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1 INTRODUCTION 

Neural networks have been proposed as a tool for machine learning. In this 
role, a network is trained to recognize complex associations between inputs 
and outputs that were presented during a supervised training cycle. These 
associations are incorporated into the weights of the network, which encode 
a distributed representation of the information that was contained in the pat
terns. Once trained, the network will compute an input/output mapping which, 
if the training data was representative enough, will closely match the unknown 
rule which produced the original data. Massive parallelism of computation, as 
well as noise and fault tolerance, are often offered as justifications for the use 
of neural nets as learning paradigms. 

By "neural network" we always mean, in this chapter, feedforward ones of 
the type routinely employed in artificial· neural nets applications. That is, a 
net consists of a number of processors ("nodes" or "neurons") each of which 
computes a function of the type 

y=u (taiUi+b) 
,=1 

(10.1 ) 

of its inputs U1, .. " Uk. These inputs are either external (input data is fed 
through them) or they represent the outputs of other nodes. No cycle is allowed 
in the connection graph (i.e., feedforward nets rather than "recurrent" nets are 
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considered) and the output of one designated node is understood to provide the 
output value produced by the entire network for a given vector of input values. 
The possible coefficients ai and b appearing in the different nodes are the weights 
of the network, and the functions a appearing in the various nodes are the node 
or activation functions. An architecture specifies the interconnection structure 
and the a's, but not the actual numerical values of the weights themselves. 

This chapter deals with basic theoretical questions regarding learning by neural 
networks. There are three types of such questions that one may ask, all closely 
related and complementary to each other. We next describe all three, keeping 
for the end the one that is the focus of this chapter. 

One line of work deals with sample complexity questions, which attempt at 
quantifying the amount of information (number of samples) needed in order 
to characterize a given unknown mapping. Some recent references to such 
work, establishing sample complexity results, and hence "weak learnability" 
in the Valiant model, for neural nets, are the papers [2, 19, 11, 18]; the first 
of these references deals with networks that employ hard threshold activations, 
the second and third cover continuous activation functions of a type (piecewise 
polynomial) close to those used in this chapter, and the last one provides 
results for networks employing the standard sigmoid activation function. 

Another line of work adopts an approximation theoretic point of view. In 
particular, one asks questions such as how many hidden units are necessary 
in order to approximate well, that is to say, with a small overall error, an 
unknown function. This type of research ignores the training question itself, 
asking instead what is the best one could do, in this sense of overall error, if the 
best possible network with a given architecture were to be eventually found. 
Some recent papers along these lines are [1, 12, 5], which deal with single hidden 
layer nets, and [6], which dealt with multiple hidden layers. 

Yet another direction of research on learning by neural networks, and the one 
that concerns us here, originates with the work of Judd (see for instance [13, 14], 
as well as the related work [3, 17, 30]). Judd, like us, was motivated by the 
observation that the "backpropagation" algorithm often runs very slowly, es
pecially for high-dimensional data. Recall that this algorithm is used in order 
to find a network (that is, find the weights, assuming a fixed architecture) that 
reproduces the observed data. Of course, many modifications of the vanilla 
"backprop" approach are possible, using more sophisticated techniques such as 
high-order (Newton), conjugate gradient, or sequential quadratic programming 
methods. However, the "curse of dimensionality" seems to arise as a compu
tational obstruction to all these training techniques as well, when attempting 
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to learn arbitrary data using a standard feedforward network. For the simpler 
case of linearly separable data, the perceptron algorithm and linear program
ming techniques help to find a network -with no "hidden units"- relatively fast. 
Thus one may ask if there exists a fundamental barrier to training by general 
feedforward networks, a barrier that is insurmountable no matter which par
ticular algorithm one uses. (Those techniques which adapt the architecture to 
the data, such as cascade correlation or incremental techniques, would not be 
subject to such a barrier.) 

In this chapter, we consider the tractability of the training problem, that is, of 
the question (essentially quoting Judd): "Given a network architecture (inter
connection graph as well as choice of activation function) and a set of training 
examples, does there exist a set of weights so that the network produces the 
correct output for all examples?" 

The simplest neural network, i.e., the perceptron, consists of one threshold 
neuron only. It is easily verified that the computational time of the loading 
problem in this case is polynomial in the size of the training set irrespective of 
whether the input takes continuous or discrete values. This can be achieved via 
a linear programming technique (see [25] for further results in this direction). 
On the other-hand, loading recurrent networks (i.e. networks with feedback 
loops) is a hard problem. In [26], Siegelmann and Sontag showed the existence 
of a finite size recurrent network made of a specific saturated linear neurons 
which is Turing universal. Thus, the loading problem is undecidable for such 
nets. Furthermore, in [27], they showed that if real numbers are allowed in 
the weights of these specific networks (rather than rational ones) the network 
is equivalent to a non-uniform version of Turing machines (i.e. Turing machine 
with advice) which is stronger than the common model. Kilian and Siegelmann 
[16] proved universality for the sigmoidal network and a large class of sigmoidal
type nets. They concluded that Turing-universality is a common property 
among recurrent nets (and not only for the specific case of the saturated linear 
function). A different power is demonstrated by the recurrent threshold nets. 
It was proved in [23] that the problem of determining whether a recurrent 
network with threshold units (that is, the number of states in the network is 
finite) has a stable configuration is NP-hard. Bruck and Goodman [4] showed 
that a recurrent threshold network of polynomial size cannot solve NP-complete 
problems unless NP=co-NP. The result was further extended by Yao [29] who 
showed that a polynomial size threshold recurrent network cannot solve NP
complete problems even approximately within a guaranteed performance ratio 
unless NP=co-NP. 
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In the rest of this chapter, we focus on feedforward nets only. We show that, 
for networks employing a simple, saturated piecewise linear activation function, 
and two hidden units only, the loading problem is NP-complete. Recall that 
if one establishes that a problem is NP-complete then one has shown, in the 
standard way done in computer science, that the problem is at least as hard as 
most problems widely believed to be hard (the "traveling salesman" problem, 
Boolean satisfiability problem, and so forth). This shows that, indeed, any 
possible neural net learning algorithm (for this activation function) based on 
fixed architectures faces severe computational barriers. Furthermore, our re
sult implies non-learn ability in the PAC sense under the complexity-theoretic 
assumption of RP -I N P. We generalize our result to another similar architec
ture. 

The work most closely related to ours is that due to Blum and Rivest; see 
[3]. They showed a similar NP-completeness result for networks having the 
same architecture but where the activation functions are all of a hard threshold 
type, that is, they provide a binary output y equal to 1 if the sum in equation 
(10.1) is positive, and 0 otherwise. In their papers, Blum and Rivest explicitly 
pose as an open problem the question of establishing NP-completeness, for this 
architecture, when the activation function is "sigmoidal" and they conjecture 
that this is indeed the case. 

