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CONTROLLABILITY IS HARDER TO DECIDE THAN ACCESSIBILITY*

EDUARDO D. SONTAG"

Abstract. This article compares the difficulties of deciding controllability and accessibility. These are
standard properties of control systems, but complete algebraic characterizations of controllability have
proved elusive. The article shows in particular that, for subsystems of bilinear systems, accessibility can be
decided in polynomial time, but controllability is NP-hard.
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1. Introduction. One of the most important and basic outstanding problems in
control theory is that of finding necessary and sufficient conditions for deciding when
a continuous-time analytic nonlinear system is (locally or globally) controllable. The
goal is to provide some sort of generalization of the classical Kalman controllability
rank condition. An early success of this line of research was achieved with the
characterization of the accessibility property: there is a Lie-algebraic rank condition for
deciding if it is possible to reach an open set from a given initial state. When this
accessibility rank condition does not hold, all trajectories must remain in a lower-
dimensional submanifold of the state space. See for instance [HK], [Sul], or [I] for
a discussion of this and related results. It is known that local controllability can also
be in principle checked in terms of linear relations between Lie brackets of the vector
fields defining the sytem Su 1 ], and recent research has succeeded in isolating a number
of necessary as well as a number of sufficient explicit conditions for controllability.
The literature regarding this question is very large; see, for instance, [Su2] and the
references therein. No complete characterization is .yet available, however.

The purpose of this note is to point out that, whatever necessary and sufficient
conditions are eventually found, these are likely to be rather hard to check. One way
to quantify this difficulty is in terms of complexity of computation. There has been
previous work dealing with difficulty of computation in the context of control and
system theory. For instance, So 1 showed the undecidability ofthe realization problem,
and more recently [PT] (and references therein) dealt with the study of complexity of
decentralized control problems, while [S02] characterized the complexity of decision
problems for an algebra used to study piecewise linear control systems. For more in
the spirit of this paper, see [BW].

We shall show that the existence of easily verifiable conditions for controllability--
local or global, and even several "small-time" variants--would imply solutions to
problems known to be hard. The relative difficulty of controllability vis-a-vis the already
understood accessibility problem is clarified in the case of the class of systems that
can appear as subsystems of bilinear ones. This is a large class of nonlinear systems,
including, for instance, all minimal realizations of finite Volterra series, and of course
all linear systems. In the context of this class, we can make the precise statement that
the accessibility question can be decided in polynomial time, while controllability is
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CONTROLLABILITY AND ACCESSIBILITY 1107

(at least) NP-hard. Recall that NP-hard problems are widely believed to be intractable,
and one ofthe main open problems in theoretical computer science is that ofestablishing
rigorously this intractability, the famous "P NP" question [GJ], [PSI. It could be
argued that, by proving that controllability is NP-hard, we are not in fact establishing
precisely that this is harder than accessibility, only that it is true provided the above
open question in computer science is resolved. This is, however, the standard way in
which we "prove" that a problem is hard in combinatorics, operations research,
theoretical computer science, or in a control-theoretic framework [PT]. In any case,
we conjecture that, even for the class of bilinear subsystems, it must be possible to
establish exponential-time lower bounds, as has been done in the area of decision
methods for logical theories and certain problems in language theory (see, e.g., [AHU,
Chap. 11 ]). We have not yet been able to prove this stronger fact, however.

2. A few lreliminaries. The systems we shall deal with have equations

(t)=f(x(t), u(t)),

where the state x(t) is in a differentiable manifold M for each t, and the control values
u(t) (ul(t),’’’, u,,(t)) belong to a Euclidean space A at each time t. We assume
that the dynamics f are real analytic. Generalizations to more arbitrary control value
sets and to nonanalytic systems could be made, but since our purpose is mainly to
provide negative results, we shall make these results stronger by restricting to even
simpler kinds of systems below.

