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Modularity plays a fundamental role in the prediction of the behavior of a system from the behavior
of its components, guaranteeing that the properties of individual components do not change upon
interconnection. Just as electrical, hydraulic, and other physical systems often do not display
modularity, nor do many biochemical systems, and specifically, genetic networks. Here, we study
the effect of interconnections on the input–output dynamic characteristics of transcriptional
components, focusing on a property, which we call ‘retroactivity’, that plays a role analogous to non-
zero output impedance in electrical systems. In transcriptional networks, retroactivity is large when
the amount of transcription factor is comparable to, or smaller than, the amount of promoter-
binding sites, or when the affinity of such binding sites is high. To attenuate the effect of
retroactivity, we propose a feedback mechanism inspired by the design of amplifiers in electronics.
We introduce, in particular, a mechanism based on a phosphorylation–dephosphorylation cycle.
This mechanism enjoys a remarkable insulation property, due to the fast timescales of the
phosphorylation and dephosphorylation reactions.
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Introduction

In their influential paper, Hartwell et al (1999) argued for the
recognition of functional ‘modules’ as a critical level of
biological organization, contending that modularity is a key
feature that makes biology close to synthetic disciplines such
as computer science and engineering. Hartwell et al defined
modules as discrete entities, whose relatively autonomous
functions are separable (through spatial localization or
chemical specificity) from those of other modules, and
designed (or evolved) so that interconnecting modules allow
higher level functions to be built. Examples of modules are
signaling subsystems such as MAPK cascades, or machinery
for protein synthesis or DNA replication. Lauffenburger (2000)
(see also Asthagiri and Lauffenburger, 2000) further elaborates
that biology could be understood in a hierarchical or nested
manner, analogous to engineering design, where components
are studied first in isolation, tested and individually character-
ized, prior to their incorporation into larger systems. From an
evolutionary perspective, ‘modular structures may facilitate
evolutionary change [because] embedding particular func-
tions in discrete modules allows the core function of a module
to be robust to change, but allows for changes in the properties

and functions of a cell (its phenotype) by altering the
connections between different modules’ (Hartwell et al,
1999). This argument has much in common with facilitated
variation (Kirschner and Gerhart, 2005), in which highly
conserved ‘core processes’ are tuned and rearranged via ‘weak
regulatory linkages’, thus allowing an acceleration of evolu-
tionary change. It is also consistent with François Jacob’s view
of ‘evolution as a tinkerer’ (Jacob, 1977): ‘organisms are
historical structuresy They represent, not a perfect product of
engineering, but a patchwork of odd sets pieced together when
and where opportunities arose.’ In recent work, Alon (2007)
revisited Jacob’s idea (‘evolution as a tinkerer works with odds
and ends, assembling interactions until they are good enough
to work’) and framed it from the point of view of a quantitative
systems biologist, identifying modularity as a central principle
in biological networks.

A fundamental systems engineering issue that arises when
interconnecting subsystems is how the process of transmitting
a signal to a ‘downstream’ component affects the dynamic
state of the sending component. Indeed, after designing,
testing, and characterizing the input–output behavior of an
individual component in isolation, it is certainly desirable if its
characteristics do not change substantially when another
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component is connected to its output channel. This issue, the
effect of ‘loads’ on the output of a system, is well understood in
many fields of engineering, for example in electrical circuit
design. It has often been pointed out that similar issues arise for
biological systems. Alon states that ‘modules in engineering, and
presumably also in biology, have special features that make them
easily embedded in almost any system. For example, output
nodes should have ‘low impedance’, so that adding on additional
downstream clients should not drain the output to existing clients
(up to some limit).’An extensive review on problems of loads and
modularity in signaling networks can be found in Sauro (2004),
Sauro and Kholodenko (2004) and Sauro and Ingalls (2007),
where the authors propose concrete analogies with similar
problems arising in electrical circuits.

These questions are even more delicate in synthetic biology.
For example, suppose that we have built a timing device, a
clock made up of a network of activation and/or repression
interactions among certain genes and proteins, such as the one
of Atkinson et al (2003). Next, we want to employ this clock
(upstream system) to drive one or more components (down-
stream systems), by using as its output signal the oscillating
concentration A(t) of one of the proteins A involved in its
implementation. Typically, Awill be an activator or a repressor
of a gene involved in the network constituting a downstream
system. From a systems/signals point of view, A(t) becomes an
input to the second system. The terms ‘upstream’ and
‘downstream’ reflect the direction in which we think of signals
as traveling, from the clock to the systems being synchronized.
However, this is only an idealization, because the binding and
unbinding of A to promoter sites in a downstream system
competes with the biochemical interactions that constitute the
upstream block (retroactivity) and may therefore disrupt the
operation of the clock itself. One possible approach to avoid
disrupting the behavior of the clock, motivated by the
approach used with reporters such as GFP, is to introduce a
gene coding for a new protein X, placed under the control of
the same promoter as the gene for A, and using the
concentration of X, which presumably mirrors that of A, to
drive the downstream system. This approach, however, has
still the problem that the behavior of the X concentration in
time may be altered and even disrupted by the addition of
downstream systems that drain X. The net result is still that the
downstream systems are not properly timed.

The above considerations strongly motivate the need for a
novel theoretical framework to formally define and quantify
retroactivity effects in biological systems, such as cell signaling
or gene transcriptional networks. In this paper, we first present
such a formalism, and then study a general approach to the
reduction of retroactivity by means of feedback. Our work
complements, but is different from, questions of optimally
partitioning large networks into ‘modules’ for which retro-
activity-like effects are minimized and the identification of
possible functional modules from co-expression and other
data, which typically employ graph, information theoretic, and
statistical approaches (Snel et al, 2002; Papin et al, 2004; Saez-
Rodriguez et al, 2005; Andrianantoandro et al, 2006; Mason
and Verwoerd, 2006; Kremling and Saez-Rodriguez, 2007).
In contrast, and closer to the work in Sauro (2004), we are
less concerned with network topology and more with the
understanding of dynamical behavior. Our ultimate goal is