It turns out that a definite answer to the question posed by Blum and Rivest 
is not possible. It is shown in [28] that for certain activation functions a, 
the problem can be solved in constant time, independently of the input size, 
and hence the question is not NP-complete. In fact, there exist "sigmoidal" 
functions, innocent-looking qualitatively (bounded, infinite differentiable and 
even analytic, and so forth) for which any set of data can be loaded, and hence 
for which the loading problem is not NP-complete. The functions used in the 
construction in [28] are however extremely artificial and in no way likely to 
appear in practical implementations. Nonetheless, the mere existence of such 
examples means that the mathematical question is far from trivial. 

The main open question, then, is to understand if "reasonable" activation func
tions lead to NP-completeness results similar to the ones in the work by Blum 
and Rivest or ifthey are closer to the other extreme, i.e., the purely mathemat
ical construct in [28]. The most puzzling case is that of the standard sigmoid 
function, 1/(1 + e- X ). For that case we do not know the answer yet, but we 
conjecture that NP-completeness will indeed hold. It is the purpose of this 
chapter to show an NP-completeness result for piecewise linear or "saturat
ing" activation function that has appeared in the neural networks literature, 
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especially in the context of hardware implementations, and which is relatively 
simpler to analyze than the standard sigmoid. 

We view our result as a first step in dealing with the general case of arbi
trary piecewise linear functions, and as a further step towards elucidating the 
complexity of the learning problem in general. 

The rest of the chapter is organized as follows: 

• In section 2 we introduce the model and summarize some previous re
sults. We also distinguish the case of fixed versus varying input dimen
sions (and analog versus binary inputs), and observe that the problem is 
solvable in polynomial time when the input dimension is fixed using stan
dard linear-programming techniques (see [19] for further positive results 
on PAC-Iearnability when the input dimension is a fixed constant and the 
activation functions are piecewise polynomials). In the remaining part of 
the chapter we concentrate on the case when the input dimension is not 
constant. 

• In section 3 we prove the hardness of the loading problem for the 2 ll'-node 
architecture and use this result to show the impossibility of learnability 
for varying input dimension under the assumption of RP:/; NP. 

• In section 4 we conclude with some open problems. 

Before turning to the next section, we provide a short overview on complexity 
classes and probabilistic learnability. Most of these concepts have been already 
introduced in Chapters 7 and 8, and readers familiar with the material are 
recommended to skip to Section 2. 4 

1.1 Some complexity classes 

We informally discuss some well known structural-complexity classes (the 
reader is referred to any standard text on structural complexity classes (e.g. 
[9, 10]) for more details). Here, whenever we say polynomial time we mean 
polynomial time in the length of any reasonable encoding of the input (see 
[9] for a discussion of a "reasonable" encoding of the inputs), and problems 
referred to here are always decision problems. 



362 CHAPTER 10 

A problem is in the class P when there is a polynomial time algorithm which 
solves the problem. A problem is in NP when a "guessed" solution for the 
problem can be verified in polynomial time. A problem X is NP-hard iff any 
problem Y in NP can be transformed in polynomial time f to X, such that 
given an instance I of Y, I has a solution iff f(1) has a solution. A problem 
is NP-complete iff it is both NP and NP-hard. Examples of NP-complete 
problems include the traveling salesperson problem, the Boolean satisfiability 
problem and the set-splitting problem. 

A problem X is in the complexity class RP ("random polynomial") with error 
parameter E if and only if there is a polynomial time algorithm A such that for 
every instance I of X the following holds: 

If I is a "yes" instance of X then A outputs "yes" with probability at 
least 1 - E for some constant ° < E < 1, and if I is a "no" instance of 
X then A always outputs "no". 

It is well known that P ~ RP ~ N P, but whether any of the inclusions is 
proper is an important open question in structural complexity theory. 

1.2 Probabilistic learnability 

Let n EN. A concept is a function f : {a, 1}n --+ {a, 1}. We focus on functions 
computable by architectures (defined in section 2.2); hence, we use the terms 
function and architecture interchangeably. The set of inputs f- 1 (0) = {x I 
x E {a, l}n, f(x) = o} is the set of negative examples, where the set of inputs 
f-l(1) = {x I x E {0,1}n,f(x) = 1} is the set of positive examples. 

Let Cn be the set Boolean functions on n variables defined by a specific archi
tecture A. Then C = U~1 Cn is a class of representations achievable by the 
architecture A for all binary input strings. For example, C may be the class 
of Boolean formulae computable by one hidden-layer net with two sigmoidal 
hidden units and threshold output unit. Given some function f E C, POS(f) 
(resp. NEG(f)) denotes the source of positive (resp. negative) examples for f· 
Whenever POS(f) (resp. NEG(f)) is called, a positive or '+' (resp. negative 
or' -') example is provided according to some arbitrary probability distribution 
D+ (resp. D-) satisfying the condition: 
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2: n+(x) = 1, 
x=f-'(l) 

and 

L n-(x) = l. 
x=f-'(O) 

A learning algorithm is an algorithm that may access POS(f) and N EG(f). 
Each access to POS(f) or N EG(f) is counted as one step. A class C of 
representations of an architecture A is said to be (f, b) -learnable iff, for some 
given fixed constants 0 < f,8 < 1, there is a learning algorithm L such that for 
all n EN, all functions f E Cn, and all possible distributions n+ and n-: 

(a) L halts in number of steps polynomial in n, ~, i, and IIAII (where IIAII 
denotes the size of the architecture A), and 

(b) L outputs a hypothesis g E Cn such that with probability at least 1 - b 
the following conditions are satisfied: 

L n+(x) < f, 
xEg-'(O) 

and 

2: n-(x) <f. 
xEg-'(1) 

A class C of representations of an architecture A is said to be learnable [15] iff 
it is (f,8)-learnable for all f and 8 (where 0 < f,8 < 1). 

Remark 10.1 Hence, to prove that a class of representations of an architecture 
A is not learnable, it is sufficient to prove that it is not (f, 8) -learnable for some 
particular values of f and b, and some particular distributions n+ and n- . 

As we will see later, our results on NP-completeness of the loading problem will 
imply a non-learnability of the corresponding concept under the assumption of 
RP =1= NP. 
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2 PRELIMINARIES AND PREVIOUS 
WORK 

In this section we define our model of computation precisely and state some 
previous results for this model. 

2.1 Feedforward networks and the loading 
problem 

Let <P be a class of real-valued functions, where each function is defined on 
some subset of lR. A <P-net C is an unbounded fan-in directed acyclic graph. 
To each vertex v, an activation function <Pv E <P is assigned, and we assume 
that C has a single sink w. 

The network C computes a function fe : [o,I]n -+ lR as follows. The compo
nents of the input vector x = (Xl, ... ,Xn ) E [0, I]n are assigned to the sources 
of C. Let Vb ••• , Vk be the immediate predecessors of a vertex v. The input 
for V is then sv{x) = E:=l aiYi - bv, where Yi is the value assigned to Vi and a 
and b are the weights of v. We assign the value <Pv{sv{x)) to v. Then fe = Sz 

is the function computed by C where z is the unique sink of C. 

