
Nonlinear Analysis 65 (2006) 1773–1793
www.elsevier.com/locate/na

Honey-pot constrained searching with local sensory
information

Bhaskar DasGuptaa,∗, João P. Hespanhab, James Riehlb,
Eduardo Sontagc

a Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607-7053, United States
b Department of Electrical and Computer Engineering, University of California, Santa Barbara,

CA 93106-9560, United States
c Department of Mathematics, Rutgers University, New Brunswick, NJ 08903, United States

Abstract

In this paper we investigate the problem of searching for a hidden target in a bounded region of the plane
using an autonomous robot which is only able to use local sensory information. The problem is naturally
formulated in the continuous domain but the solution proposed is based on an aggregation/refinement
approach in which the continuous search space is partitioned into a finite collection of regions on which
we define a discrete search problem. A solution to the original problem is obtained through a refinement
procedure that lifts the discrete path into a continuous one.

We show that the discrete optimization is computationally difficult (NP-hard) but there are
computationally efficient approximation algorithms for solving it. The resulting solution to the continuous
problem is in general not optimal but one can construct bounds to gauge the cost penalty incurred due to
(i) the discretization of the problem and (ii) the attempt to approximately solve the NP-hard problem in
polynomial time.

Numerical simulations show that the algorithms proposed behave significantly better than naive
approaches such as a random walk or a greedy algorithm.
c© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The problem addressed concerns the search for a hidden target by an autonomous agent.
Suppose that a “honey-pot” is hidden in a bounded region R (typically a subset of the plane R

2

∗ Corresponding author.
E-mail addresses: dasgupta@cs.uic.edu (B. DasGupta), hespanha@ece.UCSB.edu (J.P. Hespanha),

jriehl@ece.ucsb.edu (J. Riehl), sontag@hilbert.rutgers.edu (E. Sontag).

0362-546X/$ - see front matter c© 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.na.2005.10.049

http://www.elsevier.com/locate/na
mailto:dasgupta@cs.uic.edu
mailto:hespanha@ece.UCSB.edu
mailto:jriehl@ece.ucsb.edu
mailto:sontag@hilbert.rutgers.edu
http://dx.doi.org/10.1016/j.na.2005.10.049

1774 B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793

Fig. 1. Region Spath[ρ] over which the integral in (1) should be computed for cookie cutter detection of radius r (i.e.,
for S[x] defined to be a circle of radius r around x).

or of the three-dimensional space R
3). The exact position x∗ of the honey-pot is not known but

we do know its a priori probability density f . The goal is to find the honey-pot using an agent
(called the searcher) that moves in R and is able to see only a “small region” around it. If the
searcher gets “sufficiently close”, it will detect the honey-pot and the search is over. We assume
that the target is stationary and therefore the probability density f does not change with time.
Honey-pot searching is thus an (open-loop) path planning problem where one seeks a path that
maximizes the probability of finding the honey-pot, given some constraint on the time or fuel
spent by the searcher.

To formalize this problem, let S[x] ⊂ R denote the set of points in R that the searcher can
see from some position x ∈ R. Cookie cutter detection corresponds to the special case where
S[x] consists of a circle with fixed radius around x [7], but here we consider general detection
regions.

Problem 1 (Continuous Constrained Honey-pot Search, cCHS). Find a continuous path ρ :
[0, T] → R, T > 0 starting anywhere in a given set Rinit ∈ R with ‖ρ̇(t)‖ ≤ 1 almost
everywhere that maximizes the probability of finding the honey-pot given by

R[ρ] :=
∫
Spath[ρ]

f (x)dx, (1)

subject to a constraint of the form

C[ρ] :=
∫ T

0
c(ρ(t))dt ≤ L, (2)

where Spath[ρ] := ⋃
t∈[0,T] S[ρ(t)] denotes the set of all points that the searcher can scan along

the path ρ and L denotes a positive constant. �

One should emphasize that in the definition of the reward (1), we have an integral over the area
Spath[ρ] and not a line integral along the path ρ (cf. Fig. 1). The distinction may seem subtle but
it is quite fundamental because if a searcher transverses the same location multiple times, a line
integral would increase with each passage but the region Spath[ρ] that the searcher scans does not.
This formulation does not prevent the path from returning to a point previously visited (which
could be necessary) but does not reward the searcher for scanning the same location twice.

For bounded-time searches, c(x) = 1, ∀x ∈ R, and L is the maximum time allowed for
the search. For bounded-fuel searches, c(·) is the fuel consumption rate and L is the total fuel
available. The consumption rate can be position dependent when the terrain is not homogeneous.

B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793 1775

One can also “encode” obstacles in c(·) by making this function take large values in regions to
be avoided.

The honey-pot search problem is inspired by the optimal search theory initiated by the
pioneering work of Koopman [18] and further developed by Stone [26] and others. A summary
of this work can be found in the surveys [6,27]. The development of search theory was motivated
by US Navy operations during the Second World War, which included the search for targets in
transit, setting up sonar screens, and protection against submarine attacks [19]. In the context
of Naval operations, search theory has been used more recently in search and rescue operations
by the US Coast Guard [6], as well as to detect lost objects such as the H-bomb lost on the
Mediterranean coast of Spain in 1966, the wreck of the submarine USS Scorpion in 1968, and
the unexploded ordnance in the Suez Canal following the 1973 Yom Kippur war. However,
its application spans many other areas such as the clearing of land mines, locating parts in a
warehouse, etc. The collection of papers [13] discusses several applications of search theory
ranging from medicine to mining.

Until the 1970s, most of the work in search theory decoupled the problems of finding the
area that should be searched from that of finding a specific path for the searcher “covering”
that area. This is sensible when (i) the cost bound in (2) essentially imposes a constraint on the
total area that can be scanned and (ii) the optimal area turns out to be sufficiently regular that
one can find a continuous path ρ that sweeps it without overlaps. However, these assumptions
generally only hold for time constrained searches and Gaussian (or at least unimodal) a priori
target distributions. Complex distributions for f are likely to arise in many practical problems as
discussed in [6]. The reader is referred to, e.g., [10,28,29] for numerical methods for efficiently
computing target distributions based on noisy measurements.

More recently several researchers considered the so-called constrained search problem where
it is explicitly taken into account that it must be possible to “cover” the area to be scanned using
one or more searchers moving along continuous paths. Mangel [21] considered continuous search
problems where the goal is to determine an optimal path that either maximizes the probability of
finding the target in a finite time interval or minimizes the infinite-horizon expected time needed
to find the target. In Mangel’s formulation, this is reduced to an optimal control problem on
the searcher’s velocity ρ̇, subject to a constraint in the form of a partial differential equation. In
practice, this problem can only be solved for very simple a priori target distributions f .

