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Abstract

The concept of robustness of regulatory networks has received much attention in the last decade. One measure of
robustness has been associated with the volume of the feasible region, namely, the region in the parameter space in which
the system is functional. In this paper, we show that, in addition to volume, the geometry of this region has important
consequences for the robustness and the fragility of a network. We develop an approximation within which we could
algebraically specify the feasible region. We analyze the segment polarity gene network to illustrate our approach. The
study of random walks in the parameter space and how they exit the feasible region provide us with a rich perspective on
the different modes of failure of this network model. In particular, we found that, between two alternative ways of
activating Wingless, one is more robust than the other. Our method provides a more complete measure of robustness to
parameter variation. As a general modeling strategy, our approach is an interesting alternative to Boolean representation of
biochemical networks.
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Introduction

Robustness, in the context of biological networks, broadly

indicates that the system remains viable under different perturba-

tions. Defining robustness in a precise form is a challenging task,

given that robustness to different kinds of perturbations, e.g.,

environmental variation, intrinsic fluctuations in chemical net-

works or changes due to mutations, might involve different

features of an existing network [1,2]. In this paper, we are

concerned with the robustness of functionality to changes in the

kinetic parameters for a given network architecture. In an

influential study of the Drosophila segment polarity network,

robustness has been associated to the fractional volume of the

region in parameter space associated with the wild type gene

expression pattern [3]. In this paper we will see that the geometry

of the space of feasible parameters contains additional information

on essential aspects of robustness and fragility of the network.

In the context of fitting biochemical kinetics models to time

series data, investigators have looked at effects of small parametric

perturbations on the quality of the fit. Sensitivity analysis [4,5],

namely considering the effect of changing parameters, one at a

time, is a common practice by now. Brown and Sethna have

looked at correlated changes of parameters and study how moving

in different directions in parameter space affects the predictions

[6]. Based on the eigenvalues and the eigenvectors of the Hessian

of the cost function at the minimum, these authors and their

collaborators find that, for many known biochemical networks,

only a few directions in the parameter space have stiff constraints

whereas the rest of the directions are ‘‘sloppy’’ [7,8]. In this work,

we will consider the segment polarity network as an example and

will explicitly characterize the region in parameter space where the

network could be functional. The anisotropy in the shape of this

feasible region will become apparent from our analysis. We should

clarify that the robustness of a model to parameter variation, as

measured by goodness of fit to data, is distinct from the robustness

of the system functionality with respect to parameter variation

from mutations. However, at a mathematical level, these two

problems just give rise to different ways of scoring parameter

choices for a model, and there is much that is parallel in the

consideration of the shape of the regions that score well in each of

these problems.

The segment polarity network is part of a cascade of gene

families responsible for generating the segmentation of the fruit fly

embryo. Genes involved in initiating this pattern are transiently

expressed, and interactions among the segment polarity genes

should maintain and fine-tune this pattern as the embryo grows

through cell division. Much of the information about this network

comes from genetic analysis and are therefore of qualitative

nature. In particular, we do not know many of the parameters

necessary to describe this dynamical system. This is a common

situation faced in modeling most biochemical networks.

In their work on modeling the segment polarity network, von

Dassow et al. [3] encountered the same problem. Their approach

was to solve an ODE model of the network for random choices of

parameters and then score the resultant expression patterns based

on compatibility with the experimentally observed wild type

pattern. If this score is found to be above a certain threshold, the

given parameter combination is said to belong to the feasible
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region of the parameter space. Robustness of a particular

architecture is then ascertained by the fractional volume of the

feasible region, estimated from their simulation. Ingolia [9] looked

at a set of criteria for bistability in particular submodules of the

network and studied the extent to which these criteria describe this

feasible region. In general, providing an approximate description

of the structure of feasible region, even for a medium size

biochemical network, remains an important challenge.

One could also get some insight into the functioning of the

network by constructing a model where each gene or gene product

is mostly ON or OFF. For example, in the context of this

particular network, Boolean models have been employed to study

dependence upon initial state or the effect of deletion of particular

components [10]. Unfortunately, addressing questions related to

parameter dependence is not possible within the conventional

Boolean framework. Therefore, we develop a new approximation,

within which the treatment of our model shares the simplicity of

Boolean analysis without sacrificing the possibility of exploring

parameter dependence issues. This approximation enables us to

explicitly characterize the feasible region in the parameter space of

the model.

If a point in the feasible region of parameters represents a

functional biological system, then a mutation causes the system to

jump to a new point. If this new point also belongs to the feasible

region, the system is robust with respect to that mutation.

Otherwise the mutation is deleterious. If the jump in the

parameter space, caused by a mutation, is relatively large then

the result of successive mutations is to quickly probe different

regions of the parameter space. In this case, robustness essentially

depends on the volume of the feasible region. On the other hand,

if the jumps in the parameter space are relatively small, evolution

of parameters due to successive mutations can be represented by a

random walk in the parameter space. The idea of representing

evolution as a continuous random process has already been used in

the adaptive landscape approach [11]. In this case, the random

walk exiting the feasible region in the parameter space corresponds

to a deleterious mutation. The exit time distribution is very

sensitive to the shape of the feasible region. Robustness to

mutation is, now, related to the features of this distribution (e.g.

half-life, asymptotic decay rate, etc.) [12] and therefore depends

upon the shape and not just the volume of the feasible region.

If we want to choose a single measure for robustness, the inverse

of the asymptotic decay rate is a good candidate [12]. This

measure is sensitive to the geometry (both volume and shape) of

the feasible region. For example, even if the total volume of the

feasible region is relatively large, existence of ‘‘narrow’’ directions

will greatly affect the decay rate; or if the feasible region is

constituted of several disconnected part, the decay rate will again

be affected. In addition, it is independent of the initial condition.