The architecture A of the <P-net C is the structure of the underlying directed 
acyclic graph. Hence each architecture A defines a behavior function i3A. that 
maps from the r real weights (corresponding to all the weights and thresholds 
of the underlying directed acyclic graph) and the input string into a binary 
output. We denote such a behavior as the function i3A.{lRT , [0, It) 1-+ {O, I} . 
The set of inputs which cause the output of the network to be ° (resp. 1) 
are termed as the set of negative (resp. positive) examples. The size of the 
architecture A is the number of nodes and connections of A plus the maximum 
number of bits needed to represent any weight of A. 

The loading problem is defined as follows: Given an architecture A and a set of 
positive and negative examples M = {(x,y) I X E [0, It,y E {O, I}}, so that 
IMI = O{n); find weights 'Iii so that for all pairs (x, y) E M: 

i3A.{'Iii,x) = y. 

The decision version of the loading problem is to decide (rather than to find 
the weights) whether such weights exist that load M onto A. 



Intractability of Loading Neural Networks 365 

Since the sink z of C is assumed to output only zero or one for the purpose of 
loading, we may henceforth assume that sink z is a threshold gate without any 
loss of generality. 

For the purpose of this chapter we will be concerned with a very simple archi
tecture as described in the next section. 

2.2 The k <I>-node architecture 

Here we focus on 1 hidden layer (lHL) architectures. The k <I>-node architecture 
is a IHL architecture with k hidden cf>-units (for some ¢ E <I», and an output 
node with the threshold activation H. The 2 <I>-node architecture consists of 
two hidden nodes NI and N2 that compute: 

n 

NI(a,i) = ¢(Laixi), 
i=I 

and 

n 

¢(LbiXi), 
i=I 

respectively. 

The output node N3 computes the threshold function of the inputs received 
from the two hidden nodes, namely a binary threshold function of the form 

N (N N a /3 ) = {I if aNI (a, i) + /3N2(~,i) > 'Y, 
3 1, 2, , ,'Y 0 if aN1(a,i)+/3N2(b,i) ::=;'Y, 

for some parameters a, /3, and 'Y. Figure 1 illustrates a 2 <I>-node architecture. 

The two activation-function classes <I> that we consider are the threshold func-
tions 11., defined as 

H(x) = {O ~f x ::=; 0, 
1 If X> 0, 

and the piecewise linear or "saturating" activation functions 7r defined as 

{ 
0 if x < 0, 

7r(x)= x ifO::=;x::=;l, 
1 ifx>l. 

(10.2) 
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t 

/\ 
~ 
1 2 3 n 

Figure 1 A 2 4>-node architecture 

Another model, called the 2-cascade architecture, was investigated by Lin and 
Vitter [17] (see fig. 2). A 2-cascade architecture consists of two processors Nl 
and N2 each of which computes a binary threshold function 'H.. The output 
of the node Nl in the hidden layer is provided to the input of the output 
node N 2 • Moreover, all the inputs are connected to both the nodes Nl and N 2 • 

Obviously, this is equivalent to the 2 <P-node architecture where the hidden node 
Nl and the output node N3 computes the binary threshold function 'H., and 
the remaining hidden node N2 computes the identity function 0 (Le., o(x) = x 
for all x). 

The 2-cascade net is more economical in terms of the size of the architecture 
than the 2 'H.-node architecture since they have lesser number of nodes and 
edges. Also, from the different classifications that can be produced by the 
2-cascade network as mentioned in [17], it follows that they can realize all 
the classifications realizable by the 2 'H.-node architecture and some additional 
classifications which cannot be realized by the 2 'H.-node architecture. Hence, 
the 2-cascade network is more powerful than the 2 'H.-node architecture in its 
classification capabilities as well. 

2.3 Loading The k 1t-Node Network: 
Previous Work 

We summarize the results known for loading a I-hidden layer threshold network 
(Le. a k 'H.-node architecture for some integer k > 1). We consider two kinds 
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1 2 n 

Figure 2 A 2-cascade network. Both the nodes Nl and N2 are threshold 
units. 

367 

of inputs: analog and binary. An analog input is in [0, l]d, where d is a fixed 
constant, also called the input dimension. In the binary case, the input is in 
{O, l}n .when n an input parameter. 

Consider the geometrical view of the loading problem for such a network. Every 
threshold neuron defines a hyperplane, and we ask if there exists a set of hyper
planes that separate the points in the d-dimensional space which are labeled 
, +' from the points there which are separated as ' -'. The following definition 
is due to Megiddo [21]: 

Definition 2.1 k-Polyhedral Separability: Given two sets of points A and 
B in JRd, and an integer k, decide whether there exist k hyperplanes 

. T . . d' . 
Hi = {p: (xJ) p = :do}, (xJ E JR , x~ E JR, J = 1, ... , k) 

that separate the sets through a Boolean formula. That is, associate a Boolean 
variable vi with each hyperplane Hi. The variable vi is true at a point p 

if (xi f P > x~, false if (xi f P < x~, and undefined at points lying on the 
hyperplane itself. A Boolean formula ¢ = ¢( VI, ... , Vk) that separates the sets 
A and B is true for each point a E A and false for each b E B. 
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One hidden layer net with k hidden units separates the space by k hyperplanes. 
However, not any Boolean formula of them is permitted, but only those which 
can be defined by a threshold neuron, i.e., the ones which are linearly separable 
in the quadrants. 

When the input is analog (and the input dimension is hence constant), loading 
a I-hidden layer network requires a polynomial time only in the size of the 
training set. This result is achieved by utilizing a result described by Megiddo 
[21]. Furthermore, such nets are also learnable as was proven by Maass in 
[19]. Megiddo [21] proved, in the same paper, that when the inputs are in Z* 
(that is, integer values with unbounded dimensions) then problem turns to be 
NP-complete, even for the simple 2 1{-node architecture. Blum and Rivest [3] 
showed when the inputs are binary and the training set is sparse (i.e. if n is 
the length of the longest string in the training set M, then IMI is polynomial 
in n) the loading problem is NP-Complete for the 2 1{-node architecture. In 
another related paper, Lin and Vitter [17] proved a slightly stronger result by 
showing that the loading problem of 2-cascade threshold net is NP-complete. 

Next, we summarize some of the proof techniques of the above stated previous 
work. 

2.3.1 Varying Input Dimensions (and Binary 
Inputs): Loading The 2 1-l-node Network is 
NP-Complete: Blum and Rivest 

Theorem 10.1 (3) Loading the 21t-node network is NP-Complete for the case 
of varying input dimensions. 

The problem is in NP since the maximum number of bits required to represent 
each weight is O(nlogn) (see, for example, [22]). To show that the problem is 
complete in NP, the following geometrical view of the problem is considered: 

Let M be the training set, and n is the length of the longest string in M. 
Assume that IMI = O(n). 

1. A training example (i j , OJ) can be thought of as a point in n+l-dimensional 
Boolean space {O, 1} n+l, labeled + / - . 