An alternative approach that proved more fruitful consists of discretizing time and partition-
ing the continuous space into a finite collection of cells. The search problem is then reduced to
deciding which cell to visit on each time interval. Constraints on the searcher’s motion can be
expressed by only allowing it to move from one cell to adjacent ones [26]. At least when the time
horizon is finite (and in some cases even when the time horizon is infinite [20]), the resulting
optimal discrete search problem can be solved by finite enumeration of all possible solutions.
However, this method scales poorly (exponentially!) with the number of cells. Eagle [4] noted
that a discrete search can be formulated as an optimization on a partially observable Markov de-
cision process (POMDP) and proposed dynamic programming solutions to it. However, since the
optimization of POMDPs is computationally very difficult, this approach is often not practical.
Instead, Eagle and Yee [5] and Stewart [24,25] formulated the discrete search as a nonlinear inte-
ger programming problem and proposed branch-and-bound procedures for solving it, which are
optimal for the case considered in [5]. Hespanha et al. [11] proposed a (non-optimal) but com-
putationally efficient greedy strategy that leads to capture with probability one, but no claims of
optimality are made. The Refs. [4,5,11,24,25] considered the general case of a moving target but,
as noted by Trummel and Weisinger [30], even the case of a stationary target is NP-hard.

1776 B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793

The starting point for this paper is the observation that most of the previous work based on
spatial and temporal discretization ignored the continuous nature of the underlying problem.
In fact, numerically efficient solutions to the cCHS problems exhibit two distinct sources of
suboptimality: (i) the discretization procedure that converts the original continuous problem into
a discrete one, and (ii) the attempt to approximately solve an NP-hard problem in polynomial
time. In this paper we address both issues:

1. Section 2 formalizes spatial and temporal discretization as an aggregation/refinement
procedure and shows how it can formulated so that the final continuous path satisfies the
constraint (2), while providing some guaranteed reward (1). It also describes how to compute
upper and lower bounds on the achievable (continuous) reward (1) by solving discrete
problems.

2. Section 3 addresses the solution to the discrete optimization problems that arise out of the
aggregation/refinement procedures described in Section 2. We show that these problems are
NP-hard but can be approximately solved in polynomial time. The algorithms proposed result
in rewards no smaller than 1/(5 + ε) of its optimal value, where ε can be made arbitrarily
small at the expense of increasing computation. When the problem exhibits additional
structure on the costs and/or rewards, better worst-case bounds on the reward can be achieved.

The combined results of Sections 2 and 3 provide a computationally efficient approximate
solution to the original cCHS problem. A subset of the results in this paper was presented at the
2004 American Control Conference.

2. Aggregation/refinement procedure

One can regard spatial and temporal discretization as part of an aggregation/refinement
approach for solving the cCHS problem. In this type of approach one starts by aggregating the
continuous search space R into a finite collection of regions on which a discrete search problem
is defined (cf. Fig. 2). From the solution to this problem, one then recovers a solution of the
original problem through a refinement procedure that lifts the discrete path into a continuous
one. This is inspired by discrete abstractions of hybrid systems, where the behavior of a system
with a state space that has both discrete and continuous components is abstracted to a purely
discrete system to reduce the complexity (cf. survey [1]). In our problem, the original system has
no discrete components but we still reduced it to a discrete system by an abstraction procedure.
A key difference between the results here and those summarized in [1] is that in general
our abstraction procedure introduces some degradation in performance because the discretized
system does not capture all the details of the original system. In particular, some information
about the distribution of the honey-pot may be lost in the abstraction. However, by allowing
some performance degradation we can significantly enlarge the class of problems for which the
procedure is applicable.

Given a partition1 V of the continuous search space R, an aggregation/refinement approach
for solving the cCHS comprises the following three steps:

1. Construction of a graph G = (V , E) whose vertices are the regions in V and with an edge
(v1, v2) ∈ E between any two regions v1, v2 ∈ V for which the searcher can reach v2 from v1.

1 We recall that a partition V of a set R is a collection of subsets of R such that
⋃

v∈V v = V and v ∩ v′ = ∅,
∀v
= v′ ∈ V .

B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793 1777

Fig. 2. Aggregation of a continuous search space R into a collection of eleven regions. The black lines in the search
space represent obstacles (walls) that cannot be crossed by the searcher. The specific partition of R shown in the figure
is described in Section 4.

With each vertex one associates a reward that provides a measure of the probability of finding
the target in that region and with each edge one associates a cost that measures the cost
incurred by moving the searcher between the corresponding regions.

2. Computation of a path on the graph G that maximizes an appropriately defined reward, subject
to a cost constraint. This path consists of a sequence of vertices in G, i.e., a sequence of regions
in V .

3. Refinement of the discrete path into a continuous one that satisfies the continuous constraint
(2) and that yields a continuous reward (1) at least as large as the reward obtained for the
discrete problem.

This section addresses steps 1 and 3 above, whereas step 2 is relegated to Section 3. This
paper does not explicitly address the problem of choosing the partition V , which we take as
given. However, a careful selection of V will clearly help minimize the cost penalty introduced
by this approach.

2.1. Aggregated reward budget problem

To guarantee that the final continuous path satisfies the continuous constraint (2), and with
continuous reward (1) at least as large as the reward obtained for the discrete problem, the path
refinement algorithm must satisfy a worst-case bound of the following form:

Property 1 (Path Refinement). Given a discrete path p = (v1, v2, . . . , vk), v1 ∩ Rinit
= ∅
in G (possibly with the same region appearing multiple times), the refined continuous path
ρ : [0, T] → R is a continuous function, with ρ(0) ∈ Rinit and ‖ρ̇(t)‖ ≤ 1 almost
everywhere. Moreover, there exist functions cworst : V × V → [0,∞), rworst : V → [0,∞),
| · |worst : V → N≥0 such that

1778 B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793

Fig. 3. Illustration of the worst-case rewards for a region v (dashed area) on which the pdf f is constant and equal to c.
In the left plot we assumed that the detection area is hexagonal and the whole region can be exactly covered with four
hexagons. In this case, we can set |v|worst = 4 and rworst(v) equal to c times the area of the hexagon in (6). In the right
plot, the region does not have a regular shape and the circles represent circular detection areas, which must necessarily
overlap. In this case |v|worst = 4 and rworst(v) is equal to c times the smallest area of one of the circles, excluding the
area covered by the previous circles and the area outside the region v [cf. Eq. (5)], which probably corresponds to x4 in
this figure.

C[ρ] ≤
k−1∑
i=1

cworst(vi , vi+1), R[ρ] ≥
∑
v∈V

rworst(v) min{|v|worst, #(p, v)}, (3)

where #(p, v) denotes the number of times that the vertex v appears in the path p.

The existence of the functions cworst(·), rworst(·), and | · |worst that satisfy (3) can be assumed
without loss of generality. In fact, several options are possible for the selection of rworst(·) and
| · |worst. For example, one can define

|v|worst = 1, rworst(v) = max
x∈v

∫
S[x]∩v

f (x)dx, (4)

provided that the first time that v appears in the discrete path, the searcher goes to the point x∗
where the max in (4) occurs. In this case, S[x∗] ∩ v is guaranteed to be a subset of the area S[ρ]
covered by the path and a reward of

∫
S[x∗]∩v

f (x)dx is guaranteed. By setting |v|worst = 1, the
right inequality in (3) does not require any additional reward for multiple visits to v. In practice,
this may be very conservative, especially if

∫
v

f (x)dx is much larger than
∫
S[x∗]∩v

f (x)dx . In
this case, if there are k points x1, x2, . . . , xk ∈ v, for which∫

v∩S[xi]\∪i−1
j=1 S[x j]

f (x)dx ≥ r, ∀i, (5)

then one can set

|v|worst = k, rworst(v) = r, (6)

provided that the i th time that v appears in the discrete path p, the searcher goes to the point xi .
For the particular case in which the pdf f is approximately constant on v, finding such k becomes
a form of covering problem in computational geometry (cf. Fig. 3). In the example in Section 4,
the whole region was covered with small square tiles, the points xi were chosen to be the centers

B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793 1779

of the tiles, and it was assumed that the area S[xi] that can be seen from xi is the square tile
itself. Fig. 3(a) shows a similar situation but with hexagonal tiles.