Also, in the theoretical case, where every mutation leads to a new,

uncorrelated point in the parameter space, the inverse of the

asymptotic decay rate is a simple function of the fractional volume

of the feasible region.

In our study, we will estimate half-life, a different but closely

related measure of robustness. In case a single exponential in time

gave the probability of remaining in the feasible region, these two

measures of robustness would be proportional to each other. In

practice, half-life depends partially on short time properties of the

system and is initial condition dependent. On the other hand,

measuring the asymptotic decay rate accurately for high

dimensional stochastic system needs more computational effort

than estimating half-life.

Before we go on, let us explain what measure of distance we use

when we talk about narrow or wide directions in the parameter

space. If we consider the continuous random walk approximation

to parameter evolution, then the short-time properties of diffusion

set up a metric for the space of parameters. The metric tensor of

this space is the inverse of the covariance matrix of infinitesimal

displacements divided by the infinitesimal time interval. Once we

have this metric, we could decide whether, from a generic point,

the distance to reach the boundary in certain direction is relatively

small or large. This definition of distance is closely tied to the time

the system typically takes to diffuse over a certain separation.

Once we characterize the feasible region in parameter space, we

explore how the system fails as a result of such a random walk. For

two alternative network models, we compare the exit time

distributions. More importantly, we can see how, in a particular

model, the feasible region is narrower in certain directions than in

others. These narrow directions are associated with the predom-

inant modes of failure of the system in the random walk process.

We end by speculating how these methods could be extended to

generic biochemical network models.

Results

In the wild type segment polarity pattern, genes are expressed

periodically in 14 parasegments along the fly embryo, and each

parasegment consists of four stripes of cells. Because of this

periodicity, one could focus only on one parasegment or in other

words only on 4 cells. Figure 1A shows the wild type gene

expression pattern for three key components of the segment

polarity network. For simplicity, each cell is assumed to have four

faces, rather than six as in the original model [3]. When using

abbreviated names for components of the network, we use

uppercase letters to refer to proteins and lowercase letters for the

corresponding mRNAs. Wingless (WG) is a signaling molecule

known experimentally to activate Engrailed (EN) through cell-to-cell

communication. EN, itself a transcription factor, in turn triggers

the production of another signaling molecule, Hedgehog (HH). HH

then gets secreted to the neighboring cell and maintains WG

expression by stabilizing an activator of wg, called Cubitus interruptus

(CI). Without HH signaling, CI gets proteolytically cleaved, leaving

Author Summary

Developing models with a large number of parameters for
describing the dynamics of a biochemical network is a
common exercise today. The dependence of predictions of
such a network model on the choice of parameters is
important to understand for two reasons. For the purpose
of fitting biological data and making predictions, we need
to know which combinations of parameters are strongly
constrained by observations and also which combinations
seriously affect a particular prediction. In addition, we
expect naturally evolved networks to be somewhat robust
to parameter changes. If the functioning of the network
requires fine-tuning in many parameters, then mutations
causing changes in regulatory interactions could quickly
make the network dysfunctional. For predictions involving
gene products being ON or OFF, we found a method that
facilitates the study parameter dependence. As an
example, we analyzed several competing models of the
segment polarity network in Drosophila. We explicitly
describe the region in the parameter space where the
wild-type expression pattern of key genes becomes
feasible for each model. We also study how random walks
in the parameter space exit from the feasible region of a
network model, allowing us to compare the relative
robustness of the alternative models.

Shape, Size, and Robustness
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only its amino terminus (denoted by CN), which becomes a

repressor of wg. In summary, experimentally it is known that WG

and EN maintain the expression of each other through cell-to-cell

communication. We represent the wild type expression pattern of

these mRNA components as follows:

wg
1,2,3,4ð Þ

WT~ 0,1,0,0ð Þ, en 1,2,3,4ð Þ
WT~ 0,0,1,0ð Þ,

hh 1,2,3,4ð Þ
WT~ 0,0,1,0ð Þ,

ð1Þ

where the four entries of each of the vectors correspond to the

gene expression in the four cells of a parasegment. The value ‘‘0’’

means the gene is turned off and the value ‘‘1’’ means it is

maximally expressed.

The abovementioned mechanisms leave room for the following

questions. Why is EN expressed only posterior to the WG

expressing stripe? The anterior cell also receives a WG signal but

does not produce EN. Similarly, one could ask why WG is

expressed only anterior to the EN expressing stripe.

Figure 1B shows the interaction network used in reference [3].

In that work, the authors started only with interactions shown by

black lines but were unable to reproduce the right pattern in their

simulations. The best pattern authors could achieve, using only

black lines, was an alternative expression of wg and en in all cells.

Therefore, authors decided to add two new interactions shown

with green lines. With these links in place, they were able to find

many parameter combinations to reproduce the target pattern.

To explore the dependence of robustness of the network on its

topology, Albert and Othmer [10] developed a Boolean model of

the segment polarity network, a discrete logical model where each

species has only two states (OFF or ON), but no kinetic parameters

need to be defined. This Boolean model is amenable to various

methods for systematic robustness analysis [10,13–15]. Unfortu-

nately, the ease of analysis comes at the cost of not being able to

address questions related to the parameter dependence.

A Step Function Approach to the Segment Polarity
Network Model

We propose an approach which retains the information about

kinetic parameters, but, at the same time, keeps part of the simplicity

of a Boolean model by having most genes either in the fully ON or

the fully OFF state. We approach the problem by first solving the

algebraic equations coming from the steady state conditions and

writing the steady state solutions in terms of the parameters. Since

one of the steady state solutions should match the wild type pattern,

one can look for the constraints on parameters that yield this

pattern. This procedure provides a family of conditions defining

regions of feasible parameters for the wild type steady state.

Although all of the parameters in the feasible region can maintain

the desired pattern, one aspect we ignore is whether the system can

reach the wild type pattern from particular initial conditions.