2. The zeroes of the functions N 1 , N2 can be thought of as n-dimensional 
hyperplanes in this space. 
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3. The two hidden nodes define two hyperplanes which divide the n
dimensional space into four quadrant (may be degenerate) according to 
the + / - sides of each of them. 

4. The output node computes a threshold function on these quadrants. 

Hence, the loading problem for the 2 '}i-node architecture is equivalent to the 
following problem: Given a collection of labeled points in {o,1}n, does there 
exist either 

1. A single hyperplane separating positive and negative points, or 

2. Two hyperplanes so that one quadrant consists of all positive points and 
no negative point, or 

3. Two hyperplanes so that one quadrant consists of all negative points and 
no positive point. 

An outline of their proof is as follows. First they proved that the second case, 
which they term as the quadrant of positive Boolean example problem, is NP
complete by giving a reduction from the set-splitting problem which is known 
to be NP-complete [9]. To complete the proof for the 2 '}i-node network, they 
enlarged the dimension of the problem by a small constant and enlarged the 
given training set by a constant factor to disallow cases 1 and 3. For more 
details, see [3]. 

2.3.2 Fixed Input Dimension: Loading The k 
1t-Node Network is Polynomial Time 

Theorem 10.2 Let k > 0 be an integer constant. Then, it is possible to load 
any k '}i-node architecture in polynomial time in the analog-input (fixed dimen
sion) case. 

Before proving this result, we summarize the related result of Megiddo in [21] 
regarding polyhedral separability in fixed dimension and hyperplanes. 

Lemma 2.1 [21} Let d, k be constants, and Z represents the integers numbers. 
M is a set of points in Zd which are labeled +/-. Then, there exists an 
algorithm to decide whether a set of classified points M can be separated by k 
hyperplanes which takes time polynomial in IMI. 
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Proof. The following two propositions are proved there: 

Proposition 2.2 [21, pp. 328] The hyperplanes HI, H2 , ••• ,Hk separate the 
sets A and B through a Boolean formula iff for every pair of points a E A and 
b E B, there exists a hyperplane Hi such that a and b lie on different sides of 
it. 

Proposition 2.3 [21, pp. 335] Suppose A and B are sets of points in lRd with 
integer coordinates, and suppose there exists a hyperplane H = {p E Rd : 
yT = Yo} that separates A from B with yT a < Yo for a E A. Then, there exists 
a hyperplane H = {p E Rd : yT p = Yo}, a positive rational number r, and 
integers jA,jB (jA,jB 2 1,jA + jB ::; d + 1) such that: 

1. For every a E A, x T a ::; Xo - r. 

2. For every b E B, xTb 2 Xo + r. 

3. For at least jA points a E A, and jB points b E B, x T a = Xo - rand 
xTb = Xo + r. 

(The last proposition is proven to be equivalent to a linear programming prob
lem of maximizing r 2 0 over the bounded area: xT a ::; Xo - r, xTb 2 Xo + r, 
-1::; Xj ::; 1, which requires polynomial time only.) 

Assume the sets A, B E Zd are separable with k hyperplanes. Then, there 
exist k pairs of subsets Ai, Bi (U Ai = A, U Bi = B) and k hyperplanes Hi 
(i = 1, ... k) such that Hi separates Ai from B i . By proposition 2.3, there 
exist such hyperplanes that satisfy also the equalities stated in the proposition. 
Furthermore, each candidate hyperplane is determined by some finite set of at 
most d + 1 points and at most d equalities Xj = +/ - 1. We can enumerate in 
polynomial time of the sum IAI + IBI all the relevant configurations of the k 
hyperplanes. By proposition 2.2, it takes polynomial time to check whether the 
hyperplanes separate A and B. Hence, the algorithm requires only polynomial 
time in IMI. 0 

Proof of Theorem 10.2. The computational view of the loading problem 
of analog input is very similar to the model of Lemma 2.1. However, in this 
case the points are in [O,l]d rather than Zd. The second discrepancy is that 
the output of the k 1{-node architecture is a linear threshold function of the 
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hyperplanes rather than an arbitrary Boolean function. The proof of Lemma 
2.1 holds for the analog input as well. We add a polynomial algorithm to test 
each separating configuration of the hyperplanes to assure that the output of 
the network is indeed a linear threshold function of the hyperplanes. 0 

3 THE LOADING PROBLEM FOR THE 2 
7r-NODE ARCHITECTURE WITH 
VARYING INPUT DIMENSIONS. 

One can generalize Theorem 10.2 and show that it is possible to load the 2 
7r-node architecture with analog inputs (with fixed input dimensions) in poly
nomial time. In this section we show that the loading problem for the 2 7r-node 
architecture is NP-complete when (binary) inputs of arbitrary dimension are 
considered. The main theorem of this section is as follows. 

Theorem 10.3 The loading problem for the 2 7r-node architecture (L7r AP) 
with (binary) inputs of varying dimension is NP-complete. 

A corollary of the above theorem is as follows. 

Corollary 10.1 The class of Boolean functions computable by the 2 7r-node 
architecture with (binary) inputs of varying dimension is not learnable, unless 
RP=NP. 

To prove theorem 10.3 we reduce a restricted version of the set splitting prob
lem, which is known to be NP-complete [9], to this problem in polynomial time. 
However, due to the continuity of this activation function, many technical dif
ficulties arise. The proof is organized as follows: 

1. Providing a geometric view of the problem [subsection 3.1]. 

2. Introducing the (k, l)-set splitting problem and the symmetric 2-SAT prob
lem [subsection 3.2]. 

3. Proving the existence of a polynomial algorithm that transforms a solution 
of the (3,3)-set splitting problem into a solution of its associated (2,3)-set 
splitting problem (using the symmetric 2-SAT problem) [subsection 3.3]. 
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4. Defining the 3-hyperplane problem and proving it is NP-complete by re
ducing from the (2,3)-set splitting problem [subsection 3.4]. 

5. Proving that the L7f AP is NP-complete. This is done using all the above 
items[subsection 3.5]. 

In subsection 3.6, we prove the corollary. 

3.1 A Geometric View Of The Loading 
Problem 

(1,1 

, , 

la) 

" + 

1<) 

(h) 

+ ' 

Figure 3 Different classifications produced by the 3-node network. 

We start by categorizing the different types of classifications produced by the 
2 7f-node architecture. Without loss of generality we assume a, {J i= 0 (if a = 0 
or (J = 0 the network reduces to a simple percept ron which can be trained 
in polynomial time). Consider the 4 hyperplanes Ml : L~=I aiXi = 0, M2 : 

L~=I aiXi = 1, PI : L:~I biXi = 0, and P 2 : L:~=I bixi = 1 (refer to fig. 3). Let 
(CI' C2) denote the set of points in the (n - 1 )-dimensional facet corresponding 
to L~I aiXi = CI and L:~=I biXi = C2. As all points belonging to one facet are 
labeled equally, we consider "labeling the facets" rather than the single points. 