Several options are also possible for the selection of cworst(·), e.g.,

cworst(v, v′) = max
x∈v,y∈v′ J [x, y], (7)

where J [x, y] denotes the minimum cost incurred when going from x ∈ R to y ∈ R (or some
upper bound on it), which can be computed using numerous techniques available for solving
shortest-path problems [8,16,17,23]. Less conservative definitions of cworst(·) are possible by
taking the max in (7) only over points x ∈ v, y ∈ v′ where the max in (4) occurs or over the
points xi in (5). Note that in general cworst(v, v) > 0 but one may generally keep this low by
carefully selecting the order in which the points xi in (5) are visited.

The left inequality in (3) guarantees that if the discrete path is selected so that

k−1∑
i=1

cworst(vi , vi+1) ≤ L

then the refined path ρ satisfies the continuous constraint (2). Moreover, because of the
right inequality in (3), this path will have a reward (1) at least equal to

∑
v∈V rworst(v)

min{|v|worst, #(p, v)}. This motivates the following graph-optimization problem:

Problem 2 (Discrete Aggregated Reward Budget, dARB).

Instance: 〈G, S, c, r, | · |, L〉, where G = (V , E) denotes a directed graph with vertex set V
and edge set E , S ⊂ V a set of initial vertices, c : E → [0,∞) an edge-cost function,
r : V → [0,∞) a vertex-reward function, | · | : V → N a vertex-cardinality function,
and L a positive integer.

Valid Solution: A (possibly self-intersecting) path2 p = (v1, v2, . . . , vk) in G with v1 ∈ S and
vi ∈ V , ∀i , such that

∑k−1
i=1 c(vi , vi+1) ≤ L.

Objective: maximize the total reward∑
v∈V

r(v) min{|v|, #(p, v)},

where #(p, v) denotes the number of times that the vertex v appears in the path p. �

Given a partition V of the region R and a path refinement algorithm satisfying Property 1,
we can construct an instance 〈G, S, cworst, rworst, | · |worst, L〉 of the dARB Problem 2 by defining
G = (V , E) to be a fully connected graph whose vertices are the regions in V , S := {v ∈ V :
v ∩ Rinit
= ∅}, and taking from Property 1 the edge-cost, the vertex-reward, and the vertex-
cardinality functions. The dARB problem just defined is said to be worst-case induced by the
partition V . It is then straightforward to prove the following result:

Lemma 1. Consider an instance 〈G, S, cworst, rworst, |·|worst, L〉 of the worst-case dARB problem
induced by a partition V and a path refinement algorithm satisfying Property 1.

2 Often such paths are called walks.

1780 B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793

1. Let ρ be a continuous path refined from a path p that is admissible for the worst-case induced
dARB problem. Then ρ is admissible for the cCHS problem and

R[ρ] ≥
∑
v∈V

r(v) min{|v|, #(p, v)}. (8)

2. Denoting by R∗[L] and R∗
worst[L] the optimal rewards for the cCHS and the worst-case

induced dARB problems, respectively, we have that

R∗[L] ≥ R∗
worst[L].

Proof of Lemma 1. The first statement has already been discussed and the second one results
from the fact that selecting ρ to be a continuous path refined from an optimal path p∗ for the
worst-case induced dARB problem, we have that

R∗[L] ≥ R[ρ] ≥
∑
v∈V

r(v) min{|v|, #(p∗, v)} = R∗
worst[L],

where the first inequality follows from the definition of R∗[L], the second from (8), and the last
equality from the optimality of p∗. �

2.2. Upper bound on the reward

We now formulate two dARB problems that can be used to construct lower bounds on the
achievable reward for the cCHS problem. Such bounds can be used to determine whether or not
the reward of a path obtained by refining the optimal solution to the worst-case dARB problem
is very far from the optimal one.

To obtain an upper bound on the achievable reward, one needs to define “optimistic” instances
〈G, S, cbest, rbest, | · |best, L〉 of the dARB problem. The simplest of these can be formulated as
follows: Take a partition V of the region R (not necessarily the same as for the worst-case dARB
problem) and define G = (V , E) to be a fully connected graph whose vertices are the regions in
V ; S := {v ∈ V : v ∩ Rinit
= ∅};

cbest(v, v′) = min
x∈v,y∈v′ J [x, y], ∀v, v′ ∈ V ,

where J [x, y] denotes the minimum cost incurred when going from x ∈ R to y ∈ R (or some
lower bound on it); and

|v|best = 1, rbest(v) =
∫
S[v]

f (x)dx,

where S[v] := ∪x∈v S[x] denotes the whole area that can be scanned from the region v. We call
this the type I best-case dARB problem induced by the partition V . This problem is motivated
by the “optimistic” assumption that as soon as one enters a particular region v, the searcher will
be able to immediately collect the reward

∫
S[v] f (x)dx associated with all the area that can be

scanned from the region.
It is possible to construct a less conservative best-case instance of the dARB problem as

follows: Take a partition V of the region R and a positive constant � := L
k , with k a positive

integer. Using these, define the graph G = (V , E) and the initial vertex set S as before, but with
the edge cost defined by

cbest(v, v′) = max{�, min
x∈v,y∈v′ J [x, y]}, ∀v, v′ ∈ V ;

B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793 1781

and the vertex reward rbest(v), v ∈ V , defined to be an upper bound on the maximum reward
for an instance of the cCHS Problem 1 starting anywhere in v with a cost bounded by �, for
the same probability density f (·) and continuous cost c(·) as the original cCHS problem. Each
vertex cardinality |v|best should then be an upper bound on∫

S�[v] f (x)dx

rbest(v)
,

where S�[v] denotes the set of all points that could be scanned starting from the region v, with
a cost not exceeding �. We call this the type II best-case dARB problem induced by the partition
V and the cost bound �. Computing tight bounds for the functions that define type II best-case
induced dARB problems can be as hard as solving the original cCHS problem. In fact, for � = L
one essentially has to solve the original problem, but for smaller values of � one only has to solve
simpler cCHS for which the searcher motion is severely constrained. However, smaller values for
� will generally lead to looser bounds (possibly worse than those obtained for the type I dARB
problem).

Theorem 1. Consider an instance 〈G, S, cbest, rbest, | · |best, L〉 of either the type I or the type II
best-case dARB problem induced by a partition V (and the cost bound � for type II). Denoting by
R∗[L] and R∗

best[L] the optimal rewards for the cCHS and the best-case induced dARB problems,
respectively, we have that

R∗
best[L] ≥ R∗[L]. (9)

Proof of Theorem 1. Let ρ : [0, T] → R be an admissible path for the cCHS problem that
satisfies the cost constraint (2) with equality and achieves a reward larger than or equal to
R∗[L] − δ for some small3 δ ≥ 0.