Given any fixed state Xo .Rn, we can pose several types of problems relative to

Xo: reachability from Xo, controllability to Xo, controllability in any fixed time T. We
may also consider the property of complete controllability, being able to find controls
that transfer any desired state to any other state. We use the notation

A’(x)
for the set of states that can be reached from x in time exactly T; when T is negative,
we mean states from which x can be reached in time -T. We may take any reasonable
family of controls" all measurable locally essentially bounded controls or piecewise
continuous controls; the results will be the same. The union of all the sets At(x) over
all nonnegative T is denoted

A+(x);
this is the set of states reachable from x. Similarly,

A-(x)
is the union over T_-<0, the set of states controllable to x. With this notation, for
instance, controllability from Xo means that A+(xo)= M, controllability to Xo means
that A-(xo)= M, and local reachability in small time means for each T>0, Xo is
in the interior of the union of the sets A (Xo), 0 =< e _-< T.

Two issues which must be clarified are the meanings of the words "given" (a
system, and possibly also an initial state Xo) and "decide" (if the system is controllable
from Xo, reachable, etc.). In its weakest sense, given could be taken to mean "given a
recursive description" of the system, that is, we should provide a computable real
function f, as well as a computable vector Xo if a fixed initial state is of interest. (See
[A] for a discussion of computable analysis, as well as [K] for an alternative viewpoint.)
Decide should mean provide a computer algorithm which, when presented as an input
with the description off (and Xo), will answer "yes" or "no" after a finite number of
steps. At this level, controllability is undecidable for trivial reasons, even for linear
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1108 EDUARDO D. SONTAG

systems. For example, the one-dimensional system

:= bu

is controllable if and only if b is nonzero. But it is impossible to decide if a "given"
real number is zero or not (see [A, Thm. 6.1]). We obviously want to avoid such logical
traps, which have to do with the fact that a recursive description of the dynamics is
not necessarily in what we would intuitively call "explicit form." For linear systems,
the simplest way to get around this difficulty is to restrict ourselves to systems with
rational coefficients, explicitly given in some notation, for instance, in binary. More
generally, we could look, for instance, at a class like that of systems with polynomial
or rational functions f, again requiring rational coefficients.

In order to avoid such trivial counterexamples, and to give a stronger negative
result, we shall restrict ourselves to bilinear subsystems. These are systems with a
finite-dimensional Lie algebra, specified as follows. Given are integers N, m, and l,
and m + 2 matrices

A, G1," Gin, B

over the rational numbers. Each of A, G1," ", Gm is square of size N x N, and B is
of size N x m. Also given is a set of polynomials with rational coefficients

Oi(xl," XN), i= 1,’’’,

with b(O)- 0 and such that the Jacobian of (bl, , bl)’ (prime indicates transpose)
has constant rank, say equal to N-n. Further, we assume that the n-dimensional
manifold M, where all the b simultaneously vanish, is invariant for the differential
equation

(2.1) 2 A + Y uiGi x q- Bu,
i=1

no matter what the control u(.) is. The latter can be expressed algebraically by the
requirement that the Lie derivatives

(2.2) Lxc,

vanish identically on M, for each vector field X of the type (A + aG)x + Ba, a ".
Then to the data

(2.3) (A, G,,. , Gr,, B, th,,""", tb,)

we associate the system whose state space is

M= {x Ivi, 6,(x)=0}
and whose dynamics are given by the restriction of (2.1). We shall call a system of
this type a bilinear subsystem.

The above definition is meant to capture the idea of a system whose dynamics
can be embedded algebraically into a bilinear system. This is a rich enough class of
systems for the purposes of this note, and in fact includes many subclasses of interest.
For instance, bilinear systems result when we take all the 4 -= 0 (so n N, M v),
and in particular linear systems result when also all the G are zero. Further, minimal
realizations of finite Volterra series are always of this type [Cr].