In our analysis, we used the fact that many of the differential

equations in the model involve terms of the Hill form:

w X ,k,nð Þ~ X n

knzX n
,

where X is the concentration of some species, k is the dissociation

constant and n is the Hill coefficient. The steepness of the Hill

function is characterized by the Hill coefficient n. As X increases

from zero and passes the threshold k, the function w has a transition

from OFF to ON state. For moderately large Hill coefficient, this

transition becomes quite steep, and w is practically insensitive to the

actual value of n. In the model presented in reference [3], n is indeed

found to be often quite large, between 5 to 10 [16]. Any such term

may thus be replaced by a step function with two levels:

w X ,k,nð Þ?h X{kð Þ~
0, X{kv0

1, Xzkw0

�

Using this, the steady state gene expression is characterized by

the following equations:

wgi~

aCIwgh CIi{kCIwg

� �
h kCNwg{CNi

� �
zaWGwgh IWGi{kWGwg

� �
1zaCIwgh CIi{kCIwg

� �
h kCNwg{CNi

� �
zaWGwgh IWGi{kWGwg

� �ð2Þ

1

HIWG

wgi{IWGið Þ~ rExoWGIWGi{rEndoWGEWGi,Tð Þ ð3Þ

rExoWGIWGi

4
{rEndoWGEWGi,j{rmxferWGEWGi,j

�

zrmxferWGEWGn,jz2{2rLMxferWGEWGi,j

zrLMxferWGEWGi,lr

�
~

EWGi,j

HIWG

ð4Þ

eni~h EWGi{kWGenð Þh kCNen{CNið Þ ð5Þ

ENi~eni ð6Þ

hhi~h ENi{kENhhð Þh kCNhh{CNið Þ ð7Þ

1

HHH

hhi

4
{HHi,j

� �
~kPTCHH PTC½ �0PTCn,jz2HHi,j

zrLMxferHH 2HHi,j{HHi,lr

� � ð8Þ

ptci~h CIi{kCIptc

� �
h kCNptc{CNi

� �
ð9Þ

1

HPTC

ptci

4
{PTCi,j

� �
~kPTCHH HH½ �0HHn,jz2PTCi,j

zrLMxferPTC 2PTCi,j{PTCi,lr

� � ð10Þ

PHi,j

HPH

~kPTCHH HH½ �0HHn,jz2PTCi,j ð11Þ

cii~h kENci{ENið Þ ð12Þ

CIi~
h kENci{ENið Þ

1zHCI CCI h PTCi,T{kPTCCIð Þ ð13Þ

Shape, Size, and Robustness
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Figure 1. Expression pattern for key segment polarity genes and the interaction network. (A) Four cells in a parasegment with periodic
boundary conditions in both dimensions. Each cell is represented by a square. The convention for numbering cells and cell faces are shown. (B)
Interaction network used in reference [3]. Two green lines indicate interactions added by authors to achieve the target pattern. Black lines indicate
interactions based on experimental data. Shape of the nodes indicates the corresponding component: Ellipses represent mRNAs; rectangles, proteins.
doi:10.1371/journal.pcbi.1000256.g001

Shape, Size, and Robustness

PLoS Computational Biology | www.ploscompbiol.org 4 January 2009 | Volume 5 | Issue 1 | e1000256



CNi~
HCI CCI

1zHCI CCI

h kENci{ENið Þh PTCi,T{kPTCCIð Þ ð14Þ

Here we use the same notation as in [3]. Xi, i = 1,2,3,4, denotes

the total concentration of the protein species X in cell i, with lower

case xi referring to the concentration of the corresponding mRNA

molecules. In addition, for three of the components involved in

cell-to-cell communication, namely, external Wingless (EWG),

Patched (PTC) and HH, the concentration on each of the four cell

faces could be different. For any of these components, the

concentration in cell i at face j is denoted by Xi,j, i = 1,2,3,4,

j = 1,2,3,4. For these three species, the sum of the concentration

over all four faces of cell i is denoted by Xi,T. The adjacent cell face

to face j of cell i is shown by Xi,lr. The opposite cell face to face j of

cell i is shown by Xn,j+2.

Also, kXY denotes the dissociation constant for species Y

corresponding to the binding that regulates the species X. The

range for kXY is chosen to be between zero and one. The equations

are in normalized form, meaning that the concentrations of the

components have been scaled so that the maximal steady state

level is one.

The structure of this particular network allows one to draw

several interesting conclusions immediately. For example, the

steady state levels for HH and PTC are completely determined

once one specifies the mRNA levels of en, hh and ptc (this does not

depend on the high Hill coefficient approximation). Assuming that

en and hh are expressed only in the cell 3, which is the case in the

wild type pattern, it can be shown that ptc2 = ptc4, and

PTC2,T = PTC4,T. The reason is as follows. If ptc2.ptc4, cell 2

ends up producing more PTC, part of which get bound to HH

diffusing over from cell 3. However, the symmetric nature of the

diffusion leads to more PTC in cell 2 than in cell 4:

PTC2,T.PTC4,T. Higher level of PTC results in higher rate of

proteolysis of CI. Therefore, in the steady state, CIi is a decreasing

function of PTCi and CNi is an increasing function of PTCi. This

means that (given en is not present in cells 2 and 4, and therefore

has no repressive effect on ci production)

CI2vCI4, CN2wCN4: ð15Þ

However CI is an activator and CN is a repressor of ptc, which

together with Equation 15 implies ptc2,ptc4, which contradicts the

assumption we started with. Of course, we could have started with

ptc2,ptc4 and again end up with contradiction (for the formal

proof, see, Chaves, Sengupta and Sontag, Geometry and topology

of parameter space: investigating measures of robustness in

regulatory networks, to appear in Journal Mathematical Biology).