not top–down partitioning, nor necessarily to ignore, or even to
necessarily minimize, retroactivity, but to formally define and
characterize these effects, thus making the problem amenable
to theoretical analysis and concrete in vivo solutions, and in
particular, in the context of gene transcriptional networks. One
of our theoretical contributions is a new paradigm for input–
output systems analysis that allows us to characterize the
equivalents of ‘impedance’, which we call retroactivity, for
biochemical networks. The standard model, used in virtually
every control and systems theory mathematical and engineering
textbooks since the 1950s, e.g. Sontag (1998), is based on the
view of devices described solely in terms of input channels,
output channels, and state (internal, non-shared) variables.
This view is also prevalent in biology; for example, Alon (2003,
2007) defines modules as sets of nodes, each representing a
protein or some other type of chemical species, that have strong
interactions and a common function, specifying that a module
should have ‘defined input nodes and output nodes that control
the interactions with the rest of the network’ as well as ‘internal
nodes that do not significantly interact with nodes outside the
module.’A notable exception to this standard model is found in
the work of Polderman and Willems (2007), which blurs the
distinction between inputs, states, and outputs; in our work, in
contrast, we keep these three distinct entities, and augment the
model with two additional signals, namely the retroactivities to
inputs and outputs, respectively. In our formalism, achieving
low output impedance becomes the problem of attenuating
retroactivity to the output. Accordingly, insulators can be
designed and inserted between two systems that one wishes
to interconnect. Insulators are devices that have low retro-
activity to the input (thus they do not affect the upstream system
from which they receive the signal) and are capable of
attenuating the retroactivity to the output (thus they can keep
the same output independently of the downstream systems
connected to such an output).

In this paper, we analyze and quantify retroactivity in
transcriptional components using tools from singular pertur-
bation theory. This leads to the identification of a key
retroactivity measure, which can be interpreted as the
sensitivity of the quasi-steady-state dynamics of the concen-
tration of a protein, with respect to its dynamics if the
downstream system were not present. Retroactivity is large
when the amount of transcription factor is comparable to or
smaller than the amount of promoter-binding sites or when the
affinity of such binding sites is high. To attain modularity in the
general case in which one cannot alter the hardware features of
the downstream systems, the upstream system must be
designed so as to attenuate the retroactivity to its output. We
thus suggest a mechanism similar to that used to design
non-inverting amplifiers employing operational amplifiers
(OPAMPs; Schilling and Belove, 1968) to attenuate retro-
activity. This simple mechanism employs a large input gain
and a similarly large negative feedback. We then propose and
analyze two biological instances of this mechanism, for gene
and protein networks. The first one involves a strong, non-
leaky promoter to implement a large input gain, combined
with an abundant protease that degrades the protein product
and hence implements a high-gain negative feedback. The
second one involves a post-translational modification mechan-
ism through a phosphorylation–dephosphorylation cycle,
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such as found in MAPK cascades. Our dynamic analysis
reveals that a simple phosphorylation–dephosphorylation
cycle enjoys a remarkable insulation property. This property
is in part due to the fast timescales of phosphorylation–
dephosphorylation reactions. Such a mechanism, as a signal
transduction system, has thus an inherent capacity to provide
insulation and hence to increase the modularity of the system
in which it is placed.

Related work

Our work makes contact with several other areas of
biochemical systems analysis, including metabolic supply
and demand analysis (Hofmeyr, 1997; Hofmeyr and Cornish-
Bowden, 2000), metabolic control analysis (MCA) (Fell, 1992;
Heinrich and Schuster, 1996), and the closely related
Biochemical Systems Theory (Savageau, 1976).

The field of metabolic supply and demand analysis
(Hofmeyr, 1997; Hofmeyr and Cornish-Bowden, 2000) is
concerned with understanding how the equilibrium value of
the product of a supply process can be controlled by the
processes that consume the product. Therefore, it is related to
our retroactivity concept and analysis. Our definition and
analysis of the retroactivity, however, is mainly concerned
with the quantification of the difference between the dynamics
of an isolated component and the dynamics of the same
component when it is connected. We are not only concerned
with steady-state behavior, which in transcriptional networks
is often preserved upon interconnection. We are especially
concerned with transient and non-equilibrium situations, such
as those found in oscillatory regimes. Our definition of
retroactivity incorporates transient, steady state, and perma-
nent non-constant effects of an interconnection.

Similarly MCA, which focuses on the computation of
sensitivities to parameters, may be used to quantify the
retroactivity at steady state due to parameter variations in
downstream modules. A generalization of MCA, to deal with
non-steady-state behavior, was proposed for specific types of
time-varying behaviors in various papers (e.g. Acerenza et al,
1989; Demin et al, 1999) and for general reference solutions in
Ingalls and Sauro (2003). Moreover, the paper by Bruggeman
et al (2002) proposed a method for analyzing MCA sensitivities
based exclusively upon ‘communicating intermediates’
among submodules of a large network, hence adapting MCA
techniques to the analysis of modularly decomposed systems.
Nonetheless, by its nature, MCA is a ‘local’ method, analyzing
only small perturbations around a steady state or around a
specific reference trajectory. In contrast, in our paper we
emphasize dynamical, non-stationary, global aspects, includ-
ing transients and non-constant permanent responses, in
which signals may substantially change with time, and we
study these time-varying signals as key ingredients of the
formalism, as opposed to only looking for sensitivities.

Results

Modeling retroactivity

In traditional systems theory, a system is usually modeled as
an input–output device with internal dynamics. Such an

input–output abstraction has been very useful for composing
systems and for deriving properties of an interconnection by
the properties of the composing systems. Such an abstraction,
however, tacitly assumes that the input–output response and
internal dynamics of a system does not change upon
interconnection. As it has been noticed by Polderman and
Willems (2007) and Willems (1999), viewing interconnections
as input-to-output assignments and viewing signal transmis-
sion as unidirectional impose constraints that are not present
in the physics of a system. Such constraints may be
appropriate in special situations occurring in signal processing
and electronics, mainly because such engineering systems
have been on purpose designed to obtain unidirectional signal
propagation. Natural physical and biological systems are not
necessarily describable using such constraints. As a simple
example, consider a hydraulic system composed of a
water tank that takes as input a constant input flow through
an input pipe and gives as output the pressure p at its output
pipe. Once we connect to the output pipe another tank, the
pressure p at the output pipe will change because the
downstream tank will in turn apply a pressure to the upstream
tank. Thus, the output behavior of the upstream tank changes
when a downstream system is connected to its output. This
phenomenon occurs also in electrical systems. The voltage
at the output terminals of a voltage generator changes,
due to a non-zero output impedance, when a load is applied
to such output terminals. In these examples, the interconnec-
tion mechanism between an upstream system (the upstream
tank or the voltage generator) and a downstream system
(another tank or the electrical load) affects the dynamics
of the internal state and thus of the output of the upstream
system. We will model this phenomenon by a signal that
travels from downstream to upstream, which we call retro-
activity. The amount of such a retroactivity will change
depending on the features of the interconnection and the
downstream system. For example, if the aperture of the pipe
connecting the two tanks is very small compared to the
aperture of an output pipe of the downstream tank, the
pressure p at the output of the upstream tank will not change
much when the downstream tank is connected. Similarly, if
the load applied to the voltage generator is very large
compared to the output impedance of the voltage generator,
the voltage at the output terminals will not change much when
the load is added.