In order to express difficulty of computation, we associate to each as in (2.3)
a size. This is the total number of bits needed in order to store the data (2.3). We
assume a fixed data structure for the matrices, say that they are listed by row, and that

D
ow

nl
oa

de
d 

10
/0

7/
14

 to
 1

28
.6

.2
18

.7
2.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CONTROLLABILITY AND ACCESSIBILITY 1109

each entry is listed as a quotient of integers by giving sign, and the numerator and
denominator in binary. Similarly, each ofthe polynomials di may be given by specifying
(again in binary) all coefficients in a fixed order. We denote by

size E
the resulting integer. When we say that a certain property can be decided in polynomial
time for such systems, we mean that there is a (fixed) polynomial P and an algorithm
which, when given the data (2.3), will answer correctly in time at most

P(size E)

whether this property holds or not. The precise definition of "algorithm" is not very
critical in this context; it may be, for instance, a multitape Turing machine as in [AHU],
or one of several types of abstract computer models. For this and other related notions,
we refer the reader to the standard literature in complexity theory, which we shall not
repeat here.

Remark 2.1. A somewhat subtle point: note that when presented with a bilinear
subsystem we assume that the Jacobians have constant rank and that the derivatives
(2.2) vanish on M, and we shall only be interested in answering questions related to
controllability. Checking the consistency of the data, for instance, via the Tarski-
Seidenberg theory, could require a large computational effort, and we do not wish to
make the problem even harder due to such reasons; we want to show that controllability
is hard to check even if the data is reliable.

3. Accessibility. As an illustration ofthe terminology, we now restate in complexity
terms the simplicity of the controllability problem for linear systems. Consider the
following property:

The linear system (A, B) is controllable.

The classical condition is that the rank of the n x nm Kalman block matrix

(3.1) (B, AB, AEB, ,An-IB)

must equal the dimension n of the state space. Without loss of generality, we may
assume that A and B are integer matrices; if they are not, we can multiply by a common
denominator, which increases the total size of the data at most polynomially and does
not affect controllability. Whether the rank of the Kalman matrix is n can be checked
by Gaussian elimination, which (see, e.g., [PS, Proof of Thm. 8.2]) requires a number
of algebraic operations and is polynomial in n, m, and the size of the integers appearing
in the composite matrix (3.1). The size of these integers is, in turn, polynomial in the
size of the original data; more generally, the size in binary of each entry of a product
matrix

A=AI"’" Ak
is bounded by a polynomial in k and in the size of the integer matrices Ai.

The analogue of the above for nonlinear systems will be obtained, as may be
expected, for the accessibility problem. It turns out indeed that accessibility can be
also decided in polynomial time for the class of bilinear subsystems, as we shall prove
next.

In general, a system E is said to be accessible from the state Xo if and only if the
reachable set from Xo has full dimension, that is, if

(3.2) int A+(x0) # .D
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1110 EDUARDO D. SONTAG

For bilinear subsystems (2.3), we shall take Xo := 0 and say only that E is accessible.
Note that the state space is M, so in (3.2) we mean, of course, the interior with respect
to M. When : is linear in particular, accessibility is equivalent to controllability, but
these concepts are in general different.

Assume now a given bilinear subsystem E. Consider the m + 1 affine vector fields

and

Xo(x) := Ax

Xi(x) := Gix + bi

for each 1,..., m, where bi denotes the ith column of B. The set of all affine
vector fields on Rv is a Lie algebra of dimension

k:= N2q N,

with multiplication

lAx + b, Cx + d] := (CA- AC)x + Cb Ad).

Let wi, i_-> 1, be the sequence of linear subspaces of 4 defined as follows"

1 := span {Xo, X1,. .,
and inductively,

i+.1 := 97i +span {[Xi, X]li =0, , m, X e t’i}.

Let be the union of all the . It follows from the definition that if i/ for
some integer i, then also . By dimensionality we then conclude that

:= 2.

For any subspace L____ 4, denote

L(0) := {b[Ax + b L for some A}.

This is the tangent space at the state Xo 0, corresponding to the distribution L. With
this notation, we can state the (by now) classical characterization of accessibility (see,
e.g., [I, Thm. 6.15]).