This argument shows that the concentration levels of ptc, PTC, CI,

CN and PH is exactly the same in cells 2 and 4:

ptc2~ptc4, PTC2,T~PTC4,T ,

CI2~CI4, CN2~CN4 and PH2~PH4:
ð16Þ

This observation will turn out to be quite significant for the

following reason. The wg level in a cell is controlled by the CI-CN

pathway and the postulated feedback [3] from internal WG (IWG).

Since cells 2 and 4 do not differ when it comes to CI and CN levels,

any difference in the WG expression has to be attributed to the wg

autoregulation.

In order to analyze the wg sector, we note that, in this model,

the EWG and IWG levels are uniquely determined by a set of

linear equations once the wg levels are given. Solving these linear

equations, using the periodic boundary conditions and the fact

that wg is produced only in cell 2, we find that:

EWG1~EWG3vEWG2: ð17Þ

This result is not surprising because the distribution of WG is

determined by a symmetric diffusion process from the source in

cell 2, the only wg producing cell in each parasegment. Therefore,

we expect cells 1 and 3 to have identical amounts of WG signaling.

It turns out that EWG at the source, cell 2, is higher than that of

the flanking cells (the formal proof is presented in the

supplementary material). These observations have important

consequences for the regulation of en, as explained below.

Since en is expressed in cell 3, we have:

EWG3wkEWGen: ð18Þ

This, together with Equation 17, implies:

EWG1, EWG2wkEWGen: ð19Þ

Had the en production been solely controlled by EWG, the

model would have implied that if EWG3 is high enough to activate

en in cell 3, en will be also activated in cells 1 and 2. This is why, in

reference [3], adding repression of en by CN was necessary to

achieve the wild type expression pattern. The two new links

introduced in reference [3] (green lines in Figure 1B) give rise to

two positive feedback loops. The wg autoactivation gives rise to

bistability, allowing cells 2 and 4 to have distinct levels of wg

expression. The other loop (En __| ciRCIRCN __| enREN),

generated by adding repression of en by CN, is required to prevent

en from being expressed in cells 1 and 2. This also requires CN to

be expressed in those cells. The bistability of the EN-CI-CN system

allows cells 1 and 3 to have different en level even when the

external Wg signal is the same for both of them.

We should note that autoactivation as a way for maintaining the

WG expression is problematic in the following sense. In the model

described above, wg is always activated via autoactivation and the

preexisted CI-CN pathway never contributes to the pattern. This is

in contrast with the experimental data, which suggests that HH

signaling from the neighboring cell plays a crucial role in

maintaining the wg expression. The fact that model [3] does not

depend upon HH signaling for maintaining the expression of wg

manifests itself when cell division is considered. In this model, both

daughters of a cell in the wg-expressing stripe are able to retain the

wg ON state through autoactivation. This causes the stripe to grow

wider and wider over cell divisions. However, in wild type fly, the

wg-expressing stripe should remain one cell wide. The daughter

cell, which is further from the en-expressing stripe, and therefore

not exposed to HH signaling, loses wg expression. This means that

one stripe of WG is left after each division. Ingolia [9] has also

noticed that in this model, IWG level must always be above KWGwg

(the autoactivation threshold) in the cell that expresses wg. When

we removed the CI-CN cycle for activation of wg from the

simulation performed in reference [3], the fraction of ‘‘good

solutions’’ increased by a factor of 3. This suggests that most of the

time the CI-CN pathway is either not contributing to WG

expression or it leads to misexpression of WG in cell 4.

The model is too dependent on the bistability of the two sub-

networks with positive feedback for maintaining four cell

Shape, Size, and Robustness
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expression patterns. One could avoid this problem by making

some of the four cells special, either by inclusion of other genes in

the network or by explicitly breaking the symmetry via introducing

different gene expression rates from cell to cell for some of the

genes already in the model.

The major candidate for inclusion in the model is the Sloppy-

paired protein (SLP) as has already been suggested by others

[9,10,17]. SLP is only present in cells 1 and 2:

SLP 1,2,3,4ð Þ
WT~ 1,1,0,0ð Þ. It is a necessary (but not sufficient)

factor for activation of wg and it also represses en. In the presence

of SLP, the reason en is not expressed in cell 1 despite WG signaling

is that it is being repressed by SLP. Also, despite HH signaling, wg

is not produced in cell 4 because SLP is not present there. With

SLP added, the two new interactions introduced in [3] are not

necessary anymore, and also WG expression will depend on the

CI-CN pathway.

In this paper, we will analyze the effect of including SLP. We

keep SLP as an external factor meaning that the expression pattern

of SLP is given. However, it can easily be incorporated into the

network. If WG activates SLP, a positive feedback loop is formed

which allows for bistability: both WG and SLP can be ON or both

can be OFF. On the other hand, if EN represses SLP, another

positive feedback loop is formed which again allows for bistability:

SLP can be ON and en OFF or vice versa. We have also explored a

model with explicitly different rates of production of ptc and ci from

cell to cell which will be presented in a separate publication

(Chaves, Sengupta and Sontag, Geometry and topology of

parameter space: investigating measures of robustness in regula-

tory networks, to appear in Journal Mathematical Biology). The work

also presents a study complimentary to that presented in this

paper. It provides an explicit geometric description of the feasible

region by partitioning the region into components defined by

algebraic inequalities, in other words, by constructing a cylindrical

algebraic decomposition.

Here, we consider two particular cases:

(I) The regulatory network used by von Dassow et al. [3]. This

network is shown in Figure 2B. We will refer to this case as

von Dassow et al. model.

(II) The regulatory network including Sloppy-paired protein, but

without the two positive feedback links introduced in [3].

This network is shown in Figure 2. We will refer to this case

as SLP model.

We can explicitly write down the conditions characterizing the

feasible region for these two models. The results are presented in

Tables 1 and 2 (see Materials and Methods for the derivation of

these conditions). We could easily estimate the associated volume

of feasible region by randomly choosing points in the parameter

space and check whether they satisfy the appropriate conditions.