In the above examples, the input–output model of the
isolated system does not take into account the interconnection
mechanism that alters the output of the system once it is
interconnected. We propose to directly model a system by
taking into account its interconnection mechanism.
That is, we add an input, called s, to the system to model
any change in its dynamics that may occur upon interconnec-
tion with a downstream system. Similarly, we add to a
system a signal r as another output, to model the fact that
when such a system is connected downstream of another
system, it will send upstream a signal that will alter the
dynamics of the upstream system. More generally, we
define a system S to have internal state x, two types of
inputs (I), and two types of outputs (O): an input ‘u’ (I), an
output ‘y’ (O), a retroactivity to the input ‘r’ (O), and a
retroactivity to the output ‘s’ (I) (Figure 1). We represent
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such a system S by the equations

dx

dt
¼ fðx; u; sÞ

y ¼ Yðx;u; sÞ
r ¼ Rðx;u; sÞ;

ð1Þ

in which f, Y, and R are arbitrary functions and the signals x, u,
s, r and y may be scalars or vectors. In this formalism, we
define the input–output model of the isolated system as the
one in equation (1) without r in which we have also set s¼0. In
practice, it is simpler to model the isolated system first, and
only later model the interconnection mechanism to obtain
model (1). Let Si be a system with inputs ui and si and with
outputs yi and ri. Let S1 and S2 be two systems with disjoint sets
of internal states. We define the interconnection of an
upstream system S1 with a downstream system S2 by simply
setting y1¼u2 and s1¼r2. For interconnecting two systems, we
require that the two systems do not have internal states in
common. For example, in the case of transcriptional compo-
nents, this would mean that the two transcriptional compo-
nents express different protein species; in the case of electrical
circuits, this would mean that the two circuits do not share
common electrical parts except for the ones that establish the
interconnection mechanism.

It has been proposed by previous authors (Saez-Rodriguez
et al, 2004, 2005) that the occurrence of retroactivity, that is,
having non-zero signals r and s, depends on the specific choice
of input u and output y. In particular, it has been proposed to
deal with retroactivity by choosing (if they exist) specific u and
y for the components that will result in zero signals s and r.
Often, and particularly in the context of gene transcriptional
networks such as those analyzed in more detail in this paper, it
is not clear whether such choices are possible. We thus deal
with retroactivity in a different way in this work, assuming that
input and output choices u and y have been made, and posing
the problem as one of understanding when the retroactivity
signals s and r are, or can be made to be, small.

An abstract general formulation of the question, which links
it to the disturbance rejection problem in control theory, is

possible (See Supplementary information); however, for
concreteness, we focus in this paper on what form the
retroactivity signals s and r take for transcriptional networks,
and we provide an operative measure of the effect of
retroactivity s on the dynamics of the upstream system. We
finally propose insulation devices as modules that have zero r
and that attenuate the effect of s, which can be placed between
an upstream system and a downstream one to insulate them.

Retroactivity in gene transcriptional networks

In the previous section, we have defined retroactivity as a
general concept modeling the fact that when an upstream system
is input–output connected to a downstream one, its dynamic
behavior can change. In this section, we focus on transcriptional
networks and show what form the retroactivity takes.

A transcriptional network is composed of a number of genes
that express proteins that then act as transcription factors for
other genes. Such a network can be generally represented as
nodes connected by directed edges. Each node represents a
gene and each arrow from node z to node x indicates that the
transcription factor encoded in z, denoted Z, regulates gene x
(Alon, 2007). In this paper, we model each node x of
the network as an input–output module taking as input the
transcription factors that regulate gene x and as output the
protein expressed by gene x, denoted X. This is not the only
possible choice for delimiting a module: one could in fact let
the messenger RNA (mRNA) or the RNA polymerase flow
along the DNA (as suggested by Endy, 2005) play the role of
input and output signals. A directed edge between nodes z and
x indicates that protein Z binds to the operator sites of gene x to
alter (repress or activate) the expression of the latter. We
denote by X the protein, by X (italics) the average protein
concentration, and by x (lower case) the gene expressing
protein X. A transcriptional component that takes as input
protein Z and gives as output protein X is shown in Figure 2 in
the dashed box. The activity of the promoter controlling gene x
depends on the amount of Z bound to the promoter. If Z¼Z(t),
such an activity changes with time. We denote it by k(t). By
neglecting the mRNA dynamics, we can write the dynamics
of X as

dX

dt
¼ kðtÞ � dX; ð2Þ

in which d is the decay rate of the protein. We refer to equation
(2) as the isolated system dynamics. For the current study, the
mRNA dynamics can be neglected because we focus on how
the dynamics of X changes when we add downstream systems

Figure 1 A system S with input and output signals. The red signals denote
signals originating by retroactivity upon interconnection.

Transcriptional component

Downstream transcriptional component

Z

X

p0 x p

Figure 2 The transcriptional component takes as input u protein concentration Z and gives as output y protein concentration X. The transcription factor Z binds to
operator sites on the promoter. The red part belongs to a downstream transcriptional block that takes protein concentration X as its input.
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to which X binds. As a consequence, also the specific form of
k(t) is not relevant. Now, assume that X drives a downstream
transcriptional module by binding to a promoter p with
concentration p (the red part of Figure 2). The reversible
binding reaction of X with p is given by

X þ pÐ
kon

koff

C;

in which C is the complex protein promoter and kon and koff are
the binding and dissociation rates of the protein X to the
promoter site p. Since the promoter is not subject to decay, its
total concentration pTOT is conserved so that we can write
pþC¼pTOT. Therefore, the new dynamics of X is governed by
the equations

dX

dt
¼kðtÞ � dX þ koffC � konðpTOT � CÞX

dC

dt
¼� koffC þ konðpTOT � CÞX;

ð3Þ

in which the terms in the box represent the retroactivity to the
output, that is, s ¼ koffC � konðpTOT � CÞX, while the second
of equation (3) describes the dynamics of the input stage of the
downstream system driven by X. Then, we can interpret s as
being a mass flow between the upstream and the downstream
system. When s¼0, the first of equation (3) reduces to the
dynamics of the isolated system given in equation (2). Here,
we have assumed that X binds directly to the promoter p. The
case in which a signal molecule is needed to transform X to the
active form that then binds to p can be treated in a similar way
by considering the additional reversible reaction of X binding
to the signal molecule. The end result of adding this reaction is
the one of having similar terms in the box of equation (3)
involving also the signaling molecule concentration.