PROPOSITION 3.1. The system E is accessible if and only ifok(O) has dimension n.
Note that the rank at the origin of the Jacobian matrix of (, , ) is N- n;

this Jacobian can be computed in polynomial time, and its rank can be obtained again
by Gaussian elimination. Thus n can be computed in this form, and it is only necessary
to find the dimension of k(0). We now show how to compute a basis of k in
polynomial time.

First of all, the problem is not changed by multiplying all the matrices in the
description of E by the product of all the denominators of all the entries. This increases
the size of E at most polynomially, so we assume from now on that A, G,. .,
B are matrices of integers.

We shall represent elements X Ax + b of M as vectors of size k, listing first the
entries of A in some fixed order and then those of b. For any such element, we let
/x(X) denote the maximum of the absolute values of its entries. Also, we take/2 to
be the largest of the values of the/z (X), 0, , m, for the generators of 1. Directly
frorn the definition of matrix product, we obtain the formula

/x ([X, Y]) _-< 2S/z (X)/x(Y)
for any X, Y e
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CONTROLLABILITY AND ACCESSIBILITY

Next we show how to build in polynomial time, for each i= 1,. ., k, a basis

{Y,,’’’,

(note that ni _-< k) of 9i such that

/,(Y) (2N/2)’

for any j 1,. ., hi. The case 1 is clear by definition: start with the Xi and use
Gaussian elimination to take a subset which forms a basis. By induction, it is necessary
to consider now all Lie products

(3.3) [X, Yt]

for j =0,..-, m and l-1,..., n. There are at most k2 of these. Each of them has
entries of largest magnitude

/z([X, Y/])-< 2N/z(X)(2N/2)’-<_ (2N/2) ’+1.

Let B be the matrix that lists all these generators (3.3). Each entry of B, expressed in
binary, has length at most equal to

+ 1 log (2N/2

(plus a bit for the sign). Since we may assume that / 1 =< k N / N, this quantity is
bounded by a polynomial

a + bN + cN2 log/2,

which is in turn bounded by an expression of order O(M3), where M is the total size
of the original data (A, G,. ., G,, B). Thus Gaussian elimination can be performed
in polynomial time to select a subset of (3.3) which forms a basis. Note that it is
essential that this elimination be performed at each step to the algorithm: otherwise
we end up with an exponential number, (m + 1)k, of generators for the space . After
at most k steps we have a basis for k --, and hence also by evaluation at zero and
one last elimination step, we can determine the dimension of (0). This establishes
the following fact.

THEOREM 1. For bilinear subsystems, the accessibility property can be decided in
polynomial time.

Remark 3.2. We set the convention that Xo 0 only for notational simplicity. It
is equivalent to studying accessibility (and later controllability) from an equilibrium
state. The results in the case of more general Xo are entirely analogous, with accessibility
as well as strong (fixed-time) accessibility both verifiable in polynomial time.

Remark 3.3. Another property that is sometimes of interest is that of span teachabil-
ity, meaning that the linear span of the states reachable from the origin should be the
entire space. This can also be checked in polynomial time, by an argument like the
one above. In fact, the accessibility property is basically the same as a span-reachability
property at the Lie algebra level.

4. A controllability remark. In this section we shall restrict our attention to systems
of the following very special type" . w:f( z),

(4.1) Az + bu,,
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1112 EDUARDO D. SONTAG

These are systems with state space

M =RxRxR
of dimension k + 2, and states partitioned as x (y, z, w), with the block of variables
z evolving as a linear system of dimension k. The control value set is RE, and we
assume that the single-input system (A, b) is controllable. We shall show that for
systems (4.1), several variants of the notion of controllability are all equivalent to the
indefiniteness of the mapping f: Rk

-’ R.
DEFINITION 4.1. The mapping f is definite if and only if f(z)>=O for all z or

f(z) <-_ 0 for all z. Otherwise, it is indefinite.
This allows us to reduce the problem of deciding if a polynomial is definite to a

controllability question, and we conclude that controllability is at least as hard to
decide as definiteness. Further, systems of the special form (4.1) with f polynomial
can be rewritten as bilinear subsystems, and this rewriting can be done in polynomial
time, relative to any class of polynomials f of fixed degree. Together with the NP-
hardness of the problem of deciding definiteness (next section), the desired negative
result will follow.