As we discussed in the introduction, the fate of random walks,

especially where they exit the feasible region, teaches us a lot about

relative vulnerability of different constraints.

Random Walk in the Feasible Region
We explore the feasible region by following random walks

starting from random points. Whenever one of the random

trajectories hits a boundary and exits the feasible region, we

terminate the walk and keep track of the inequality that was

violated. This process can be viewed as a simulation of parameter

evolution due to mutations in a fitness landscape that looks like a

plateau. The points in the feasible region have a constant high

fitness, and the rest of the points have zero fitness. The result of the

simulation is presented in Figure 3.

For the two models discussed, the graphs in Figure 3A show the

probability of survival as a function of time. This is the probability

that the random walk has not exited the feasible region in the first t

steps. From the graph, we can easily measure T1/2, defined as the

time for which there is a 50% chance that the system has already

suffered a deleterious mutation. As we discussed in the

introduction, this number is a possible indicator of robustness.

Figure 3B shows the histogram of violated conditions. The

number below each bin indicates the corresponding condition in

Tables 1 and 2. The lead cause of failure in the von Dassow et al.

model is the constraint on kWGwg whereas in the SLP model it is the

Figure 2. Segment polarity regulatory network including
sloppy-paired protein. In this model, the possibility of Wg autoacti-
vation and en repression by CN is not included.
doi:10.1371/journal.pcbi.1000256.g002

Table 1. Conditions characterizing the feasible region for the
regulatory network used by von Dassow and collaborators.

Condition
Number Condition

1 0vkPTCCI vPTCm
1 , PTCm

2 , PTCm
4

2 1.kCIwg.12ZC or 0,kCNwg,ZC

ZC ~
def

min 1{kCIptc, kCNptc, HCI CCI

1zHCI CCI

� �

3 0,kEWGen,EWG3

4 0,kCNen,ZC

5 max{IWG1,3,4},kWGwg,IWG2

This network, shown in Figure 1B, includes two positive feedback loops
achieved by adding WG autoactivation and en repression by CN.
doi:10.1371/journal.pcbi.1000256.t001
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constraints on kEWGen. Higher vulnerability of the SLP model with

respect to the constraint on kEWGen can be understood by

comparing condition 3 in Table 1 and the corresponding

condition in Table 2. In the SLP model there is a lower bound

on kEWGen coming from the fact that kEWGen should be greater than

EWG4 to prevent activation of en in cell 4. However in the von

Dassow et al. model, en is being repressed by CN and therefore

there is no lower limit on kEWGen.

One might raise the question of whether including repression of

en by CN in the SLP model changes the constraints on kEWGen. In

high Hill coefficient limit, adding this interaction does not change

the conditions in Table 2. To see this, notice that as was

mentioned before, requiring CI and CN levels to be different in

cells 1 and 2 forces us to have CN2 = CN4 = 0. In cell 4, CN is not

expressed, and in cells 1 and 2, en is already being repressed by

SLP. Therefore, adding the possibility of en repression by CN does

not change any of the constraints.

If we consider the case where Hill coefficients in the CI-CN-PTC

sector are small, the transition from high to low in concentration

value for ptc-nullcline and CN-nullcline would not be sharp.

Instead, the transition would happen over a wide range. This

means that we would get a non zero value for CN4. In that case,

adding repression of en by CN can indeed help in maintaining the

wild type pattern, thereby increasing the robustness of the model.

The parameters kCIwg, kCNwg and kWGwg are related to alternative

routes controlling wg expression. The first two parameters play an

important role in deciding WG expression in the SLP model, while

this role is played by kWGwg in the von Dassow et al. model.

Comparison of the frequency of failure for conditions 2 and 5 in the

histogram in Figure 3B suggests that controlling wg via the CI-CN

pathway in the presence of SLP is the more robust way of achieving

the target gene expression pattern for wg.

What about adding the WG autoactivation to the SLP model? If

one just cares about producing the right four-cell pattern for en, hh

and wg, then this addition could give rise to more solutions.

However, as we discussed before, not having wg production to be

sensitive to HH signaling from the neighboring cell is problematic

and gives rise to wide stripes of wg expression under cell division. If

we constrain the model so that wg is sensitive to HH signaling via

CI-CN pathway, we find that adding wg autoactivation to a

functional solution in the SLP model often leads to misexpression

of wg in cell 1 or cell 3, thereby shrinking the feasible region in

parameter space.

Discussion

Our results imply that the lack of robustness is not only

dependent upon the size of the feasible region, but also upon the

existence of critical directions along which this region is globally

very narrow. We found relatively few constraints on the

parameters given that we have specified the gene expression

patterns for en, hh and wg in each of the four cells. Much has been

said about the relation between the topology of the network and

robustness. In practice, we found that it is not only the structure of

the network but also the nature of the wild type expression pattern

which plays an important role in the ultimate simplicity of the

constraints that dictate robustness. For example, the fact that only

one cell is expressing en and hh and that wg had no direct effect on

the CI-CN-PTC sector allowed us to draw several conclusions

about certain variables being the same in cell 2 and cell 4. If one

only pays attention to the network structure, wg indeed has an

effect on the CI-CN-PTC sector via its effect on en. However,

specifying the en expression pattern hides the influence of wg and

helps us disentangle the constraints. The role of wg shows up only

when one insists upon self-consistency, namely, the wg expression

pattern is going to lead to the target en expression pattern.

Simplicity of the final constraints is not a result of some obvious

modularity in the network itself but some combination of the

network structure as well as of the sparseness of the expression

pattern. We cannot be sure that this is a general feature of robust

genetic networks. A broader study, which takes into account the

role of the wild type pattern on the robustness of a network, would

be a welcome deviation from discussions centered purely on

network architecture.