Type 1. All facets are labeled either' +' or ' -'. In that case, all the examples 
are labeled' +' or ' -', respectively. 
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Type 2. Exactly one facet is labeled '+'. Assume that this facet is (0,0). 
Then, two different types of separations exist: 

(a) There exist two halfspaces H1 and H2 such that all the' +' points 
belong to H1 /\ H2 and all the '-' points belong to H1 V H2 (H1 and 
H 2 may be identical). 

(b) There exist three hyperplanes of the following form (fig. 3(b)): 

n 

H1 : O:(L aixi) > " 
i==1 

n 

H2 : .B(L biXi) > " 
i==1 

and 
n 

H3 : L(o:ai + .Bbi)Xi > " 
i==1 

where 0:,.B ::; , < 0 (hence, > 2,), and all the '+' and '-' points 
belong to H1/\ H2/\ H3 and H1 V H2 V H3, respectively (here, as well, 
H1 and H2 may be identical). 

If any other facet is marked' +', a similar separation is produced. 

Type 3. Two facets are marked '+' and the remaining two are labeled '-'. 
Because the labeling must be linearly separable, only the following types 
of classifications are possible: 

(a) (0,1) and (0,0) are' +' (fig. 3( d)). Then, the input space is partitioned 
via the three halfspaces: 

n 

H1 : O:(L aixi) > , - (3, 
i==1 

n 

H2 : O:(Laixi) > " 
i==1 

and 
n 

H3 : L(o:ai + (3bi )Xi > " 
i==1 

where (3 > ,,0: ::; , < 0,0: + (3 ::; ,. 
If (3 < 0 then all the '+' and '-' points lie in H1 V (H2 /\ H3) and 
H2 V (H1 /\ H3), respectively. 
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If (3 > 0 then all the' +' and '-' points lie in H2 V (HI 1\ H3) and 
HI V (H2 1\ H3)' respectively. 

(b) (0,0) and (1,0) are' +' (fig. 3( c)). Then, the input space is partitioned 
via the three halfspaces: 

n 

HI : (3(2: biXi) > , - a, 
i=1 

n 

H2 : (3(2: biXi) > " 
i=1 

and 
n 

i=1 

where a > " (3 ~ , < 0, a + (3 ~ ,. 
If a < 0 then all the' +' and '-' points lie in HI V (H2 1\ H3) and 
H2 V (HI 1\ H3), respectively. 
If a > 0 then all the' +' and '-' points lie in H2 V (HI 1\ H3) and 
HI V (H2 1\ H3), respectively. 

(c) (1,0) and (1,1) are '+' (similar to fig. 3(d) with the labeling of '+' 
and '-' points interchanged). This is the symmetrically opposite case 
of type 3(a). 

(d) (0,1) and (1,1) are '+' (similar to fig. 3(c) with the labeling of'+' 
and '-' points interchanged). This is the symmetrically opposite case 
of type 3(b). 

Type 4. Three facets are labeled '+'. This case is symmetrically opposite to 
type 2, and thus details are precluded. Note that two types are possible 
in type 4, namely type 4(a) and type 4(b), depending upon whether two 
or three halfspaces are involved, respectively (similar to type 2). 

3.2 The Set Splitting and Symmetric 2-SAT 
Problems 

The following problem is referred to as the (k, l)-set splitting problem (SSP) 
for k 2': 2. 

INSTANCE: A set S = {Si 11 ~ i ~ n}, and a collection C = {Cj 11 ~ j ~ 
m} of subsets of S, all of exactly size l. 



Intractability of Loading Neural Networks 375 

QUESTION: Are there k sets Sl,"" Sk, such that Si n Sj = ¢ for i -I j, 
Uf=l Si = S, and Cj ~ Si for 1 ::; i ::; k and 1 ::; j ::; m? 

Note that the (k, I)-SSP is solvable in polynomial time if both k ::; 2 and I ::; 2, 
but remains NP-complete if k ~ 2 and I = 3 (see [9]). 

For later purposes we consider the symmetric 2-SAT problem: 

INSTANCE: Variables V1,V2,'" ,Vn and a collection D of one or two literal 
disjunctive clauses satisfying the condition: 

QUESTION: Decide whether there exists a satisfying assignment, and find 
one if exists. 

Note that the clause (Xi V Xj) (resp. ((,X;) V (,Xj))) is equivalent to both the 
implications (,Xi -t Xj) and (,Xj -t Xi) (resp. (Xi -t 'Xj) and (Xj -t ,Xi), 
while the clause Xi (resp. ,Xi) is equivalent to the implication ('Xi -t Xi) 
(resp. (Xi -t ,Xi) ) only. These two forms of disjunction and implication are 
used interchangeably. In a manner similar to [24], we create a directed graph 
G = (V,E), where where V = {di,di I Vi is a variable}, and E = {(li,lj) I 
(i,j E {l, ... ,n}), (li E {di"dd), (lj E {dj"dj }), (Ii -t lj) ED}. Note that 
an edge (x, y) in E is directed from X to y. In the symmetric 2-SAT problem, 
the graph G has the following crucial property: 

("') Complemented and uncomplemented vertices alternate in any path. This 
is because the edges in G are only of the form (d i , dj ) or (di , dj ) for some 
two indices i and j (i = j is possible). 

The following algorithm finds a satisfiable assignment if exists or, stops if there 
is no one: 

1. Denote by =} the transitive closure of -t. For any variable Vi such that 
Vi =} 'Vi (resp 'Vi =} Vi) set Vi to false (resp. true). 
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2. Repeat until there is no edge directed into a false literal or from a true 
literal. 

• Pick an edge directed into a false literal, i.e. of the type dr -+ ,ds 

(resp. ,dr -+ ds) so that the variable Vs is set to true (resp. false) 
and set Vr to false (resp. true). 

• Pick an edge directed from a true literal, i.e. of the type dr -+ ,ds 

(resp. ,dr -+ ds) so that the variable Vr is set to true (resp. false) 
and set Vs to false (resp. true). 

3. If there is still an unassigned variable, set it arbitrarily and return to step 
2. Otherwise, halt. 

The above algorithm produces a satisfying assignment provided the following 
condition holds (see, for example, [24, pp. 377-378]): 

The instance of the 2-SAT problem has a solution if and only if there 
is no directed cycle in G which contains both the vertices di and di for 
some i. 

It is easy to check the above condition in 0(1 V I) = O(n) time by finding the 
strongly connected components of G. Hence, computing a satisfying assignment 
( or, reporting that no such assignment exists) can be done in time polynomial 
in the input size. 

3.3 The (k, i)-Reduction Problem 

We prove that under certain conditions, a solution of the (k, l)-set splitting 
instance (8, C) can be transformed into a solution of the associated (k -1, l)
set splitting problem. More formally, we define the (k, l)-reduction problem 
((k, l)-RP) as follows: 

INSTANCE: An instance (8, C) of the (k, l)-SSP, and a solution 
(81,82 , ... ,8k ). 