How large is the effect of the retroactivity s on the dynamics of
X and what are the biological parameters that affect it? We
focus on the retroactivity to the output s. We can analyze the
effect of the retroactivity to the input r on the upstream system
by simply analyzing the dynamics of Z in the presence of its
binding sites p0 in Figure 2 in a way similar to how we analyze
the dynamics of X in the presence of the downstream binding
sites p. The effect of the retroactivity s on the behavior of X can
be very large (Figure 3). This is undesirable in a number of
situations in which we would like an upstream system to
‘drive’ a downstream one as is the case, for example, when a
biological oscillator has to time a number of downstream
processes. If, due to the retroactivity, the output signal of the
upstream process becomes too low and/or out of phase with
the output signal of the isolated system (as in Figure 3), the
coordination between the oscillator and the downstream
processes will be lost. We next propose a procedure to obtain
an operative quantification of the effect of the retroactivity on
the dynamics of the upstream system.

Quantification of the effect of the retroactivity to
the output

In this section, we propose a general approach for providing an
operative quantification of the effect of the retroactivity to the
output on the dynamics of the upstream system. This approach

can be generally applied whenever there is a separation of
timescales between the dynamics of the output of the
upstream module and the dynamics of the input stage of the
downstream module. This separation of timescales is usually
encountered in transcriptional networks. In fact, the dynamics
of the input stage of a downstream system is governed by the
reversible binding reaction of the transcription factor with the
operator sites. These reactions are often on the timescales of a
second and thus are fast compared to the timescales of
transcription and translation (often of several minutes) (Alon,
2007). These determine, in turn, the dynamics of the output of
a transcriptional module. Such a separation of timescales is
encountered even when we extend a transcriptional network
to include as interconnection mechanisms between transcrip-
tional modules protein–protein interactions (often with a
subsecond timescale; Shen-Orr et al, 2002), as encountered in
signal transduction networks. In this section, we illustrate our
approach for quantifying the retroactivity effects in the case of
transcription networks, while in section Design 2: amplifica-
tion through phosphorylation we show, through an example,
how the same approach can be employed for mixed transcrip-
tion and signal transduction systems.

We quantify the difference between the dynamics of X in the
isolated system (equation (2)) and the dynamics of X in the
connected system (equation (3)) by establishing conditions on
the biological parameters that make the two dynamics close to
each other. This is achieved by exploiting the difference of
timescales between the protein production and decay processes
and its binding and unbinding process to the promoter p.
By virtue of this separation of timescales, we can approximate
system (3) by a one-dimensional system describing the
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Figure 3 Simulation results for the system in equation (3). Here,
k(t)¼0.01(1þ sin(ot)) with o¼0.005, kon¼10, koff¼10, d¼0.01, pTOT¼100,
X(0)¼5. The choice of protein decay rate (in min�1) corresponds to a half-life of
about 1 h. The frequency of oscillations is chosen to have a period of about 12
times the protein half-life in accordance to what is experimentally observed in the
synthetic clock of Atkinson et al (2003). All simulation results were obtained by
using MATLAB (Simulink), with variable-step ODE solver ODE23s. The green
plot (solid line) represents X(t) originating by the isolated system in equation (2),
while the blue plot (dashed line) represents X(t) obtained by the interconnected
system of equation (3). Both transient and permanent behaviors are different.
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evolution of X on the slow manifold (Kokotovic et al, 1999).
This reduced system takes the form:

d �X

dt
¼ kðtÞ � d �X þ �s;

where X̄ is an approximation of X and s̄ is an approximation of
s, which can be written as s̄¼�R(X̄)(k(t)-dX̄). If R(X̄) is zero,
then also s̄¼0 and the dynamics of X̄ becomes the same as the
one of the isolated system (2). Since X̄ approximates X, the
dynamics of X in the full system (3) is also close to
the dynamics of the isolated system (2) whenever R(X̄ )¼0.
The factor R(X̄) provides then a measure of the retroactivity
effect on the dynamics of X. It is also computable as a
function of measurable biochemical parameters and of the
signal X traveling across the interconnection, as we next
illustrate.

Consider again the full system in equation (3), in which the
binding and unbinding dynamics are much faster than protein
production and decay, that is, koff� k(t), koff� d (Alon, 2007),
and kon¼koff/kd with kd¼O(1). Even if the second equation
goes to equilibrium very fast compared to the first one, the
above system is not in ‘standard singular perturbation form’
(Kokotovic et al, 1999). To explicitly model the difference in
timescales between the two equations of system (3), we
introduce a parameter A, which we define as A¼d/koff. Since
koff� d, we also have that A�1. Substituting koff¼d/A and
kon¼d/(Akd) in system (3), we obtain the system

dX

dt
¼ kðtÞ � dX þ d

2C � d
2 kd

ðpTOT � CÞX

dC

dt
¼ � d

2C þ d
2 kd

ðpTOT � CÞX;

in which the singular perturbation parameter A appears in
both equations. We can take the above system to standard
singular perturbation form by performing the change of
variable y¼XþC, in which y physically corresponds to the
total concentration of protein X. Then, the system in the new
variables becomes

dy

dt
¼ kðtÞ � dðy � CÞ

2 dC

dt
¼ �dC þ d

kd
ðpTOT � CÞðy � CÞ; ð4Þ

which is in standard singular perturbation form. This means,
as some authors recently proposed (Ciliberto et al, 2007), that
y (total concentration of protein) is the slow variable of the
system (3) as opposed to X (concentration of free protein). We
can then obtain an approximation of the dynamics of X in the
limit in which A is very small, by setting A¼0. By setting A¼0
in the second equation of (4), we obtain the manifold on which
the dynamics of the system is governed by the slow variable
dynamics. Such a manifold is called the slow manifold
(Kokotovic et al, 1999) (The dynamics of (4) restricted to the
slow manifold are a good approximation of the dynamics
of system (4) only if the slow manifold is asymptotically
stable, that is, only if the trajectories of the system tend to the
slow manifold. It can be shown that this is the case