We noted that capturing the CI-CN-PTC negative feedback in

the Boolean model is difficult. For example, in the Boolean model

constructed by Albert and Othmer [10], they are forced into a

situation where ptc mRNA is OFF but PTC protein is ON. This is

achieved because of an exception made in PTC production rule,

namely, PTC can continue to be in the ON state even if there is no

ptc. Of course, this implausible rule results in a distribution of ptc

and ci products which mimics the wild type pattern. For example

cell 1 has less ptc but more CN compared to cell 2. In our model,

we partially capture the effect of the feedback. We can indeed get

the ptc levels to vary between cell 1 and cell 2. Unfortunately, we

saw that in the high Hill coefficient model, producing different CN

levels requires fine-tuning of the parameters. Therefore, we

understand why von Dassow et al. find that setting the Hill

coefficients in the CI-CN-PTC sector to be small enhances their

chance of finding good solutions [16].

The present approach shows that, in addition to volume, the

topology and geometry of the feasible region have important

consequences for the robustness of a system. Of special interest is

the structure of the boundary in the parameter space that

separates between functional and non-functional systems. In the

models studied here, it was possible to describe this boundary

explicitly as a collection of constraints. For a generic biochemical

network model with a scoring function it may not be feasible to

explicitly write down the boundary surface corresponding to the

threshold of functionality. However, one could generate a

sampling of the boundary surface by following random walks in

the parameter space until it hits the boundary of the functional

region (decided by a threshold score). Instead of what we did in

this study, we could slightly alter our strategy and let the walk be

reflected off the boundary. In that process the same walk would hit

many neighboring points on the boundary surface. If one

generates a large enough sample of boundary points, one could

use methods like manifold learning [18,19] to approximately

reconstruct the boundary.

Contrast this method to boundary reconstruction from

uncorrelated random sampling. One could generate many points

some of which are inside the region and many others that are

Table 2. Conditions characterizing the feasible region for the
regulatory network including Sloppy-paired protein.

Condition Number Condition

1 PTCm
2 ~PTCm

4 vkPTCCI vPTCm
1

2 (1.kCIwg.12ZC and 0,kCNwg,1)
or (1.kCIwg.0 and 0,kCNwg,ZC)

ZC ~
def

min 1{kCIptc, kCNptc, HCI CCI

1zHCI CCI

� �

3 EWG4,kEWGen,EWG3

In this network, shown in Figure 2, the two links of WG autoactivation and en
repression by CN are absent.
doi:10.1371/journal.pcbi.1000256.t002
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outside. Indeed, many machine learning techniques for classifica-

tion involve learning decision boundaries from such data.

However, when the good region has a very small fractional

volume and many of the randomly sampled points outside this

region are far from the decision boundary, most of the sampled

points have very little impact on boundary reconstruction. The

Figure 3. Random walk in the space of admissible parameters. We choose a random point from admissible parameter set and follow a
random walk until it hits a boundary after t steps. (A) The red (and dashed) and the blue (and solid) graphs represent the probability of survival as a
function of time for von Dassow et al. and SLP models, respectively. These graphs results from 30,000 runs of random walks. The results given for
volume are based on the fraction of feasible parameter combinations found in 1,000,000 randomly chosen combinations. (B) Histogram of violated
conditions for the random walk in (A). The number above each bin indicates the corresponding condition in Tables 1 and 2.
doi:10.1371/journal.pcbi.1000256.g003
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uncorrelated nature of the sampling is useful for getting a good

estimate for the fractional volume, but makes the process of

mapping the geometry inefficient. It would be better to take

advantage of one good solution to generate other good ones for the

purpose of exploring local geometry.

Whether these approaches work for analyzing biologically

motivated network models remains to be seen. For an arbitrary

random network, with an equally arbitrary random choice of gene

expression pattern, the feasible region could have a very complex

structure and the methods outlined would not be particularly

useful for characterizing it. The hope is that, for biologically

relevant networks with wild type gene expression patterns, the

feasible region may be quite simple, geometrically, and could be

approximately described by the approaches suggested above.

To summarize, our analysis of the segment polarity network

provides us with insights regarding the constraints that are crucial

for functioning of the system. We showed how the system is

particularly vulnerable to parametric perturbations in certain

directions in the parameter space. We believe that the ideas

developed here could be applied to other regulatory networks, to

explore how the shape of feasible region in the parameter space

contributes to its robustness. Hill terms appear often in models of

biochemical networks. A simpler model, obtained by replacing

these terms with step function, could be useful, because such a

model enjoys some of the simplicity of the Boolean networks, while

retaining many of the parameters of the original model.

Materials and Methods

Derivation of Conditions Characterizing the Feasible
Region

Here we analyze two particular cases:

(I) The regulatory network used by von Dassow et al. [3] which

we refer to as von Dassow et al. model (Figure 2B).

(II) The regulatory network including Sloppy-paired protein, but

without the two positive feedback links introduced in [3].

We will refer to this case as SLP model (Figure 2).

We first focus on case I. Equations 2–14 characterize this

network. The wild type expression pattern for wg, en and hh is given

in Equation 1. Since en is only expressed in cell 3, ci and ptc are

expressed in all cells except cell 3:

cið Þ1,2,3,4
WT

~ 1,1,0,1ð Þ, ptcð Þ1,2,3,4
WT

~ T1,T2,0,T4ð Þ: ð20Þ

This is because in the absence of EN, ci is basally expressed

which also leads to production of ptc. We will allow Ti to take

values between zero and one. The reason for the special, non-

Boolean, treatment of ptc has to do with capturing the effect of the

negative feedback loop in the CI-CN-PTC sector properly. This

negative feedback loop leads to lower ptc level in cell 1 than in cells

2 and 4, as we shall see. The ptc level in cells 2 and 4 turn out to be

comparable (T2 = T4). This is also the experimentally observed

expression pattern of ptc [20].