QUESTION: Decide whether there exists a solution (S~, 8~, ... , 8k- 1 ) to 
the associated (k - 1, l)-SSP and construct one (if exists), where, for all 
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We next state the existence of a polynomial algorithm for the (3,3)-reduction 
problem. Since we are interested in placing elements of S3 in SI or S2, we focus 
on sets having at least one element of S3. Since (SI, S2, S3) is a solution of the 
(3,3)-SSP, no set contains 3 elements of S3. Let C' = {Cj I 1 ~ i ~ m} ~ C 
be the collection of sets which contain at least one element of S3. Obviously, 
Vj(Cj ~ Sd 1\ (Cj ~ S2) 1\ (Cj ~ S3). 

Let A = {ai I 1 ~ i ~ lSI} and B = {bi I 1 ~ i ~ lSI} be two disjoint sets. 
Each element of AUB is to be colored 'red' or 'blue' so that the overall coloring 
satisfies the valid coloring conditions: 

(a) For each set {Xi,Xj,Xp } E C', where Xi,Xj E S3, at least one of ai or aj 
should be colored red if xp E SI and at least one of bi or bj has to be 
colored red if xp E S2. 

(b) For each i, 1 ~ i ~ lSI, at least one of ai or bi has to be colored blue. 

(c) For each set {Xi,Xj,Xp } such that xp E S3 and Xi,Xj E SI (resp. Xi,Xj E 
S2), ap (resp. bp) must be colored red. 

Theorem 10.4 The following two statements are true: 

(a) The (3, 3)-reduction problem is polynomially solvable. 

(b) If the (3, 3)-RP has no solution, no valid coloring of A U B exists. 

Proof. 
(a) We show how to reduce the (3,3)-reduction problem in polynomial time 
to the symmetric 2-SAT. As the later is polynomially solvable, part (a) will 
be proven. Assume an instance (S,C,SI,S2,S3) is given and (S~,Sb) is to 
be found. For each element Xi E S3 assign a variable Vi; Vi = T RU E (resp. 
Vi = FALSE) indicates that the element Xi is placed in SI (resp. S2). For each 
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set Ck = {Xi, Xj, xp}, where Xi, Xj E S3, if xp is in Sl, create the clause -'Vi V-'Vj 

(indicating both Vi and Vj should not be true, since otherwise Ck ~ Si); if xp is 
in S2 create the clause Vi VVj; for each set Ck = {Xi,Xj,Xp }, where Xi,Xj E Sl 
(resp, E S2), create the clause -,vp (resp. vp ). Let D be the collection of all 
such clauses. This instance of the symmetric 2-SAT problem has a satisfying 
assignment if and only if the (3,3)-RP has a solution: for each variable Vj; Vj 

is true (resp. false) in the satisfying assignment if and only if X j is assigned 
into Sl (resp. S2). 

(b) Construct the graph G from the collection of clauses D as described in 
section 3.2. If no satisfying assignment exists, the graph G has a directed cycle 
containing both di and di for some i. We show that in that case no valid 
coloring of all the elements of A U B is possible: rearrange the indices and 
names of the variable, if necessary, so that the cycle contains d l and d l , and 
(due to property ("') of G of section 3.2) is of the form dl -7 d2 -7 d3 -7 ... -7 

dr -7 dl -7 dl , -7 d2, -7 d3, -7 ... -7 d., -7 dl , where rand s' are two positive 
integers and X -7 Y denotes an edge directed from vertex X to vertex yin G (not 
all of the indices 1, 2, ... , r, l' , 2' , ... , s' need to be distinct). Next, we consider 
the following 2 cases. 

Case 1. Assume al is colored red. Hence, bl must be colored blue due to 
coloring condition (b). 

Consider the path from P from dl to dl (i.e., the path dl "" dl , where "" 
denotes the sequence of one or more edges in G). The following sub cases 
are possible: 

Case 1.1. P contains at least one edge of the form dt , -7 dt , or dt , -7 dt' 
for some index t'. Consider the first such edge along P as we traverse 
from d l to d l . 

Case 1.1.1. The edge is of the form dt , -7 dt" (that is, the associated 
clause is -,xt'). Consider the path P' : d l "" dt ,. P' is of the 
form dl -7 dl , -7 d2, -7 ... -7 dt'-l -7 dt , and t' is odd (t' = 1 
is possible). Now, due to coloring condition (a) and (b), bt , is 
colored red (see below). 

ai: 
bi : 

i = 1 i = l' 
blue 

blue red 

i = 2' 
red 
blue 

i = t' - 1 
red 
blue 

i = t' 

red 

On the other hand, at' is colored red due to coloring condition 
(c) and the edge dt' -7 dt'. But, coloring condition (b) prevents 
both at' and bt' to be colored red. 
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Case 1.1.2. The edge is of the form dt , --+ dt , (that is, the associated 
clause is Xt'). Consider the path P' : d1 "'" dt ,. P' is of the form 
d1 --+ d1, --+ d2, --+ ... --+ dt'-l --+ dt' and t' is even. Now, due to 
coloring condition ( a) and (b), at' is colored red (see below). 

i = 1 i = I' 
blue 

blue red 

i = 2' 
red 
blue 

i = t' - 1 
blue 
red 

i = t' 
red 

On the other hand, bt , is colored red due to coloring condition 
(c) and the edge dt' --+ dt ,. But, coloring condition (b) prevents 
both at' and bt , to be colored red. 

Case 1.2. P contains no edge of the form dt , --+ dt , or dt' --+ dt' for any 
index t'. 
Then, s' is even, and because of the coloring conditions (a) and (b) 
we must have b .• , colored blue (see below). 

i = 1 i = I' 
blue 

blue red 

i = 2' 
red 
blue 

i = s' - 1 
blue 
red 

i = s' 

blue 

Now, b1 must be colored red because of the edge ds' --+ d1 , a contra
diction. 

Case 2. Assume al is colored blue. 

This case is symmetric to Case 1 if we consider the path d1 "'" d1 instead 
of the path d1 "'" d1 • 

Hence, part (b) is proved. o 

3.4 The 3-hyperplane Problem 

We prove the following problem, which we term as the 3-hyperplane problem 
(3HP), to be NP-complete. 

INSTANCE: A set of points in an n-dimensional hypercube labeled' +' and , , 

QUESTION: Does there exist a separation of one or more of the following 
forms: 



380 CHAPTER 10 

(a) A set of two halfspaces ax> ao and H2 : bx> bo such that all the '+' 
points are in HI /\ H2, and all the I _, points belong to HI V H 2 ? 

(b) A set of 3 halfspaces HI : ax> ao, H2 : bX> bo and H3 : (a -+ b)x > Co 
such that all the I +' points belong to HI /\ H2 /\ H3 and all the ,_, points 
belong to HI V H2 V H3? 

Theorem 10.5 The 3-hyperplane problem is NP-complete. 