To prove the result for a type I best-case dARB problem, we pick a sequence of times
t1 := 0 < t2 < · · · < tk := T such that ρ(t) ∈ vi , ∀t ∈ [ti , ti+1]. Since ρ(0) ∈ Rinit, we
must have v1 ∈ S. Moreover, since ρ(ti) ∈ vi and ρ(ti+1) ∈ vi+1,

cbest(vi , vi+1) = min
x∈vi ,y∈vi+1

J [x, y] ≤
∫ ti+1

ti
c(ρ(t))dt,

and therefore
∑k−1

i=1 cbest(vi , vi+1) ≤ ∫ T
0 c(ρ(t))dt ≤ L, which means that the discrete path

p = (v1, v2, . . . , vk) is admissible for the type I problem. To estimate the reward of this path, we
note that

S[ρ] ⊂
k⋃

i=1

S[vi],

where S[ρ] denotes the area scanned along the continuous path ρ and S[vi] the whole area that
could be scanned from the region vi . Since rbest(v) = ∫

S[v] f (x)dx , we conclude that

R[ρ] =
∫
S[ρ]

f (x)dx ≤
∑
v∈V

rbest(v) min{1, #(p, v)}.

Since the left-hand side of the above inequality is larger than or equal to R∗[L]− δ and the right-
hand side is the reward of an admissible path for the best-case dARB problem, we conclude that

3 The need for δ > 0 only arises when the optimal reward cannot be achieved for any admissible path.

1782 B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793

R∗[L] − δ ≤ R[ρ] ≤ R∗
best[L]. Inequality (9) then follows from the fact that δ can be made

arbitrarily close to zero.
To prove the result for a type II best-case dARB problem, we pick a sequence of times

t1 := 0 < t2 < · · · < tk+1 := T such that∫ ti+1

ti
c(ρ(t))dt = � := L

k
, ∀i ∈ {1, 2, . . . , k}.

Suppose now that we define a path p = (v1, v2, . . . , vk+1), where each vi denotes the region on
which ρ(ti) lies. Since ρ(0) ∈ Rinit, we must have v1 ∈ S. This sequence is admissible for the
best-case dARB problem because from the definition of cbest we conclude that

cbest(vi , vi+1) ≤ max

{
�,

∫ ti+1

ti
c(ρ(t))dt

}
= L

k
, ∀i ∈ {1, 2, . . . , k},

and therefore
∑k+1

i=1 cbest(vi−1, vi) ≤ L. To estimate the reward of p, we note that4

S[ρ] =
k⋃

i=1

Si =
⋃
v∈p

S̄[v], (10)

where Si denotes the set of all points that the searcher can scan on the interval [ti , ti+1] and S̄[v]
the union of those Si for which vi = v, i.e.,

Si :=
⋃

t∈[ti ,ti+1]
S[ρ(t)], ∀i ∈ {1, 2, . . . , k}, S̄[v] :=

⋃
i∈{1,...,k}:

vi =v

Si , ∀v ∈ V .

From (10), we then conclude that

R[ρ] =
∫
S[ρ]

f (x)dx ≤
∑
v∈p

∫
S̄[v]

f (x)dx . (11)

Since the path segment ρ : [ti , ti+1] → R has cost � and starts in vi , we conclude that
rbest(vi) ≥ ∫

Si
f (x)dx , from which we obtain∫

S̄[v]
f (x)dx ≤

∑
i∈{1,...,k}:

vi=v

∫
Si

f (x)dx ≤
∑

i∈{1,...,k}:
vi =v

rbest(v) ≤ rbest(v) #(p, v). (12)

On the other hand, any point in S̄[v] belongs to some Si and therefore can be scanned using a
path segment ρ : [ti , ti+1] → R starting in v with cost �. This means that S̄[v] ⊂ S�[v] and we
conclude from the definition of |v|best that∫

S̄[v]
f (x)dx ≤

∫
S�[v]

f (x)dx ≤ rbest(v) |v|best. (13)

Using (12) and (13) in (11), we obtain

R[ρ] ≤
∑
v∈p

rbest(v) min{|v|best, #(p, v)}.

So for a type II best-case dARB problem we also conclude that (9) holds. �

4 With some abuse of notation, given a path p = (v1, v2, . . . , vk) and a vertex v, we write v ∈ p to express the
statement that v is one of the vi .

B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793 1783

3. Discrete aggregated reward budget (dARB) problem

It turns out that the dARB problem introduced above is still computationally difficult. In fact,
it is NP-hard even when one imposes significant structure on the graph and the cost, reward, and
cardinality functions. In particular, this is the case when one restricts the cardinality function to
being always equal to one and the graph to being planar with unit costs and rewards or when the
graph is a unit grid, i.e.,

V = {(i, j) ∈ {1, 2, . . . , m} × {1, 2, . . . , n}},
E = {{(i, j), (k, �)} : |i − j | + |k − �| = 1},

with unit costs and binary rewards.5 Thefollowing lemma states these hardness results.

Lemma 2. The dARB problem is NP-hard even when |v| = 1 for every v ∈ V and

(a) G is planar bipartite with the maximum degree of any vertex equal to 3, c(e) = 1 for every
e ∈ E, and r(v) = 1 for every v ∈ V ; or

(b) G is a unit grid graph, c(e) = 1 for every e ∈ E, and r(v) ∈ {0, 1} for every v ∈ V . �

Proof of Lemma 2. It suffices to prove the result for the special case when the graph G is
undirected (since an undirected graph can be converted to an equivalent directed graph by
replacing each undirected edge by two directed edges in opposite directions) and when S = V .

We prove part (a) as follows. The Hamiltonian path problem for a graph G with n vertices is
NP-complete even if G is planar bipartite with maximum degree of any vertex equal to 3 [14].
One can see that on setting r(v) = 1 for every v ∈ V , c(e) = 1 for every e ∈ E , and L = n − 1,
G has a Hamiltonian path if and only if the total reward collected by the instance of the dARB
problem is n.

We prove part (b) as follows. It is known that the Hamiltonian path problem is NP-hard
for graphs which are vertex-induced subgraphs of a unit grid [14]. Given an instance I of the
Hamiltonian path problem on such graphs, we consider a corresponding instance I ′ of the dARB
problem in which the graph is a minimal unit grid graph G′ = (V ′, E ′) containing the vertex-
induced subgraph G = (V , E) of n vertices in I , and

r(v) =
{

1 if v ∈ V
0 if v ∈ V ′ − V

and L = n − 1. If I has a Hamiltonian path then I ′ has a solution with a maximum total reward
of n. Conversely, suppose that I ′ has a solution with a maximum total reward of n. Then, this
solution must visit all the vertices in V using n − 1 edges and thus it is a Hamiltonian path
of G. �

3.1. Approximation algorithms for the dARB problem

It turns out that the interesting cases of the dARB problem can be solved in polynomial time
provided that one is willing to settle for paths that do not quite yield the maximum reward. In
particular, we are interested in the following slightly restricted version of the dARB problem for
the remainder of this section.

5 For computational complexity results we restrict cost and reward values in our problems to take integer values. The
decision problem for SdARB problems (as required for NP-hardness proofs) provides an additional real number R and
asks if there is a valid solution of total reward at least R.

1784 B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793

Fig. 4. Illustration of the transformation of the given graph G to Ḡ .