(see Supplementary information). For a variable x involved
in system (4), we denote by x̄ the value of the variable
x once we have set A¼0 in system (4). Let
gðC; yÞ :¼ �dC þ ðd=kdÞðpTOT � CÞðy � CÞ and let C̄¼g(ȳ) be
the smallest root of g(C̄, ȳ)¼0. The function g(ȳ) provides
the steady-state value of C as a function of y and C̄¼g(ȳ)
defines the slow manifold. Substituting the steady-state
value of C as function of y in the first one of (4) leads to the
reduced model

d�y

dt
¼ kðtÞ � dð�y � gð�yÞÞ: ð5Þ

Given any solution of equation (5), we define C̄(t)¼g(ȳ(t)), and
we let X̄(t)¼ȳ(t)�C̄(t), which satisfies the following differential
equation:

d �X

dt
¼ d�yðtÞ

dt
� dgð�yÞ

d�y

d�yðtÞ
dt

and which, since X̄¼ȳ�C̄, finally leads to

d �X

dt
¼ kðtÞ � d �X � ðkðtÞ � d �XÞ dgð�yÞ

d�y
: ð6Þ

After a fast transient (established by the binding and
unbinding dynamics of X to p), the signal y(t) is well
approximated by ȳ(t), and the signal C(t) is well approximated
by C̄(t). Therefore, X(t)¼y(t)�C(t) is also well approximated
by X̄(t)¼ȳ(t)�C̄(t). The smaller the A, the better is the
approximation. Since X̄well approximates X, conditions for which
the dynamics of equation (6) is close to the dynamics of the
isolated system (2) also guarantee that the dynamics of X given in
system (3) is close to the dynamics of the isolated system.

The difference between the dynamics in equation (6) (the
connected system after a fast transient) and the dynamics in
equation (2) (the isolated system) is zero when the term
ðdgð�yÞ=d�yÞ in equation (6) is also zero. We thus consider the
factor ðdgð�yÞ=d�yÞ as a quantification of the effect of the
retroactivity s after a fast transient in the approximation in
which AE0. We can also interpret the factor ðdgð�yÞ=d�yÞ as a
percentage variation of the dynamics of the connected system
with respect to the dynamics of the isolated system at the
quasi-steady state. We next determine the physical meaning of
such a factor by calculating a more useful expression that is a
function of key biochemical parameters. By using the implicit
function theorem, one can compute the following expression
for ðdgð�yÞ=d�yÞ:

dgð�yÞ
d�y

¼ 1

1 þ ðð1 þ �X=kdÞ2=ðpTOT=kdÞÞ
¼: Rð �XÞ; ð7Þ

in which one can verify that R(X̄)o1 (see Supplementary
information). The expression R(X̄) quantifies the effect of the
retroactivity to the output on the dynamics of X after a fast
transient, when we approximate X with X̄ in the limit in which
AE0. The retroactivity effect is thus small if the affinity of the
binding sites p is small (kd large) or if the signal X(t) is large
enough compared to pTOT. Thus, the expression of R(X̄)
provides an operative quantification of the effects of retro-
activity: such an expression can in fact be evaluated once the
association and dissociation constants of X to p are known, the
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concentration of the binding sites pTOT is known, and the range
of operation of the signal X̄(t) that travels across the
interconnection is also known.

Note that the quantification of the effects of the retroactivity
to the input r on the dynamics of Z can be obtained in exactly
the same way as it has been obtained for s:

Rð �ZÞ ¼ 1

1 þ ðð1 þ �Z=�kdÞ2=ðp0;TOT=�kdÞÞ
ð8Þ

in which k̄d¼k�/kþ (here, kþ and k� are the binding and
dissociation rates of Z to the promoter sites p0) and 1/k̄d is the
affinity of Z to its target sites p0 (with total concentration
p0,TOT) on the promoter controlling gene x. Therefore, for a
large-scale gene transcriptional network, one does not need to
re-perform the above theoretical analysis for the larger system
to obtain the measure of the retroactivity R at an interconnec-
tion. In fact, the algebraic expression of R in terms of the
biochemical parameters at each individual interconnection is
the same independently of the size of the network. One only
needs to evaluate such an expression at all interconnections to
measure the amount of the retroactivity effect on the dynamics
of an upstream module. In this respect, the proposed approach
for the quantification of the effect of the retroactivity at
interconnections is scalable.

For simplifying notation, we will omit in the sequel the bar
from the variables as X(t)EX̄(t) after a fast initial transient
when A is small. In the case in which X binds to a number N of
different downstream binding sites, the analysis that we have
proposed holds unchanged. In particular, equations (6) and (5)
should be replaced by

dX

dt
¼ ðkðtÞ � dXÞ 1 �

XN
i¼0

dgiðyÞ
dy

 !

dy

dt
¼ kðtÞ � d y �

XN
i¼0

giðyÞ
 !

respectively, in which one can still show thatPN
i¼0

ðdgiðyÞ=dyÞo1.

Electrical analogy. The analysis that we have performed holds
generally for non-steady-state situations, in which protein
concentrations change with time even in the permanent
behavior. To point out a nice analogy between the biochemical
retroactivity and the electrical retroactivity, consider the case
of a voltage source, which could be A/C (alternate current) or
D/C (direct current), powering a load. For simplicity, consider
the D/C case, in which a voltage generator has a constant
voltage Vgen and output impedance Ro. Apply a downstream
load resistance R to the voltage generator. The voltage
resulting at the load will not be Vgen because of the internal
resistance, but it will be given by V ¼ Vgen=ð1 þ Ro=RÞ. The
fact that VgenaV is a typical example of retroactivity in
electrical circuits: the effective voltage applied to the load
depends on the downstream load applied to the generator and
on the output resistance of the generator component. Let us
consider now the simplified case in which protein X is very

stable so that its total concentration XTOT is conserved. Upon
addition of a downstream binding site p with concentration p,
one can compute the amount of free concentration of protein
X. This is given by X ¼ XTOT=ð1 þ p=kdÞ and it is different from
XTOT, which would be the free protein concentration without
downstream binding sites. Then we can say that the retro-
activity decreases as p/kd decreases. In the case in which R is
very large, the input current I¼Vgen/(RþRo) to the down-
stream load is very small. As a consequence, the voltage drop
across the internal impedance Ro is small and VgenEV.
Similarly, a small number of binding sites p causes a small
‘flow’ of protein X to the downstream sites. Therefore, we can
say that p in the biochemical example plays a role similar to
1/R in the electrical example: if both are small, the ‘flow’ (of
charged particles or of proteins) toward the downstream
system is small and retroactivity decreases. Furthermore, even
if p, or 1/R, is large, the retroactivity can be decreased by
having 1/kd (the affinity of the binding), or Ro, small enough.
Hence, the affinity of protein X to the sites in the downstream
component plays a role similar to the output resistance of the
voltage generator in the electrical system.