Proof. We first notice that this problem is in NP as an affirmative solution 
can be verified in polynomial time. To prove NP-completeness of the 3HL, we 
reduce the {2,3)-set splitting problem to it: 

Given an instance I of the (2,3)-SSP: 

I: S = {Si}, C = {Cj}, Cj ~ S, 1 S 1= n, 1 Cj 1= 3 for all j 

we create the instance I' of the 3-hyperplane problem (like in [3]): 

* The origin (on) is labeled '+'; for each element Sj, the point Pj 
having 1 in the jth coordinate only is labeled '_'; and for each clause 
Cl = {Si,Sj,Sk}, we label with '+' the point Pijk which has 1 in its 
ith, jth, and kth coordinates. 

We next prove that 

An instance I' of the 3-hyperplane problem has a solution if and only if instance 
I of the {2,3)-SSP has a solution. 

Given a solution (SI, S2) of the {2,3)-SSP, we create the following two halfs
paces: HI : L~=1 aiXi > - ~, where ai = -1 if Si E SI and ai = 2 otherwise, 
H2 : L~=1 biXi > -~, where bi = -1 if Si E S2 and bi = 2 otherwise. This is a 
solution type (a) of the 3-hyperplane problem. 
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(A) If there is a separation of type (a), the solution of the set-splitting is 
analogous to [3]: Let SI and S2 be the set of' -' points Pj separated from 
the origin by HI and H2, respectively (any point separated by both is 
placed arbitrarily in one of them). To show that this separation is indeed 
a valid solution, assume a subset Cd = {Xj,xj,xd so that Pj,Pj,Pk are 
separated from the origin by HI' Then, also Cd is separated from the 
origin by the same hyperplane, contradicting its positive labeling. 

(B) Otherwise, let HI : I:~=I ajXj > -~, H2 : I:~=I bjxj > -~ and H3 : 
I:~=I(aj + bj)xj > C be the three solution halfspaces of type (b), where 
o > C (since the origin is labeled' +'). We show how to construct a solution 
of the set splitting problem. 

Let SI and S2 be the set of ' -' points Pj separated from the origin by 
HI and H 2 , respectively (any point separated by both is placed arbitrarily 
in one of the sets), and let S3 be the set of points Pj separated from the 
origin by H3 but by neither HI nor H2. If S3 = ¢ then SI and S2 imply 
a solution as in (A) above. Otherwise, the following properties hold: 

(I) There cannot be a set Cj = {sx, Sy, S z} where Px, Py and pz all belong 
to S3. Otherwise, ax, ay, az < C < 0, and the' +' point corresponding 
to Cj is classified' -' by H 3. Similarly, no set Cj exists that is included 
in either SI or S2. 

(II) Consider a set {sx,Sy, sz}, where Px,Py E S3,Pz E SI. Since az ::; -~ 
and az + ax + ay > - ~, we conclude ax + ay > O. Hence, at least one 
of ax or ay must be strictly positive. Similarly, if pz E S2, at least 
one of bx, by is strictly positive. 

(III) Consider any element Sx of S3' Since the associated point Px is 
classified as ' -' by H3, ax + bx < C < O. Hence, at least one of ax and 
bx is negative for each Px' 

(IV) If there is a set {sx,Sy,sz} where Sx E S3, and Sy,Sz E SI (resp. 
Sy, Sz E S2) then ax (resp. bx) is positive. This is because since 
Sy,Sz E SI (resp. Sy,Sz E S2), ay,az ::; -~ (resp. by,bz ::; -~), but 
ax+ay+az > -~ (resp. bx+by+bz > -~), and hence ax > ~ (resp. 
bx > ~). 

As for condition (I), (SI, S2, S3) can be viewed as a solution of the (3,3)
SSP. We show that this solution can be transformed into a solution of the 
required (2,3)-SSP. 

Let A = {aj I 1 ::; i ::; t}, B = {bj I 1 ::; i ::; t}, SI, S2 and S3 be as 
in theorem 10.4. Each element x of Au B is colored red (resp. blue) if 
x> 0 (resp. x::; 0). Conditions (a), (b) and (c) of valid coloring of AuB 
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hold because of conditions (II), (III) and (IV) above. Thus, (8b 82 , 83 ) is 
transformed into (8~, 8~)-a solution of the (2,3)-SSP. 0 

3.5 Loading The 2 7r-node Architecture is 
NP-complete 

Next, we prove that loading the 2 7r-node architecture is NP-complete. We do 
so by comparing it to the 3-hyperplane problem. To this end, we construct a 
gadget that will allow the architecture to produce only separations of type 2 
(section 3.1), which are similar to those of the 3HP. 

We construct such a gadget with two steps: first, in Lemma 3.1, we exclude 
separation of type 3, and then in Lemma 3.2 we exclude separations of type 4. 

Lemma 3.1 Consider the 2-dimensional hypercube in which (0,0), (1,1) are 
labeled '+', and (1,0), (0,1) are labeled '-'. Then the following statements are 
true: 

(a) There do not exist three halfspaces HI, H2 , H3 as described in type 3(a)-(d) 
in section 3.1 which correctly classify this set of points. 

(b) There exist two halfspaces of the form HI : ax > ao and H2 : bx> bo, 
where ao, bo < 0, such that all the' +' and' _, points belong to HI /\ H2 
and HI V H2 , respectively. 

Lemma 3.2 Consider the labeled set A: (0,0,0), (1,0,1), (0,1,1) are labeled 
'+', and (0,0,1), (0,1,0), (1,0,0), {1,1,1) are labeled '_'. Then, there does not 
exist a separation of these points by type 4 halfspaces as described in section 
3.1. 

The proofs of Lemmas 3.1 and 3.2 involve a detailed case analysis and hence 
omitted; they are available in [7]. 

Consider the same classification again on a 3-dimensional hypercube: (0,0,0), 
(1,0,1), and (0,1,1) are labeled '+', and (0,0,1), (0,1,0), (1,0,0), and (1,1,1) are 
labeled '_'. Then, the following statements are true due to the result in [3]: 

( a ) No single hyperplane can correctly classify the '+' and I - I points. 
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(b) No two halfspaces HI and H2 exist such that all the '+' points belong to 
HI V H2 and all the ,_, points belong to HI 1\ H2. 

(c) There exist two halfspaces HI : L:~=1 O:iXi > 0:0 and H2 : L:~=1 f3i x i > f30 
such that all the I +' points lie in HI 1\ H2, and all the ,_, points lie in 
HI V H2 (where X = (Xl,X2,X3) is the input). 

Now, we can show that the loading problem for the 2 7r-node architecture is 
NP-complete. 

Proof of theorem 10.3. First we observe that the problem is in NP as follows. 
The classifications of the labeled points produced by the 2 7r-node architecture 
(as discussed in section 3.1) are 3-polyhedrally separable. Hence, from the 
result of [22] we can restrict all the weights to have at most O( n log n) bits. 
Hence, a "guessed" solution can be verified in polynomial time. 

Next, we show that the problem is NP-complete. Consider an instance I = 
(S, C) of the (2,3)-SSP. We transform it into an instance I' of the problem of 
loading the 2 7r-node architecture as follows: we label points on the (lSI + 5) 
hypercube similar to as is * (section 3.4). 