Problem 3 (Symmetric Discrete Aggregated Reward Budget, SdARB). The SdARB problem is
the dARB problem with the following restrictions:
• the graph G = (V , E) is undirected,
• |v| = 1 for every v ∈ V ,
• the set S of initial vertices is equal to V . �

In the sequel, we denote by OPTSdARB(L) the optimum value of the objective function for a
given instance 〈G, s, c, r, | · |, L〉 of the SdARB problem, as a function of L.

Restricting our attention to problems with unit vertex-cardinality functions does not introduce
loss of generality. In fact, given an instance 〈G, S, c, r, | · |, L〉 of the dARB problem with |v| > 1
for some vertices v ∈ V , we can construct another instance 〈Ḡ, S̄, c̄, r̄ , ‖ ·‖, L〉 with ‖v̄‖ = 1 for
every v̄ ∈ V̄ . This is done by constructing the graph Ḡ = (V̄ , Ē) by expanding each vertex v in
the graph G = (V , E) into |v| vertices with reward r(v) connected to each other by edges with
cost c(v, v). Moreover, for any edge in G between vertices v1 and v2, the graph Ḡ must have
edges with cost c(v1, v2) between all vertices that result from the expansion of v1 and all vertices
that result from the expansion of v2. The new start vertex set S̄ consists of all vertices that result
from the expansion of the vertices in S (see Fig. 4). With this construction, for any feasible path
of the new dARB problem we can construct a feasible path for the original problem with the same
reward and vice versa. However, the new problem has larger input size since it has

∑
v∈V |v| =

O(#V #C) vertices and
∑

v∈V |v|(|v| − 1) + ∑
(v1,v2)∈E |v1| |v2| = O(#V #C2 + #E#C2) edges,

where #C := maxv∈V |v|.
Taking the set of initial vertices S to be the whole vertex set V is somewhat restrictive but so

far seems to be needed for our approximation results (e.g., Proposition 1). In terms of the original
continuous problem, this corresponds to the situation where the initial region Rinit is the whole
R or at least intersects all the v ∈ V . If this is not the case, then one may need to “provision”
some cost to take the searcher from its initial position to an arbitrary point in R.

To state the quality of approximation that we can obtain, we recall the following standard
definition:

Definition 1. An ε-approximate solution (or simply an ε-approximation) of a maximization
problem is a solution obtained in polynomial time with an objective value no smaller than 1/ε

times the value of the optimum. Analogously, an ε-approximation of a minimization problem is
a solution obtained in polynomial time with an objective value no larger than ε times the value
of the optimum. �

Theorem 2. Consider an instance of the SdARB problem. Then,

(a) For any constant ε > 0, an δ-approximate solution to the RB problem can be found in
polynomial time, where

δ =
{

2 + ε if c(e) = 1 for every e ∈ E
5 + ε otherwise.

B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793 1785

(b) If r(v) = 1 for every v ∈ V and c(e) = 1 for every e ∈ E, then a 2-approximate solution
to the SdARB problem can be computed in O(#V + #E) time, where #V and #E denote the
numbers of vertices and edges, respectively. �

3.1.1. Proof of Theorem 2(a)
To prove statement (a) of Theorem 2, we need to consider a “dual” version of the SdARB

problem which is defined as follows.

Problem 4 (Symmetric Discrete Aggregated Reward Quota, SdARQ).

Instance: 〈G, c, r, R〉, where G = (V , E) is an undirected graph with vertex set V and edge
set E , c : E → [0,∞) is an edge cost function, r : V → [0,∞) is a vertex-reward
function, and R a positive integer.

Valid Solution: A (possibly self-intersecting) path p = (v1 = s, v2, . . . , vk) in G with vi ∈ V
such that R[p] := ∑

v∈P r(v) ≥ R where P denotes the set of vertices in the path p.
Objective: minimize the total edge cost C[p] := ∑k−1

i=1 c(vi , vi+1). �

To enable us to use existing results, we need to actually consider the “cycle” versions of the
SdARB and SdARQ problems, which are defined as follows.

Problem 5 (Cycle Version of SdARB). This is same as the SdARB problem except that we need
to find a (possibly self-intersecting) cycle instead of a (possibly self-intersecting) path, i.e., we
set v1 = vk in Definition 2.

Problem 6 (Cycle Version of SdARQ). This is same as the SdARQ problem except that we need
to find a (possibly self-intersecting) cycle instead of a (possibly self-intersecting) path, i.e., we
set v1 = vk in Definition 4.

In the sequel we denote by OPTSdARB−cycle(L) the optimum value of the objective function
for a given instance 〈G, s, c, r, | · |, L〉 of the cycle version of the SdARB problem, as a function
of L. Similarly, let OPTSdARQ−cycle(R) denote the optimum value of the objective function for a
given instance 〈G, c, r, R〉 of the cycle version of the SdARQ problem as a function of R.

Our strategy for proving statement (a) of Theorem 2 is shown in Fig. 5. A good approximate
solution to the cycle version of the dual SdARQ problem is shown to correspond to a good
approximate solution of the cycle version of the SdARB problem via a binary search similar
to that by Johnson et al. [15], path decompositions and Eulerian tours via doubling edges. To
solve the cycle version of the SdARQ problem, we need to use the (2 + ε)-approximation results
on the k-MST problem given by Arora and Karakostas [2] that build upon the 3-approximation
results on the same problem given by Garg [12]. Finally, the cycle versions of the problems can
be translated to the path versions without any loss of quality of approximation.

Although the SdARB and SdARQ problems defined above seem to be novel, there are a few
related problems that will be useful:

The budget and quota problems in [15]. These are similar to the problems defined above,
except that they only searched for a subtree (vertex-induced subgraph with no cycles),
which may not necessarily be a path.6 Nonetheless many of the ideas there are also of
use to us.

6 By doubling every edge in a subtree and finding an Eulerian tour on the new graph, we do get a self-intersecting
cycle; however, the total edge cost of such a path is twice that of the given subtree.

1786 B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793

Fig. 5. Series of reductions used for proving statement (a) of Theorem 2. Each reduction is polynomial time; μ, ν and ρ

are arbitrary positive constants less than 1. The quantity ε in the theorem is equal to 5 + 5ρ + ν for the general case and
is equal to (1 + ρ)(1 + μ) + ν for the case when c(e) = 1 for every e ∈ E .

Metric k-TSP. An input to the metric k-traveling salesman problem is a weighted graph in
which the edge costs satisfy the triangle inequality, i.e., for every three vertices u, v

and w the edges costs satisfy the inequality c(u, v) + c(v,w) ≥ c(u, w). The goal is to
produce a simple (i.e., non-self-intersecting) cycle of minimum total edge cost visiting
at least k vertices that include a specified vertex s. The authors in [2] provide a (2 + ε)-
approximate solution to this problem for any constant ε > 0 via a primal-dual schema.

Now we discuss the various steps in the proof as outlined in Fig. 5.

Theorem 3. For any constant 0 < μ < 1, we can design a polynomial time (2 + μ)-
approximation algorithm for the cycle version of the SdARQ problem.

Proof of Theorem 3. Implicitly replace every vertex v with r(v) > 0 by one original vertex v′ of
reward 0 (which will be connected to other vertices in the graph) and an additional r(v) vertices,
each of reward 1, connected to v′ with edges of zero cost. Obviously, an optimal solution of the
SdARQ problem in the original graph remains an optimal solution of the SdARQ problem in this
new graph.