It is clear that indefiniteness is necessary for any type of controllability: iff where
definite, say f(z)>-0 for all z, then

whenever x (y, z, w)e A+(xo), for each Xo- (yo, Zo, Wo)e M. Thus it is impossible in
that case for any Xo to be in the interior of A+(xo) or of A-(xo).

Assume then that f is indefinite. We show now that, for each 8 > 0, and for each
two states Xo and , there is a control u(. which steers Xo into in time 48. We build
u in five steps.

Step 1. Apply the control Ul ---0, UE(t)=-- -Wo/8 on the interval [0, 8]. There results
a state of the form Xl (Yl, Zl, 0).

Now consider the number

y* := fi s2f(e(S-)A) ds.
0

Either (a) Yl Y* or (b) Yl # Y*. Assume first that (b) holds. We know by indefiniteness
off that there exists some vector z2 such that

sign f(z2) sign (y* Yl).

Pick any such z2. By continuity of the exponential, there is some 0 < e < 8 such that

(4.2) sign f(esAz2) sign (y* Yl) for all s [0, .e ].

Finally, pick any solution a of the equation

a 2 $2f(esAz2) ds+ (e--s)2f(esAz2) ds =y*-yx.
dO e/2

There is some such a because of (4.2). In case (a), make an arbitrary choice, say

z2 Zl,let 0< e < be also arbitrary, and let a := 0.
Step 2. Apply a control with u20, on the interval [0, -el, that takes x into

the state x2 (Yl, z2, 0). A suitable Ul(" exists because of the assumed controllability
of the pair (A, b).

For simplicity, we write (y, z, w) instead of, more accurately, (y, z’, w)’.
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CONTROLLABILITY AND ACCESSIBILITY 1113

Step 3. Apply a control on the interval [0, e] as follows. The U component is
identically zero, and

a if < e/2,
u2(t) ::

-a if t>=e/2.
There results the state x3 (y*, eAz2, 0); the total time elapsed is 26.

Step 4. On the interval [0, 6], let u20 and let ul(" be a control steering eAz2
into e-A. Again such a control exists by the controllability of the linear system (A, b).
The resulting state is x4 (y*, e-SAg, 0).

Step 5. Finally, in one last interval of length 6, use ul 0 and u2--- /& The result
is the desired state g.

We can summarize the discussion above.
PROPOSITION 4.2. Let , be a system as in (4.1), and pick any fixed Xo M. The

following properties are then equivalent:
(i) A(x)= Mfor each x M (complete controllability);
(ii) A r(x) Mfor each T and each x M;
(iii) Xo int A+(xo);
(iv) Xo int A-(xo);
(v) f is indefinite.

It follows that other intermediate properties are also equivalent to the above, for
instance local small-time teachability from x0:

Xo. int U At(xo) for each e > O,
t=O

as well as local controllability to Xo in small time. Thus checking either of these
properties is equivalent to checking the indefiniteness of f.

For accessibility, it is sufficient only thatf not be identically zero, which illustrates
in this particular case the gap between the two concepts. Note that, even for the very
simple case in whichf is a homogeneous quadratic form, checking definiteness already
requires some computational effort.

5. Deciding definiteness. The previous section shows how, at least for some sys-
tems, controllability is no easier to check than definiteness of a map. This latter property
can be checked for polynomials via decision methods for real closed fields (see, e.g.,
[Co]) in doubly-exponential time; however, it is not clear if there are faster algorithms.
We remark here that the problem is NP-hard, and we do this by polynomial time
reduction of the classical NP-complete problem, 3-SAT, to the definiteness question.
Thus deciding definiteness is at least as hard as any problem in NP. The remark is
not at all surprising, but it is the best lower bound that we have been able to obtain
until now.