The origin (0181 +5) is labeled '+'; for each element Sj, the point 
Pj having 1 in the jth coordinate only is labeled '_'; and for 
each clause Cl = {Si, Sj, sd, we label with '+' the point Pijk 

which has 1 in its ith, jth, and kth coordinates. The points 
(on,O,O,O,O,O), (on,O,O,O,l,l), (on,l,O,l,O,O) and (on,O,l,l,O,O) 
are marked '+', and the points (on,O,O,O,l,O), (on,O,O,O,O,l), 
(on,O,O,l,O,O), (on,O,l,O,O,O), (on,l,O,O,O,O) and (on,l,l,l,O,O) 
are labeled '_'. 

Next, we show that a solution for I exists iff there exists a solution to I'. Given 
a solution to the (2,3)-SSP, by lemma 3.1(part(b» and the result in [3] the two 
solution halfspaces to I' are as follows (assume the last 5 dimensions are X n +l 

to xn+5): 

n 1 
HI : (2: aixi) - xn+1 - Xn+2 + Xn +3 - Xn+4 + Xn +5 > -"2' 

i=1 
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n 1 
H2 : (~bixi) + xn+1 + Xn +2 - Xn+3 + xnH - Xn+5 > -"2' 

i=1 

ai = { -1 if Si E Sb 
2 otherwise, 

bi = { -1 if Si E S2, 
2 otherwise. 

We map the two solution halfspaces into the 2 7r-node architecture as follows:. 

n 

NI = 7r[-((~ aixi) - Xn +1 - Xn+2 + Xn+3 - xnH + Xn+5)] , 
i=1 

n 

N2 = 7r[-((~ bixi) + xn+1 + Xn+2 - Xn +3 + XnH - Xn+5)] , 
i=1 

Conversely, given a solution to I', by Lemma 3.1(part (a», Lemma 3.2 and 
the result in [3] (as discussed above) the only type of classification produced 
by the 2 7r-node architecture consistent with the classifications on the lower 5 
dimensions is of type 2(a) (with HI :j:. H 2 ) or 2(b) only, which was shown to 
be NP-complete in theorem 10.5. 0 

Remark 10.2 From the above proof of theorem 10.3 it is clear that the NP
completeness result holds even if all the weights are constrained to lie in the 
set { - 2, -1, I}. Thus the hardness of the loading problem holds even if all the 
weights are "small" constants. 

3.6 Learning the 2 7r-node Architecture 

Here, we prove corollary 10.1 which states that the functions computable by the 
2 7r-node architecture is not learnable unless RP = N P. As it is not believed 
that NP and RP are equal, the corollary implies that most likely the 2 7r-node 
architecture is not learnable (Le. there are particular values of I: and 8 it is not 
(1:,8)-learnable). 
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Proof of Corollary 10.1. The proof uses a similar technique to the one ap
plied in the proof of theorem 9 of [15]. We assume that the functions computed 
by the 2 7r-node architecture are learnable and show that it implies an RP 
algorithm for solving a known NP-complete problem, that is, NP=RP. 

Given a instance [ = (8, C) of the (2,3)-SSP, we create an instance [' of the 2 
7r-node architecture and a set of labeled points M (this was used in the proof 
of theorem 10.3): 

The origin (0181 +5) is labeled '+'; for each element Sj, the point 
Pj having 1 in the /h coordinate only is labeled ' -'; and for 
each clause Cl = {si,sj,sd, we label with '+' the point Pijk 

which has 1 in its ith, /h, and kth coordinates. The points 
(on,o,o,o,O,O), (on,o,o,o,I,I), (on,l,o,I,O,O) and (on,o,I,I,O,O) 
are marked '+', and the points (on,O,O,O,I,O), (on,O,O,O,O,I), 
(on, 0, 0,1,0,0), (on, 0, 1,0,0,0), (on, 1,0,0,0,0) and (on, 1, 1, 1,0,0) 
are labeled '-'. 

Let D+ (resp. D-) be the uniform distribution over these '+' (resp. '-') 
points. Choose 10 < min{ 181~5' ICI+4}' and b = 1 - 10. To prove the corollary 
it is sufficient to show that for the above choice of 10, b, D+ and D-, (10, b)
learnability of the 2 7r-node architecture can be used to decide the outcome of 
the (2,3)-SSP in random polynomial time: 

• Suppose [ is an instance of the (2,3)-SSP and let (81 ,82 ) be its solution. 
Then, from the proof of the "only if" part of Theorem 10.3 (see previ
ous subsection), there exists a solution to [' which is consistent with the 
labeled points of M. So, if the 2 7r-node architecture is (10, b)-learnable, 
then due to choice of 10 and b (and, by Theorem 10.3), the probabilistic 
learning algorithm must produce a solution which is consistent with M 
with probability at least 1- 10, thereby providing a probabilistic solution of 
the (2,3)-SSP. That is, if the answer to the (2,3)-SSP question is "YES", 
then we answer "YES" with probability at least 1 - 10. 

• Now, suppose that there is no solution possible for the given instance of the 
(2,3)-SSP. Then, by Theorem 10.3, there is no solution of the 2 7r-node 
architecture which is consistent with M. Hence, the learning algorithm 
must always either produce a solution which is not consistent with M, or 
fail to halt in time polynomial in n, ~, and ~. In either case we can detect 
that the learning algorithm was inconsistent with labeled points or did not 
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halt in stipulated time, and answer "NO". In other words, if the answer 
to the (2,3)-SSP is "NO", we always answer "NO". 

Since the (2,3)-SSP is NP-complete (i.e., any problem in NP has a polynomial 
time transformation to (2,3)-SSP), it follows that any problem in NP has a 
random polynomial time solution, i.e., N P ~ RP. But it is well-known that 
RP ~ NP, hence we have RP = NP. D 

4 CONCLUDING REMARKS 

We have shown that the loading problem is NP-complete even for a simple 
feedforward network with a specific "saturated linear" (analog type) activation 
functions. This adds to the previously known results stating that the loading 
of a simple net with discrete activations is NP-complete ([3]) and a net with a 
specific (somehow artificial) analog activation function has a fast loading ([28]). 
It is possible to extend the NP-completeness result when a fixed polynomial 
number of threshold units are added in the hidden layer, provided the function 
computed by the output node is restricted; the reader is referred to [7] for 
details. Unfortunately, our proof does not seem to generalize for standard 
sigmoid or other similar activation functions. The following open problems 
may be worth investigating further: 

• Does the NP-completeness result hold for the 2 a-node architecture, where 
a(x) = l+~-' is the standard sigmoid function? 

• What is the complexity of the loading problem for networks with more 
layers? Note that hardness of the loading problem for networks with one 
hidden layers does not necessarily imply the same for networks with more 
hidden layers. In fact, it is already known that there are functions which 
cannot be computed by threshold networks with one hidden layer and a 
constant number of nodes, but can be computed by threshold networks 
with two hidden layers and a constant number of nodes [20]. 

• Is there a characterization of the activation functions for which the loading 
problem is intractable? 
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