(x) (seen as a function of x E R) is not 
definable, so there is no contradiction with the fact that its set of zeroes is not 
finitely analytically thin. (The zero set is of course analytically thin, consistent 
with the analyticity of sin(x).) 

Note that a finitely analytically thin subset is nowhere dense (as it is a finite 
union of nowhere dense subsets). So this follows from fact B.3: 

Corollary B.4 
If S is a definable subset of N q, then either it has nonempty interior or it is nowhere 
dense. 
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