Now we run the polynomial time (2 + μ)-approximation algorithm for the metric R-TSP
problem in [2] on our new graph. We observe the following:

• The new zero-cost edges connected to a vertex v are dealt with implicitly in the TREEGROW
step in [2] by coalescing the vertices together. This ensures that the algorithm does indeed run
in polynomial time (as opposed to pseudo-polynomial time).

• The metric property of the graph is necessary for avoiding self-intersection of the solution
path in the R-TSP problem. Since the SdARQ problem allows self-intersection, we do not
need the metric property.

• The authors in [2] solve the problem by finding a solution of the R-MST problem, doubling
every edge and then taking short-cuts (to avoid self-intersection) to get exactly R vertices.
However, for the SdARQ problem we do not count the reward of the same vertex twice;

B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793 1787

hence taking a simple Eulerian tour on the solution of the R-TSP problem with every edge
doubled does not change the total reward.

As a result, we can obtain in polynomial time a (2+μ)-approximate solution (for any constant
μ > 0) to the SdARQ problem. �

Lemma 3. Assume that we have a polynomial time δ-approximation algorithm for the cycle
version of the SdARQ problem for some constant δ > 1. Then, for any constant ρ > 0, there
is a polynomial time approximation algorithm for the cycle version of the SdARB problem that

returns a solution with a total reward of at least 1
1+ρ

OPTSdARB−cycle

(
1
δ

L
)

.

Proof of Lemma 3. Our proof is similar in nature to a proof in [15] that related the budget and
quota problems for connected subtrees of a graph. We can do a binary search over the range
[0,

∑n
i=1 r(vi)] for the total reward in the given approximation algorithm for the cycle version

of the SdARQ problem to provide us in polynomial time with a total reward value A such that
the solution obtained by the δ-approximation algorithm has a total edge cost of at most L if the
total reward is at least A, but has a total edge cost greater than L if the total reward is at least
A(1 + ρ). We then output the solution to the cycle version SdARQ problem with a total reward
of at least A as our approximate solution to the cycle version of the SdARB problem. By choice
of A, an optimal solution to the cycle version of the SdARQ problem with a total reward of
A(1 + ρ) must have a total cost greater than L

δ
. Hence OPTSdARB−cycle

(L
δ

) ≤ A(1 + ρ) ≡ A ≥
1

1+ρ
OPTSdARB−cycle

(L
δ

)
. �

Remark 1. Setting δ = 2 + μ one can now perform Step 1 in Fig. 5.

Proposition 1. (a) OPTSdARB(L
2+μ

) ≥ 1
5 OPTSdARB(L) for any constant 0 < μ < 1.

(b) Assume that c(e) = 1 for every edge e. Then, OPTSdARB

(⌈
L

2+μ

⌉)
≥ 1

2+μ
OPTSdARB(L) for

any constant 0 < μ < 1.

Proof of Proposition 1. To prove (a), it suffices to show that OPTSdARB(L
3) ≥ 1

5 OPTSdARB(L)

since OPTSdARB(L
3) ≥ OPTSdARB(L

2+μ
). Assume that p = (v1, v2, . . . , vk) is an optimal

solution with a total reward of OPTSdARB(L). If r(vi) ≥ 1
5 OPTSdARB(L) for some vi then

our claim is true by picking this vertex. Otherwise, starting with the first edge in p, partition
p into three disjoint subpaths such that total reward of each of the first two subpaths is greater
than 1

5 OPTSdARB(L) but the total reward of each of the first two subpaths excluding its last
edge is at most 1

5 OPTSdARB(L). This ensures that the total reward of each of the first two

subpaths is at most 2
5 OPTSdARB(L), Thus, the total reward of the last (third) subpath is at least

OPTSdARB(L) − 4
5 OPTSdARB(L) = 1

5 OPTSdARB(L). At least one of the three subpaths must
have a total edge cost of at most � L

3 �.

To prove (b), note that an optimal path of total cost L can be partitioned into L
� L

2+μ
� ≤ 2 + μ

disjoint paths each of total edge cost at most � L
2+μ

�. At least one of these paths must have a total

reward of at least 1
2+μ

OPTSdARB(L). �

Remark 2. Proposition 1 allows us to perform Steps 2a and 2b in Fig. 5.

1788 B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793

Lemma 4. Assume that we have a polynomial time δ-approximation algorithm (for some δ > 1)
for the cycle version of SdARB problem. Then, for any constant 0 < ν < 1, there is a polynomial
time (δ + ν)-approximation algorithm for SdARB problem.

Proof of Lemma 4. Let A′ be the total reward returned by the δ-approximation algorithm for the
cycle version of the SdARB problem. Hence, A′ ≥ 1

δ
OPTSdARB−cycle(L). Setting x = �1 + δ

ν
�,

since x is a constant, we can solve the SdARB problem for paths involving at most x edges

in polynomial time (e.g., trivially by checking all
(|E |

x

)
= O(|E |x) subsets of x edges for a

possible solution). Otherwise, an optimal solution for the SdARB problem (and hence for the
cycles version of the SdARB problem as well) involves more than x edges. Now, by removing
the least cost edge from the solution for A′, we get a solution with total reward A ≥ (1 − 1

x)A′
of the SdARB problem.

Since A ≥ (1 − 1
x)A′ and OPTSdARB−cycle(L) ≥ OPTSdARB(L), we have that

A

OPTSdARB(L)
≥

(
1 − 1

x

)
A′

OPTSdARB−cycle(L)
.

Moreover, A′ ≥ 1
δ
OPTSdARB−cycle(L), therefore

A

OPTSdARB(L)
≥

(
1 − 1

x

)
1

δ
≥ 1

δ + ν
,

where the last inequality holds by the choice of x . �

Remark 3. Setting δ = 5 + 5ρ (respectively, δ = (1 + ρ)(2 + μ)) in the above lemma allows us
to perform Step 3a (respectively, Step 3b) in Fig. 5.

3.1.2. Proof of Theorem 2(b)
We do a depth-first search (DFS) on G starting at any vertex s that computes a DFS tree.

Now we replace every edge in the DFS tree by two edges, compute an Eulerian cycle and
output the path consisting of the first L edges starting at s in this Eulerian cycle. Obviously,
OPTSdARB(L) ≤ L. Since we replaced each undirected edge by two directed edges, we collect a
total reward of at least L

2 + 1.

3.2. Reducing the search space for the dARB problem

When the dARB is sufficiently small one may pursue an exhaustive search. In this section,
we prove a few properties of the optimal solution to the dARB problem that can significantly
decrease the search space for an exhaustive search. We consider instances 〈G, S, c, r, | · |, L〉 of
the dARB problems that are subadditive, meaning that the graph G = (V , E) is fully connected
and

c(v1, v2) + c(v2, v3) ≥ c(v1, v3) + c(v4, v4), ∀v1, v2, v3, v4 ∈ V .

When c(v, v) = 0, ∀v ∈ V , this simply expresses a triangular inequality. A similar assumption
is made in [20]. Typically, worst-case induced dARB problems are subadditive. In this case, the
search space for optimal paths can be significantly reduced.