Attenuation of the retroactivity

Consider a system S as the one shown in Figure 1 that takes u
as input and gives y as output. We would like to design it in
such a way that (a) the retroactivity r to the input is very small;
(b) the effect of the retroactivity s to the output on the internal
dynamics of the system is very small independently of s itself;
and (c) its input–output relationship is about linear. Such a
system is said to enjoy the insulation property and will be
called an insulation component or insulation device (the
meaning that we consider for ‘insulator’ is different from the
meaning that such a word is attributed in eukaryotic transcrip-
tion). Indeed, such a system will not affect an upstream system
because rE0 and it will keep the same output y independently of
any connected downstream system. In electronics, amplifiers
enjoy the insulation property by virtue of the features of the
OPAMP that they employ (Schilling and Belove, 1968). The
concept of amplifier in the context of a biochemical network has
been considered before in relation to its robustness and
insulation property from external disturbances (Sauro and
Kholodenko, 2004; Sauro and Ingalls, 2007). In this paper, we
revisit the amplifier mechanism in the context of gene transcrip-
tional networks with the objective of mathematically and
computationally proving how suitable biochemical realizations
of such a mechanism can attain properties (a), (b), and (c).

Retroactivity to the input
In electronic amplifiers, r is very small because the input stage
of an OPAMP absorbs almost zero current. This way, there is
no voltage drop across the output impedance of an upstream
voltage source. Equation (8) quantifies the effect of retro-
activity on the dynamics of Z as a function of biochemical
parameters that characterize the interconnection mechanism.
These parameters are the affinity of the binding site 1/k̄d, the
total concentration of such binding site p0,TOT, and the level of
the signal Z(t). Therefore, to reduce the effect of r on Z, we can
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choose parameters such that (8) is small. A sufficient condition
is to choose k̄d large (low affinity) and p0,TOT small, for
example. Having small value of p0,TOT and/or low affinity
implies that there is a small ‘flow’ of protein Z toward its target
sites. Thus, we can say that a low retroactivity to the input is
obtained when the ‘input flow’ to the system is small. This
interpretation establishes a nice analogy to the electrical case,
in which low retroactivity to the input is obtained, as explained
above, by a low input current. Such an interpretation can be
further carried to the hydraulic example. In such an example, if
the input flow to the downstream tank is small compared, for
example, to the output flow of the downstream tank, the
output pressure of the upstream tank will not be affected by
the connection. Therefore, the retroactivity to the input of the
downstream tank will be small.

Retroactivity to the output
In electronic amplifiers, the effect of the retroactivity to the
output s on the amplifier behavior is reduced to almost zero by
virtue of a large (theoretically infinite) amplification gain of
the OPAMPand an equally large negative feedback mechanism
that regulates the output voltage. Genetic realization of
amplifiers has been previously proposed (see for example,
Rubertis and Davies, 2003). However, such realizations focus
mainly on trying to reproduce the layout of the device instead
of implementing the fundamental mechanism that allows it to
properly work as an insulator. Such a mechanism can be
illustrated in its simplest form by Figure 4a, which is very well
known to control engineers. For simplicity, we have assumed
in such a diagram that the retroactivity s is just an additive
disturbance. The reason why for large gains G the effect of the
retroactivity s to the output is negligible can be verified
through the following simple computation. The output y is
given by

y ¼ Gðu � KyÞ þ s;

which leads to

y ¼ u
G

1 þ KG
þ s

1 þ KG
:

As G grows, y tends to u/K, which is independent of the
retroactivity s.

We employ this general mechanism to attenuate the effect of
the retroactivity to the output. A successful attenuation implies
that the signal X(t) generated by the connected system will be
very close to the signal X(t) generated by the isolated system.
Consider the equivalent representation of the amplifier
mechanism shown in Figure 4B. Such a representation allows

us to decouple the design of a large amplification gain G from
the design of a similarly large negative feedback gain G0. In the
sequel, we consider the approximated dynamics of equation
(6) for X. Let us thus assume that we can apply a gain G to the
input k(t) and a negative feedback gain G0 to X with G0¼KG.
This leads to the new differential equation for the connected
system (6) given by

dX

dt
¼ GkðtÞ � ðG0 þ dÞXð Þð1 � dðtÞÞ; ð9Þ

in which we have defined dðtÞ :¼ ðdgðyÞ=dyÞj j, where
y(t) is given by the reduced system ðdy=dtÞ ¼
GkðtÞ � ðG0 þ dÞðy � gðyÞÞ. It can be shown (see Supplemen-
tary information for the mathematical details) that as G and
thus as G0 grow, the signal X(t) generated by the connected
system (9) becomes close to the solution X(t) of the isolated
system

dX

dt
¼ GkðtÞ � ðG0 þ dÞX; ð10Þ

that is, the presence of the disturbance term d(t) will not
significantly affect the time behavior of X(t). Since d(t) is a
measure of the retroactivity effect on the dynamics of X, such
an effect is thus attenuated by employing large gains G and G0.
How can we obtain a large amplification gain G and a large
negative feedback G0 in a biological insulation component?
This question is addressed in the following section, in which
two different realizations are presented and compared with
each other.

Biological realizations of an insulation component

In the previous section, we have proposed a general mechan-
ism to create an insulation component. In particular, we have
specified how one can alter the biological features of the
interconnection mechanism to have low retroactivity to the
input r and we have shown a general method to attenuate
the retroactivity to the output s. Such a method consists of a
large amplification of the input and a large negative output
feedback. The insulation component will be inserted in place
of the transcriptional component of Figure 2. This will
guarantee that the system generating Z, an oscillator, for
example, will maintain the same behavior as in isolation and
also that the downstream system that accepts X as its input will
not alter the behavior of X. The net result of this is that the
oscillator generating signal Z will be able to time downstream
systems with the desired phase and amplitude independently
of the number and the features of downstream systems. In this
section, we determine two possible biological mechanisms

Figure 4 (A) The basic feedback–amplification mechanism by which amplifiers attenuate the effect of the retroactivity to the output s. (B) An alternative representation
of the same mechanism of (A), which will be employed to design biological insulation devices.
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that can be exploited to obtain a large amplification gain to the
input Z of the insulation component and a large negative
feedback on the output X of the insulation component. Both
mechanisms realize the negative feedback through enhanced
degradation. The first design realizes amplification through
transcriptional activation, while the second design through
phosphorylation of a protein that is in abundance in the
system.