How could we ever get such an intermediate values in our

approach? First, from Equations 13 and 14, in the cells where en is

not expressed and therefore ci is not repressed, namely in cells 1, 2

and 4, we have CI+CN = 1)CI = 12CN (this does not depend on

the high Hill coefficient approximation). Since ptc is regulated by

CI-CN, we could draw one nullcline expressing ptc concentration as

a function of CN. This curve is represented by the green graph in

Figure 4. We will call it the ptc-nullcline. Here it is assumed that

the negative feedback on ptc coming from repression by CN is

active. This means that CN and ptc are not expressed maximally.

For ptc to be expressed, the activation by CI requires

12CN.kCIptc)CN,12kCIptc. In addition, we need CN to be

smaller than kCNptc to avoid repression of ptc by CN. Thus, for

values of CN smaller than the threshold of min(12kCIptc, kCNptc), ptc

is fully expressed. As CN passes this point, the value of ptc will drop

sharply. In the high Hill coefficient limit, ptc will abruptly fall to

zero.

On the other hand, CN production itself is dependent upon PTC

protein. PTC is a monotonically increasing function of ptc and a

decreasing function of HH signaling. Therefore, for a fixed value

of HH level, we can also look at the concentration of CN as a

function of ptc. This provides us with the CN-nullcline which

depends upon the HH signaling strength. If we think of CN as a

function of ptc level, the transition in CN from low level to its

highest value happens at a particular ptc threshold, where the PTC

level is just enough to start producing CN. If the cell is exposed to

more HH signaling, sequestering away a larger fraction of total

Patched protein, one needs more ptc to reach this threshold. The

blue and the red graphs in Figure 4 show the CN-nullclines for

relatively higher and lower values of HH signaling levels,

respectively.

Because cell 1 receives less external HH signaling than cells 2

and 4, generally the red curve could be associated to cell 1 and the

blue one to cells 2 and 4. The intersection points 1 and 2

determine CI, CN and ptc level in cell 1 and 2/4, respectively. As

we see, ptc value could indeed be higher in cell 2 than in cell 1.

However, CN concentration seems to be comparable in those cells.

This is an artifact of our model where Hill coefficients are very

large, which causes the transition from high to low in

concentration value to happen in a very narrow range. The only

way to have CN2 to be non-zero but different from CN1 is to be in

the situation where the CN-nullcline for cell 2 is like the dashed

blue line in Figure 4. In this case, the ptc threshold for CN

production in cell 2 is fine-tuned to be very close to maximal ptc

level. In a model with small Hill coefficients in the CI-CN-PTC

sector, we would get CN1.CN2 and ptc1,ptc2 without such fine-

tuning. We will come back to this point later.

We should point out that, in this study, we lay down the

conditions only on the expression levels of key components en, wg

and hh as specified in Equation 1. The reason, other than the

simplicity of analysis, is that we believe the requirement of proper

segment formation lays much stronger constraints on these key

components compared to the rest. It is not clear to us that the CI-

CN-PTC negative feedback has an extremely important role in

segment formation stage of development. The study of von

Dassow et al. [3] also uses a scoring function which rewards wild

type levels only for these key components.

Having specified the requirements of functionality, let us now

analyze what conditions are laid on the parameters of the model.

Table 1 shows the set of inequalities characterizing the feasible

region in the parameter space. Here we present the arguments

leading to these conditions. The presence of EN in cell 3 requires

the WG signaling for this cell to be above the activation threshold

for en. This requirement is condition 3 in Table 1 (recall that kXY

can take value only between zero and one). Also, in this cell, EN

will shut off the expression of ci (Equation 12) which is necessary

for the production of CI, ptc, PTC and PH. Therefore, none of

those components are expressed in cell 3. In cells 2 and 4, the

expression level of these components has been shown to be the

same (Equation 16). Therefore, we only need to focus on the

expression of these components in cells 1 and 2.
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Let PTCm
i be the PTC level corresponding to the maximal ptc

mRNA (ptc = 1) in cell i. If the threshold to produce CN is above

PTCm
i , then cell i would not produce CN. As we pointed out

before, the presence of CN in cells 1 and 2 is essential to repress en

in those cells. These facts together necessitate condition 1 in

Table 1.

What would the CN level in cells 1 and 2 be when condition 1 is

satisfied? As one sees from Figure 5A, there are two possibilities

depending upon whether min(12kCIptc, kCNptc) is smaller or larger

than HCI CCI

1zHCI CCI
. The case corresponding to ptc-nullcline in solid

green has been discussed before. This is the case where ptc levels

are affected by the negative feedback, and CN level is equal to

min(12kCIptc, kCNptc), which is less than its maximal possible value

of HCI CCI

1zHCI CCI
. When the ptc-nullcline is like the dashed green line in

Figure 5, CN levels in both cell 1 and cell 2 is equal to the maximal

amount of HCI CCI

1zHCI CCI
, which is lower than min(12kCIptc, kCNptc). In

this case, the negative feedback is not active and ptc is maximally

expressed (ptc = 1). We conclude that CN level is given by

min 1{kCIptc, kCNptc, HCI CCI

1zHCI CCI

� �
, which we call ZC. We will

now discuss the conditions to be satisfied by ZC for proper expression

pattern of en and wg.

The en repression in cells 1 and 2 gives rise to condition 4 in

Table 1. The fact that CI-CN pathway should not activate wg in cell

4 is guaranteed by condition 2 in Table 1. Consequently, WG in cell

2 has no contribution from CI-CN pathway (remember that cells 2

and 4 have the same CI and CN levels) and is solely produced by the

autoactivation term. The autoactivation should only operate in cell

2 and nowhere else. This is condition 4 in Table 1.

von Dassow and Odell analyzed randomly generated solutions

for the segment polarity model in reference [3] and plotted the

marginal distribution of parameters (see Figure 6 of [16]). We can

relate their results to the constraints presented in Table 1. From

condition 1, we expect kPTCCI to have tendency for lower values.