Theorem 4. The maximum achievable reward for a subadditive dARB problem does not increase
if we restrict the valid paths p = (v1, v2, . . . , vN) to satisfy:

B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793 1789

(a) If vi = v j , i < j then vk = vi for every k ∈ {i, i + 1, . . . , j}.
(b) The number of times #(p, v) that a vertex v ∈ V appears in p never exceeds |v|.
(c) If a vertex v ∈ V appears in p and r(v) > minvi ∈p r(vi), then the number of times #(p, v)

that v appears in p is exactly |v|.
In essence Theorem 4 allows one to simply focus the search on the order in which one needs to

visit the different vertices (without repetitions). This means that only an exhaustive enumeration
of the vertex ordering is needed, because the time spent on each vertex is uniquely determined
once an order has been chosen.

Theorem 4 also considerably simplifies the construction of path refinement algorithms for
which the bounds in Property 1 are tight. This is because in the discrete paths p that need to be
refined, each region v only appears multiple times back to back (typically |v| times) and therefore
one can estimate quite precisely the value of cworst(v, v′), especially for v = v′ (cf., discussion
in Section 4).

Proof of Theorem 4. For (a), consider a path p = (v1, v2, . . . , vk) with total cost C[p] for
which vi = v j , i < j but v j−1
= vi . If we then construct a path

p′ = (v1, v2, . . . , vi−1, vi , v j = vi , vi+1, . . . , v j−1, v j+1, . . . , vN)

(v j , which is equal to vi , was moved to right after vi), p′ has exactly the same reward as p and,
because of subadditivity, its cost C[p′] satisfies

C[p′] = C[p] − (c(v j−1, v j) + c(v j , v j+1)) + c(vi , vi) + c(v j−1, v j+1) ≤ C[p].
Since p′ has the same reward as p and no worse cost, it will not increase the maximum achievable
reward for the dARB problem. By induction, we conclude that any path for which (a) does not
hold will also not improve the maximum achievable reward for the dARB problem.

For (b), consider a path p with total cost C[p] for which vi already appeared in p at least |vi |
times before i . If we then construct a path

p′ = (v1, v2, . . . , vi−1, vi+1, . . . , vN)

(vi was removed), p′ has exactly the same reward as p and, because of subadditivity, its cost
C[p′] satisfies

C[p′] = C[p] − (c(vi−1, vi) + c(vi , vi+1)) + c(vi−1, vi+1) ≤ C[p].
Since p′ has the same reward as p and no worse cost, it will not increase the maximum achievable
reward for the dARB problem. By induction, we conclude that any path in which v appears more
than |v| times will also not improve the maximum achievable reward for the dARB problem.

For (c), consider a path p with total reward R[p] and total cost C[p] for which the vertex vi

appears less than |vi | times and there is a vertex v j such that r(vi) > r(v j). If we then construct
a path

p′ = (v1, v2, . . . , vi−1, vi , vi , vi+1, . . . , v j−1, v j+1, . . . , vN)

(v j was replaced by an extra vi , right after the original one), its reward R[p′] satisfies

R[p′] ≥ R[p] − r(v j) + r(vi) > R[p].
and, again because of subadditivity, its cost C[p′] satisfies

C[p′] = C[p] − (c(v j−1, v j) + c(v j , v j+1)) + c(vi , vi) + c(v j−1, v j+1) ≤ C[p].

1790 B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793

Since p′ has better reward and no worse cost than p, it will not increase the maximum achievable
reward for the dARB problem. By induction, we conclude that any path for which (c) does not
hold will also not improve the maximum achievable reward for the dARB problem. �

4. Numerical results

In this section we compare the performance of the aggregation/refinement approach proposed
in this paper with other (simpler) alternatives. To this end we consider the rectangular search
region in Fig. 2, where the dark “walls” limit the motion of the searching agent. This region
has been tiled with small squares of unit area and we assume that the searcher can move from
the center of one tile to the center of any one of the four adjacent tiles with unit cost. Each of
these tiles corresponds to one of the small circles visible in Fig. 2. From the center of a tile, the
searcher can see the whole tile and nothing more.

Within this region we generated many target density functions f and compared the
performances of different search algorithms in terms of the reward achieved for different cost
bounds L. The target density functions used were linear combinations of Gaussian distributions
with randomized means and variances. The following three algorithms were compared:

Random walk

The searcher starts at an arbitrary node and moves to a random adjacent node until the cost
reaches the bound L.

Greedy algorithm

The searcher starts at the node with maximum reward and moves to the unvisited adjacent
node with highest reward until the cost reaches the bound L. If all adjacent nodes have the same
reward or have all been previously visited, this algorithm chooses a random node.

Worst-case dARB algorithm

The path followed by the searcher is obtained by solving a worst-case dARB problem induced
by an appropriate partition of the region. For all the problems generated, the number of regions
in the partition was small, which allowed us to solve the worst-case dARB problem by making
an exhaustive search.

The construction of the partition was fully automated and changed from one target density
function to the next. The partition was obtained by constructing a graph with one tile per node and
edges between adjacent tiles. This graph was partitioned using the algorithm in [9] by defining
the cost of “cutting” an edge between adjacent tiles with rewards r1 and r2 to be

e−|r1−r2|.

The algorithm in [9] was then used to compute a partition of the tiles that minimizes the total
cost of all the “cuts”. This partition will favor cutting edges with very different rewards because
the cost of cutting such edges is low. The partition costs were normalized to obtain a doubly
stochastic partition matrix [9]. Fig. 2 shows a partition obtained in this fashion.

The path refinement algorithm used takes advantage of the results in Section 3.2, from which
one concludes that the searcher will only be sent once to each element of the partition (perhaps

B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793 1791

Fig. 6. Solution to dARB problem. The circles represent tiles swept by the path.

staying there for several time steps). This means that the discrete paths that need to be refined
will always be of the form

p = (v1, v1, . . . , v1︸ ︷︷ ︸
n1 times

, v2, . . . , v2︸ ︷︷ ︸
n2 times

, . . . vk, . . . , vk︸ ︷︷ ︸
nk times

).

where the vi are elements of the partition. To refine such a path one constructs a continuous path
that “sweeps” the n1 tiles of v1 with largest reward, then “sweeps” the n2 tiles of v2 with largest
reward, and so on until the region vk is reached. The graph partition algorithm guarantees that
the reward on each region is fairly uniform and therefore it is straightforward to construct paths
that “sweep” ni tiles in the region vi with a cost equal to ni .7 The corresponding worst-case edge
cost is then given by

cworst(v, v′) =
{

max
x∈v,y∈v′ d(x, y) c
= v′

1 v = v′; (14)

the vertex cardinality |v|worst is equal to the number of tiles in the region v; and the vertex reward
rworst(v) is equal to the average reward of the tiles in v. Note that since we sweep the ni tiles of
largest reward, we always get a reward of, at least, ni times the average reward. In (14) d(x, y)

refers to the length of the shortest path between the tiles x and y. Fig. 6 shows the regions swept
by a typical optimal path.

Performance evaluation

Fig. 7 shows the reward attained by each algorithm as a function of the cost bound. The
results shown were averaged over 100 experiments. Not surprisingly, both the dARB and the
greedy algorithms greatly outperform a random search. The greedy algorithm also performs
poorly when the cost bound is sufficiently large to allow the searcher to visit several local
maxima of the probability density function. In this case, the dARB algorithm outperforms the
remaining ones. The results of dARB are also more consistent, which results in smaller standard
deviations.