Recall the definition of the 3-SAT problem [GJ, p. 48]. A clause c(x, y, z) in the
three (distinct) variables x, y, z is an expression of the type

(5.1) (l(X) v b2(y) v (3(Z),
where each "literal" 4i is of the form

4i(a) a

or

4,(a) 1-a

and the binary variables x, y, z can take values in {0, }. We interpret the values 1 and
0 as "true" and "false," respectively. For any assignment (x*, y*, z*) of values {0, 1}
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1114 EDUARDO D. SONTAG

to x, y, z, we say that c(x*, y*, z*) is true if at least one of bl(x*), t2(y*) or
is 1, and false otherwise. Equivalently, c(x*, y*, z*) is true if and only if the real
polynomial

(X, y, Z):m II(X)2 -]- (2(y)2 + i3(2’)2

does not vanish at (x*, y*, z*). A set

= {c,(t,,,, t.2, t,,3), i= 1,’’’, L}
of L clauses in the variables (h,’" ", t,), with each tiae{tl,..., t}, is satisfiable if
and only ifthere is some binary assignment t* (tl*,. , t,*) to the variables (tl,. , t,)
such that the clauses c(t*) become all simultaneously true. The 3-SAT problem is that
of finding an algorithm for checking satisfiability. It was the first problem to be shown
to be NP-complete, in the sense that if there were such an algorithm, which would
run in time polynomial in L, then every other problem in the wide class NP, which
includes many, if not most, combinatorial problems of interest, would also be decidable
in polynomial time. It is a long-standing conjecture ("P NP") in theoretical computer
science, widely believed to be true, that indeed none of these problems can be solved
in polynomial time.

It is easy to reduce 3-SAT to the problem of deciding if a polynomial has any
real zeros, and hence to establish that the latter problem is NP-hard. We first show
how to do that, and then modify the construction to deal with the definiteness problem
instead. Let be as above. Consider first the polynomial

(5.2) 0(t) 0(t,,’’ ", t,) t(1- t,) 2.
i=1

Denote by B, the set of binary n-vectors, {t=(t,..., t.)] for all i, 6{0, 1}}, and
note that B, is the set of zeros of 0. Now let u (u,. ., u,) be L new variables, and
introduce

L

(5.3) 6(t, u):= E (uii(t)-l)2+O(t)
i=1

If 4,(t*, u*)=0 then the last term in the sum vanishes, so t* is binary, while the
vanishing of the other terms implies that i(t*)# 0 for all i. Conversely, if t* B, is
such that all tTi(t*)# 0, there is some vector u* such that q,(t*, u*)=0. We conclude
that 6e is satisfiable if and only if q, has a real zero.

We next modify , in order to reduce to definiteness instead. Now let
L

2 )2(5.4) ,(t, u):= Z (2u,tTi(t) u, 1 + 0(t).
i=1

It is again true that 5 is satisfiable if q, has a real zero. This is because an expression
of the type 2ut-u2-1 is strictly negative unless t # 0. Conversely, assume that 5 is
satisfiable, and let t* B, be such that all ti(t*) # 0. Consider each 2utT(t*) u2- 1 0
as an equation on u R. Writing this as

u2+l
i(t*)-

2u

and using the fact that, since t* e B, and tT(t*) # 0, (t*) { 1, 2, 3}, and that

u2+l
a (0, ) [1, o)"u-

2u

is onto, we conclude that (5.4) has a zero.
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CONTROLLABILITY AND ACCESSIBILITY 1115

We show below that when Se is not satisfiable, not only is $ always positive, but
in fact it is bounded away from zero. Note that, in general, it is false that a positive
polynomial must be bounded below by a positive constant, as evidenced by the example
x2+ (1- xy)2, so some care is required. Moreover, we need an explicit value for this
lower bound, which in our case will turn out to be 1/4n2.