From condition 2, we expect kCNwg to have tendency for lower

values and kCIwg for higher values. Also, in order to have higher

values for ZC, we expect kCIptc to have tendency for lower values

and kCNptc for higher values. From condition 3 and 4, we expect

kEWGen and kCNen to have tendency for lower values. From

condition 5, we expect kWGwg to have tendency for intermediate

values. These expectations agree qualitatively with the results

presented in Figure 6 of [16].

From Figure 6 of reference [16], we see that many of the

parameters are uniformly distributed. One should note that a

uniform distribution for a certain parameter could arise from two

different scenarios. It could be the case that changing the

parameter over a wide range of values does not influence the

final outcome of the network. The other possibility is that the effect

of changing the particular parameter could be compensated by

changes in other parameters in such a way that for each value of

the parameter, there is roughly equal number of solutions.

Now, let us contrast these set of conditions to the one obtained

for the SLP model. Table 2 shows the conditions defining the

feasible region for this case. For this regulatory network (Figure 2),

instead of Equations 2 and 5, we have:

wgi~h slpi{kslpwg

� �
h CIi{kCIwg

� �
h kCNwg{CNi

� �
ð21Þ

eni~h kslpen{slpi

� �
h EWGi{kWGenð Þ ð22Þ

The rest of equations are the same as before (Equations 3, 4 and

6–14). Since SLP is present only in cells 1 and 2, wg has the

Figure 4. The nullclines for ptc and CN. The green curve shows the ptc-nullcline. In the high Hill coefficient limit, ptc value drops sharply from one
to zero as CN passes the threshold of min(12kCIptc, kCNptc). Blue and red curves show the CN-nullclines for relatively higher and lower values of HH
signaling levels, respectively. Intersection points 1 and 2 determine CI, CN and ptc in cell 1 and 2/4, respectively. Here it is assumed that the negative
feedback on ptc coming from repression by CN is active. Therefore, ptc and CN are not maximally expressed. Dashed blue line shows the CN-nullcline
for a fine-tuned set of parameters.
doi:10.1371/journal.pcbi.1000256.g004
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possibility to be expressed only in those two cells. The decisive

factor is CN levels in cells 1 and 2 (remember that, in these cells,

CI = 1-CN). In the wild type pattern, wg is expressed only in cell 2

and this means that CN levels cannot be the same in cells 1 and 2.

The only way to have less CN in cell 2 compared to cell 1 is to have

PTCm
2 ƒkPTCCIƒPTCm

1 . The condition PTCm
2 ƒkPTCCI corre-

sponds to the plateau in the CN-nullcline for cell 2 being higher or

equal to the maximal ptc level (blue graph in Figure 5B). When it is

higher, CN2 is zero and when it is fine-tuned to be equal, CN2 is

between 0 and 1. If we had PTCm
1 ƒkPTCCI , given that

PTCm
2 ƒPTCm

1 , we would have CN1 = CN2 = 0. This is inconsis-

tent with our requirement that CN1 and CN2 be different.

Therefore, we have kPTCCIƒPTCm
1 . For our discussion, we will

ignore the fine-tuned cases, leaving us with condition 1 in Table 2.

This mean CN2 = 0 and CN1~min 1{kCIptc, kCNptc, HCI CCI

1zHCI CCI

� �
which we again call ZC. The condition 2 in Table 2 guarantees the

absence of wg in cell 1. The fact that external WG signaling has to

be strong enough in cell 3 to activate en but has to be weak enough

in cell 4 not to produce en is coded in the condition 3 of Table 2.

Random Walk in the Feasible Region
To get an estimate for the fractional volume of feasible region in

the parameter space, we randomly chose 106 parameter

combinations and checked if they satisfy the conditions given in

Tables 1 and 2 for the corresponding model. We perform the

random walk by first selecting a random point, P0, from the set of

admissible parameters and follow successive random perturbations

P
!k

~P
!k{1

zd P
!k

, k~1,2, . . .

� �
. Each component of d P

!k
is

selected from an independent Gaussian distribution with a

standard deviation of 2*1023. We follow this random walk until

it hits a boundary and exits the space. This happens when one of

the inequalities, which characterize the feasible region, is violated.

Whenever the random walk exits the region, we record the time as

well as the condition that was violated and therefore caused the

exit. The parameter ranges were similar to those used in [3],

except that we facilitated the transport processes for hh and PTC.

We simulated the random walk for 30,000 runs.
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Figure 5. The nullclines for ptc and CN. (A) Blue and red curves show the CN-nullclines for relatively higher and lower values of HH signaling
levels, respectively. The green curve shows the ptc-nullcline when min 1{kCIptc, kCNptc

� �
v

HCI CCI

1zHCI CCI
. In this case, the negative feedback on ptc

coming from repression by CN is active. Therefore, ptc and CN are not maximally expressed. The dashed green curve shows the other case where
min 1{kCIptc, kCNptc

� �
w

HCI CCI

1zHCI CCI
. In this case, both CN and ptc are maximally expressed. This means that the negative feedback on ptc is inactive. (B)

The green curve shows the ptc-nullcline. Blue and red curves show the CN-nullclines for relatively higher and lower values of HH signaling levels,
respectively. The blue curve shows the situation where HH signaling is strong enough so that the ptc concentration needed to produce CN is higher
than the maximal possible value for ptc, namely, one. Therefore, CN will not be produced in the corresponding cell. In the high Hill coefficient
approximation, this is the only way that we can have CN level in cell 2 (intersection point 2) to be different from cell 1 (intersection point 1).
doi:10.1371/journal.pcbi.1000256.g005
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