7 We recall that we are associating a unit cost with the motion between adjacent tiles.

1792 B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793

Fig. 7. Comparison between random, greedy, and dARB algorithms for various cost bounds. The cost bound appears on
the x axis and the corresponding reward (i.e., probability of capture) appears on the y axis. These results were obtained
by averaging 100 trials and the error bars represent one standard deviation around the mean.

5. Conclusions

We proposed an aggregation-based approach to the problem of searching for a hidden target
with an autonomous robot using local sensory information. We investigated the cost penalty
incurred due to (i) the discretization of the problem and (ii) the attempt to approximately solve
the discrete NP-hard problem in polynomial time. Numerical simulations show that the algorithm
proposed behaves significantly better than naive approaches such as a random walk or a greedy
algorithm.

We are currently working on algebraic algorithms that produce partitions of the continuous
search space for which the procedure proposed in this paper results in a small cost penalty. These
algorithms are described in [9] and inspired by the results in [22] on state aggregation in Markov
chains. Another avenue for future research is the search for mobile targets, or more generally,
when the probability distribution f is not constant.

Acknowledgements

We would like to thank Robert Sloan and György Turán for pointing out Ref. [14] and for
helpful discussions. The first author was supported by NSF grants CCR-0296041, CCR-0206795,
CCR-0208749 and a CAREER grant IIS-0346973. The second author was supported by NSF
grants ECS-0242798, CCR-0311084. The third author was supported in part by NSF grant CCR-
0206789.

References

[1] R. Alur, T. Henzinger, G. Lafferriere, G.J. Pappas, Discrete abstractions of hybrid systems, Proceedings of IEEE
88 (2) (2000) 971–984.

[2] S. Arora, G. Karakostas, A 2 + ε approximation for the k-MST problem, in: 11th ACM-SIAM Symposium on
Discrete Algorithms, 2000, pp. 754–759.

B. DasGupta et al. / Nonlinear Analysis 65 (2006) 1773–1793 1793

[3] D.V. Chudnovksy, G.V. Chudnovksy (Eds.), Search Theory: some Recent Developments, in: Lecture Notes in Pure
and Applied Mathematics, vol. 112, Marcel Dekker, New York, 1989.

[4] J.N. Eagle, Optimal search for a moving target when the search path is constrained, Operations Research 32 (5)
(1984) 1107–1115.

[5] J.N. Eagle, J.R. Yee, An optimal branch and bound procedure for the constrained path, moving target search
problem, Operations Research 38 (1) (1990) 110–114.

[6] J.R. Frost, L.D Stone, Review of search theory: advances and applications to search and rescue decision
support, Technical Report CG-D-15-01, US Coast Guard Research and Development Center, Gronton, CT, URL
http://www.rdc.uscg.gov/reports/2001/cgd1501dpexsum.pdf, September 2001.

[7] Shmuel Gal, Continuous Search Games, in Chudnovksy and Chudnovksy [3], pp. 33–53.
[8] J. Hershberger, S. Suri, An optimal algorithm for euclidean shortest paths in the plane, SIAM Journal on Computing

(ISSN: 0097-5397) 28 (6) (1999) 2215–2256.
[9] J.P. Hespanha, An efficient MATLAB Algorithm for graph partitioning, Technical Report, University of California,

Santa Barbara, CA, URL http://www.ece.ucsb.edu/˜hespanha/techreps.html, October 2004.
[10] J.P. Hespanha, H. Kizilocak, Efficient computation of dynamic probabilistic maps, in: 10th Mediterranean Conf. on

Control and Automata, July 2002.
[11] J.P. Hespanha, M. Prandini, S. Sastry, Probabilistic pursuit-evasion games: a one-step Nash approach, in: 39th Conf.

on Decision and Control, vol. 3, December 2000, pp. 2272–2277.
[12] N. Garg, A 3-approximation for the minimum tree spanning k vertices, in: 37th Annual Symposium on Foundations

of Computer Science, 1996, pp. 302–309.
[13] K.B. Haley, L.D. Stone (Eds.), Search theory and applications, in: NATO Conference Series, vol. 8, Plenum Press,

New York, 1980.
[14] A. Itai, C.H. Papadimitriou, J.L. Szwarcfiter, Hamiltonian paths in grid graphs, SIAM Journal on Computing 11 (4)

(1982) 676–686.
[15] D.S. Johnson, M. Minkoff, S. Phillips, The prize collecting Steiner tree problem: theory and practice, in: 11th

ACM-SIAM Symposium on Discrete Algorithms, 2000, pp. 760–769.
[16] S. Kapoor, S.N. Maheshwari, J.S.B. Mitchell, An efficient algorithm for euclidean shortest paths among polygonal

obstacles in the plane, Discrete & Computational Geometry 18 (1997) 377–383.
[17] J. Kim, J.P. Hespanha, Discrete approximations to continuous shortest-path: Application to minimum-risk path

planning for groups of UAVs, in: Proc. of the 42nd Conf. on Decision and Contr., December 2003.
[18] B.O. Koopman, Search and Screening, Operations Evaluations Group Report No. 56, Center for Naval Analyses,

Alesandria, VA, 1946.
[19] B.O. Koopman, Search and Screening: General Principles and Historical Applications, Pergamon Press, New York,

1980.
[20] U. Lössner, I. Wegener, Discrete sequential search with positive switch cost, Mathematics of Operations Research

7 (3) (1982) 426–440.
[21] M. Mangel, Search Theory: A Differential Equations Approach, in Chudnovksy and Chudnovksy [3], pp. 55–101.
[22] R. Phillips, P. Kokotović, A singular perturbation approach to modeling and control of Markov chains, IEEE

Transactions on Automatic Control 26 (5) (1981) 1087–1094. October.
[23] J.-R. Sack, J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier, Amsterdam, 2000.
[24] T.J. Stewart, Search for a Moving Target when Searcher motion is Restricted, Computers and Operations Research

6 (1979) 129–140.
[25] T.J. Stewart, Experience with a Branch and Bound Algorithm for Constrained Searcher Motion, in Haley and Stone

[13], pp. 247–253.
[26] L.D. Stone, Theory of Optimal Search, Academic Press, New York, 1975.
[27] L.D. Stone, The Process of Search Planning: Current Approaches and Continuing Problems, Operation Research

31 (1983) 207–233.
[28] S. Thrun, Robotic mapping: a survey, in: G. Lakemeyer, B. Nebel (Eds.), Exploring Artificial Intelligence in the

New Millennium, Morgan Kaufmann, 2002.
[29] S. Thrun, W. Burgard, D. Fox, A probabilistic approach to concurrent mapping and localization for mobile robots,

Machine Learning and Autonomous Robots (joint issue) 31 (5) (1998) 1–25.
[30] K.E. Trummel, J.R. Weisinger, The Complexity of the optimal searcher path problem, Operations Research 34 (2)

(1986) 324–327.

http://www.rdc.uscg.gov/reports/2001/cgd1501dpexsum.pdf
http://www.ece.ucsb.edu/~hespanha/techreps.html

	Honey-pot constrained searching with local sensory information
	Introduction
	Aggregation/refinement procedure
	Aggregated reward budget problem
	Upper bound on the reward

	Discrete aggregated reward budget (dARB) problem
	Approximation algorithms for the dARB problem
	Proof of Theorem 2(a)
	Proof of Theorem 2(b)

	Reducing the search space for the dARB problem

	Numerical results
	Conclusions
	Acknowledgements
	References