Assume then that Sf is not satisfiable. Pick any element t* Bn. There is some
clause ci(t*) which is false. Relabeling variables if necessary, we may assume that ci
involves the polynomials t)l(tl), t2(t2), 3(t3). Since these all vanish at t*, we conclude
that

j( t)2= q t)2

for j 1, 2, 3. In particular, using Euclidean norm, it holds that

(5.5)

for each t". Now consider any fixed element (t, u)"+L. Either (1) lit*-tll)--<-1/2
for some t* B,, or (2) the distance from to B, is at least 1/v. If there is any t*
as in (1), pick a clause c as above. Then, for this fixed i, using (5.5),

2u,)(t)u2+1
1

so

2 2 2u i(t) 1 >ui+l 1
12u,,(t)-u,-ll=(u,+l) u2+ 1 2-2"

Hence, if(t, u)>-_->-1/4n 2. Suppose that (2) holds instead. Then necessarily

1
t)(1 t)

4n2

for at least one j, and therefore again p(t, u) 1/4n2. Indeed, if this were not the case,
then it would hold for each j 1,. ., n that either

1 1
(5.6)

Choose t* B, with t =0 if the first case in (5.6) holds, and 1 otherwise. Then this
paaicular t* would satisfy that lit*-t]]=, contradicting case (2).

The conclusion from the above discussion is that is satisfiable if and only if
there is some pair (t, u) such that

f(t, u):=4n2(t, u)-I <0.

On the other hand, since f ceainly admits positive values, for instance

f((2, 2,..., 2), u) 16n3-1

for any u, it follows that f is indefinite if and only if it takes any negative values, that
is, if and only if is satisfiable. The construction, including expandingf into a standard
polynomial form, can be done in polynomial time, and we summarize.

LEMMA 5.1. For each set of L clauses in n variables, there is a polynomial f of
degree 6 in n + L variables, whose coecients are integers ofmagnitude less than or equal
to cLn, such that is satisfiable if and only iff is indefinite. e polynomial f can be
obtained in polynomial time from
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1116 EDUARDO D. SONTAG

6. A reduction to bilinear subsystems. The idea behind the construction to be given
in this section is basically a classical one in the field of bilinear systems, and can be
traced at least as far back as the paper [B]. The point of giving the details is to keep
track of the computational effort required and of the size of the numbers appearing.

LEMMh 6.1. Let be a system of the form
(6.1) o (), =P+ Ou,

where is a polynomial of degree d in the r variables (1, :2, ", r) with integer
coefficients and with (0)= O, P is an integer matrix of dimensions r x r, and Q is an
integer matrix of dimensions r x m. Assume that the coefficients of , P, Q are all of
magnitude bounded by p. Then there is a bilinear system

Eb (A, G1," , G,,, B, 1,’’’, )

with N=(r+d), l= N-r-1, each coefficient of the matrices A, G1,’", G,, B of
magnitude less than or equal to dpr, and the polynomials qbi of degree less than or equal
to d and with each coefficient equal to 0, l, or -1, such that each ofthefollowing properties
holds for the system if and only if it holds for the system Eb:

(a) 0e int A+(0),
(b) 0e int A-(0),
(c) A+(x) Mfor all x M.
Further, the system ,b can be constructed in polynomial timefrom the data , P, Q.
Proof. Note that N is the number of possible monomials of degree less than or

equal to d in the variables sc :1," "’, :r. We shall use multi-indices a (al, ", a)
with weight lal := Y a _--< d, and

to denote these monomials. The coordinates of vectors in RN will be denoted
as r/s, for such indices a, ordered lexicographically. In particular, we let ei:--
(0, 0,..., 0, 1, 0,..., 0) (1 in ith position), and write Tie just as r/i. For each of the
N- r- 1 indices a with weight 2, we introduce the polynomial in N variables

(n):=n-nT,...nT.