Design 1: amplification through transcriptional
activation
In this design, we obtain a large amplification of the input
signal Z(t) by having promoter p0 (to which Z binds) as a
strong, non-leaky, promoter. The negative feedback mechan-
ism on X relies on enhanced degradation of X. Since this must
be large, one possible way to obtain an enhanced degradation
for X is to have a protease, called Y, be expressed by a strong
constitutive promoter. The protease Y will cause a degradation
rate for X, which is larger if Y is more abundant in the system.
This design is schematically shown in Figure 5.

To investigate whether such a design realizes a large
amplification and a large negative feedback on X as needed,
we analyze the full input–output model for the block in the
dashed box of Figure 5. In particular, the expression of gene x is
assumed to be a two-step process, which incorporates also the
mRNA dynamics. Incorporating these dynamics in the model
is relevant for the current study because they may contribute to
an undesired delay between the Z and X signals. The reaction
of the protease Y with protein X is modeled as the two-step
reaction

X þ YÐ
Z1

Z2

W �!b Y;

which can be found in standard references (see for example,
Arkin et al, 1998). The input–output system model of the
insulation component that takes Z as an input and gives X as
an output is given by the following equations

dZ

dt
¼ kðtÞ � dZ þ k�Zp � kþZðp0;TOT � ZpÞ ð11Þ

dZp

dt
¼ kþZðp0;TOT � ZpÞ � k�Zp ð12Þ

dmx

dt
¼ GZp � d1mx ð13Þ

dX

dt
¼ vmx � Z1YX þ Z2W � d2X þ koffC � konXðpTOT � CÞ

ð14Þ

dW

dt
¼ Z1XY � Z2W � bW ð15Þ

dY

dt
¼ �Z1YX þ bW þ aG � gY þ Z2W ð16Þ

dC

dt
¼ �koffC þ konXðpTOT � CÞ; ð17Þ

in which we have assumed that the expression of gene z is
controlled by a promoter with activity k(t). These equations
will be studied numerically and analyzed mathematically in a
simplified form. The variable Zp is the concentration of protein
Z bound to the promoter controlling gene x, p0,TOT is the total
concentration of the promoter p0 controlling gene x, mX is the
concentration of mRNA of X, C is the concentration of X bound
to the downstream binding sites with total concentration pTOT,
g is the decay rate of the protease Y. The value of G is the
production rate of X mRNA per unit concentration of Z bound
to the promoter controlling x; the promoter controlling gene y
has strength aG, for some constant a, and it has the same order
of magnitude strength as the promoter controlling x. The terms
in the box in equation (11) represent the retroactivity r to the
input of the insulation component in Figure 5. The terms in the
box in equation (14) represent the retroactivity s to the output
of the insulation component of Figure 5. The dynamics of
equations (11–17) without s (the elements in the box in
equation (14)) describe the dynamics of X with no down-
stream system.

We mathematically explain why system (11–17) allows to
attenuate the effect of s on the X dynamics. Equations (11)
and (12 ) simply determine the signal Zp(t) that is the input
to equations (13–17). For the discussion regarding the

Z Insulation component

x
p

p0

W

y

X

Figure 5 The parts that design 1 affects are highlighted in blue. In particular, a negative feedback occurring through post-translational regulation and a promoter that
produces a large signal amplification are the central parts of this design. The red part indicates the downstream component that takes as input the concentration of
protein X.
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attenuation of the effect of s, it is not relevant what the specific
form of signal Zp(t) is. Let then Zp(t) be any bounded
signal n(t). Since equation (13) takes n(t) as an input, we
will have that mX¼Gn̄(t), for a suitable signal n̄(t). Let us
assume for the sake of simplifying the analysis that the
protease reaction is a one-step reaction, that is, X þ Y �!b Y.
Therefore, equation (16) simplifies to ðdY=dtÞ ¼ aG � gY
and equation (14) simplifies to dX=dt ¼ nmX � bYXþ
koffC � konXðpTOT � CÞ. If we consider the protease to be at
its equilibrium, we have that Y(t)¼aG/g. As a consequence,
the X dynamics becomes

dX

dt
¼ nG�nðtÞ � ðbaG=gþ d2ÞX þ koffC � konXðpTOT � CÞ

with C determined by equation (17). By using the same
singular perturbation argument employed in the previous
section, we obtain that the dynamics of X will be after a fast
transient approximately given by

dX

dt
¼ ðnG�nðtÞ � ðbaG=gþ d2ÞXÞð1 � dðtÞÞ; ð18Þ

in which 0od(t)o1 is the effect of the retroactivity s. Then, as
G increases, X(t) becomes closer to the solution of the isolated
system

dX

dt
¼ nG�nðtÞ � ðbaG=gþ d2ÞX

as explained in section Attenuation of the retroactivity (see the
Supplementary Information for the mathematical details).

We now turn to the question of minimizing the retroactivity
to the input r because its effect can alter the input signal Z(t).
To decrease r, we guarantee that the retroactivity measure
given in equation (8) is small. This is seen to be true if
(k̄dþZ)2/(p0,TOTk̄d) is very large, in which 1/k̄d¼kþ/k� is the
affinity of the binding site p0 to Z. Since after a short transient,
Zp¼(p0,TOTZ)/(k̄dþZ), for Zp not to be a distorted version of Z,
it is enough to ask that k̄d�Z. This, combined with the
requirement that (k̄dþZ)2/(p0,TOTk̄d) is very large, leads to the
requirement p0,TOT/k̄d�1. Summarizing, for not having
distortion effects between Z and Zp and small retroactivity r,
we need that

�kd � Z and p0;TOT=�kd � 1: ð19Þ

Simulation results. Simulation results are presented for the
insulation system of equations (11–17) as the mathematical
analysis of such a system is only valid under the approxima-
tion that the protease reaction is a one-step reaction. In all
simulations, we consider protein decay rates to be 0.01 min�1

to obtain a protein half-life of about 1 h. We consider always a
periodic forcing k(t)¼0.01(1þ sin(ot)), in which we assume
that such a periodic signal has been generated by a synthetic
biological oscillator. Therefore, the oscillating signals are
chosen to have a period that is about 12 times the protein half-
life in accordance to what is experimentally observed in the
synthetic clock of Atkinson et al (2003). All simulation results
were obtained by using MATLAB (Simulink), with variable-
step ODE solver ODE23s. For large gains (G¼1000, G¼100), the
performance considerably improves compared to the case in
which X was generated by a plain transcriptional component
accepting Z as an input (Figure 3). For lower gains (G¼10,
G¼1), the performance starts to degrade for G¼10 and

becomes not acceptable for G¼1 (Figure 6). Since we can view
G as the number of transcripts produced per unit time (1 min)
per complex of protein Z bound to promoter p0, values G¼100
and 1000 may be difficult to realize in vivo, while the values
G¼10 and 1 could be more easily realized. The values of the
parameters chosen in Figure 6 are such that k̄d�Z and
p0,TOT�k̄d. This is enough to guarantee that there is small
retroactivity r to the input of the insulation device indepen-
dently of the value of the gain G, according to relations (19). The
poorer performance of the device for G¼1 is therefore entirely
due to poor attenuation of the retroactivity s to the output.