Note that the Jacobian matrix of the ’s has constant rank N- r- 1. The idea of the
construction is to introduce a variable for each monomial in (the r/,’s) in such a
manner that the equation for :0 becomes linear:

,)o E ’,n,,

where ()=Yt q’t:t, and to introduce a differential equation for each of the
monomials :", thought of now as new variables r/. Note that if so( is a solution of

= P+ Qu

and if [a[ > 0, then

where the coefficients a, are obtained as follows. Let P (Pij), Q (qj); with this
notation,

(6.3) a n ceiPij
i,j
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CONTROLLABILITY AND ACCESSIBILITY 1117

the sum over all those indices 1 _-< i, j <_- r for which fl + ei-- a -t- ej, and for each j,

(6.4) g’J= E aiqij,

the sum over all those indices 1 =<i=< r for which/ + ei a. We also denote, for the
case a (0, , 0), each/3, and each j 1,. , m, a t := qt and g’J :- 0. Finally, let
A and G, j= 1,..., m be the matrices (a) and (g’J) respectively, and let B be the
block matrix

tt(2,0

where the first block is a row of size 1 x m and the last one is of size N- r- 1 by m.
Since there are at most r terms in each of (6.3) and (6.4), the claimed estimates

for the magnitudes of the entries of these matrices do indeed hold. Further, the
constructions can be clearly carried out in polynomial time.

Given any vector x (Xo, , Xr) Rr+l, let h(x) Rrq be defined as follows"
h(o....,o)(X) := Xo, and

h(x):=xT"" "x7
for ]a[ > 0. Note that h is a ditteomorphism N---M, and h(0)=0. Now assume that
x(. (Xo("), x(. ),. ., x(. )) solves (6.1) with respect to a given control u(. ). It
follows by construction that rt(t):= h((t)) satisfies

( t) (A + E ui( t)Gi)q( t) + Bu( t).

Therefore x(0) can be steered into x(T) if and only if h(x(O)) can be steered into
h(x(T)), and this establishes properties (a)-(c). [3

7. Controllability is NP-harfl. We are only left to put together all the pieces from
the previous sections. Assume that 0 is any set of L clauses. Note that it can involve
at most n <_-3L variables. By Lemma 5.1 we may build in polynomial time an integer
polynomial f of degree 6 in n + L variables, with coefficients of magnitude bounded
by cL, such that f is indefinite if and only if ow is satisfiable. For this f, we now
consider the system (4.1), where (A, b) is a cascade of integrators

1 Z2, 2-" Z3," k igl

and k-n / L. By Proposition 4.2, the system is controllable, in either of the senses
there, if and only if ow is satisfiable. We now apply Lemma 6.1, with r k + 1, m 2,

XI$(:l,""’, :k+l):-- :+lf(:,""", :r),

and P, Q found from A, b plus the last equation i,- u2. Note that d 8, and that we
may take p cL3. We thus obtain, in polynomial time, the bilinear subsystem Eb in
Lemma 6.1. Listing all entries of A,..., 4i results in a size of order at most
N2 log (rp), which is bounded by a polynomial in L. A polynomial time decision
method for controllability of Eb would thus imply one for 3-SAT. Thus our problem
is at least as hard as that one.

THEOREM 2. Each of the following decision problems is NP-hard, for bilinear
subsystems:

(a) 0 e int A+(0) (local reachability at 0).
(b) 0 e int A-(0) (local controllability at 0).
(c) A+(x)= Mfor all x M (complete controllability).
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1118 EDUARDO D. SONTAG

As remarked earlier, many other questions, such as local small-time reachability,
are shown to be NP-hard by the same argument. As directions for further research,
we suggest looking for a similar result using only single-input systems--the proof above
shows that it is hard to decide controllability if at least two controls are allowednand
also for the case of controls constrained to compact sets. Alternatively, it would be
interesting to establish better lower bounds for the problem studied here.
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