Design 2: amplification through phosphorylation
In this design, the amplification of Z is obtained by having Z
activate the phosphorylation of a protein X, which is available
in the system in abundance. That is, Z is a kinase for a protein
X. The phosphorylated form of X, called Xp, binds to the
downstream sites, while X does not. A negative feedback on Xp

is obtained by having a phosphatase Y activate the depho-
sphorylation of protein Xp. Protein Y is also available in
abundance in the system. This mechanism is depicted in
Figure 7. A similar design has been proposed by Sauro and
Ingalls (2007) and Sauro and Kholodenko (2004), in which a
MAPK cascade as well as a negative feedback loop that spans
the length of the MAPK cascade is considered as a feedback
amplifier. Our design is much simpler as it involves only one
phosphorylation cycle and does not require the additional
feedback loop. In fact, we realize a strong negative feedback by
the action of the phosphatase that converts the active protein
form Xp to its inactive form X. This negative feedback, whose
strength can be tuned by varying the amount of phosphatase in
the system, is enough to mathematically and computationally
show that the desired insulation properties are satisfied.

We consider two different models for the phosphorylation
and dephosphorylation processes. A one-step reaction model
is initially considered to illustrate what biochemical para-
meters realize the input gain G and the negative feedback G0.
Then, we turn to a more realistic two-step model to perform a
parametric analysis and numerical simulation. The one-step
model that we consider is the one of Heinrich et al (2002):

Z þ X �!k1
Z þ Xp;

and
Y þ Xp �!k2

Y þ X:

We assume that there is plenty of protein X and phosphatase Y in
the system and that these quantities are conserved. The
conservation of X gives XþXpþC¼XTOT, in which X is the
inactive protein, Xp is the phosphorylated protein that binds to the
downstream sites p, and C is the complex of the phosphorylated
protein Xp bound to the promoter p. The Xp dynamics can be
described by the first equation in the following model

dXp

dt
¼ k1XTOTZðtÞ 1 � Xp

XTOT
� C

XTOT

� �
� k2YXp

þ koffC � konXpðpTOT � CÞ

ð20Þ

dC

dt
¼ �koffC þ konXpðpTOT � CÞ: ð21Þ
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The boxed terms represent the retroactivity s to the output of the
insulation system of Figure 7. For a weakly activated pathway
(Heinrich et al, 2002), Xp�XTOT. Also, if we assume that the
concentration of total X is large compared to the concentration of
the downstream binding sites, that is, XTOT�pTOT, equation (20)
is approximately equal to

dXp

dt
¼ k1XTOTZðtÞ � k2YXp þ koffC � konXpðpTOT � CÞ:

Denote G¼k1XTOT and G0¼k2Y. Exploiting again the difference of
timescales between the Xp dynamics and the C dynamics, after a
fast initial transient, the dynamics of Xp can be well approximated
by

dXp

dt
¼ ðGZðtÞ–G0XpÞð1 � dðtÞÞ; ð22Þ

in which 0od(t)o1 is the effect of the retroactivity s to the output
after a short transient. Therefore, for G and G0 large enough, Xp(t)
tends to the solution Xp(t) of the isolated system
ðdXp=dtÞ ¼ GZðtÞ – G0Xp, as explained in section Attenuation of
the retroactivity (see the Supplementary information for the
mathematical details). As a consequence, the effect of the
retroactivity to the output s is attenuated by increasing k1XTOT

and k2Yenough. That is, to obtain large input and feedback gains,

one should have large phosphorylation–dephosphorylation rates
and/or a large amount of protein X and phosphatase Y in the
system. This reveals that the values of the phosphorylation–
dephosphorylation rates cover an important role toward the
realization of the insulation property of the module of Figure 7.

We next consider a more complex model for the phosphor-
ylation and dephosphorylation reactions and perform a
parametric analysis to highlight the roles of the various
parameters for attaining the insulation properties. In particu-
lar, we consider a two-step reaction model such as those in
Huang and Ferrell (1996). According to this model, we have
the following two reactions for phosphorylation and dephos-
phorylation, respectively:

X þ ZÐ
b1

b2

C1 �!k1
Xp þ Z ð23Þ

and

Y þ Xp Ð
a1

a2

C2 �!k2
X þ Y; ð24Þ

in which C1 is the (protein X/kinase Z) complex and C2 is the
(phosphatase Y/protein Xp) complex. Additionally, we have the
conservation equations YTOT¼YþC2,XTOT¼XþXpþC1þC2þC,
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Figure 6 Design 1: results for different gains G. In all plots, red (dotted line) is the input Z to the insulation device, green (solid line) is the output X of the insulation
device in isolation (without the downstream binding sites p), blue (dashed line) is the output X of the insulation device when downstream sites p are present. In all plots,
k(t)¼0.01(1þ sin(ot)), pTOT¼100, koff¼kon¼10, d¼0.01, and o¼0.005. The parameter values are d1¼0.01, p0,TOT¼1, Z1¼Z2¼b¼g¼0.01, k_¼200, kþ¼10,
a¼0.1, d2¼0.1, n¼0.1, and G¼1000, 100, 10, and 1. The retroactivity to the output is not well attenuated for values of the gain G¼1 and the attenuation capability
begins to worsen for G¼10.
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because proteins X and Y are not degraded. Therefore, the
differential equations modeling the insulation system of
Figure 7 become

dZ

dt
¼ kðtÞ � dZ

�b1ZXTOT 1 � Xp

XTOT
� C1

XTOT
� C2

XTOT
� C

XTOT

� �
þ ðb2 þ k1ÞC1

ð25Þ

dC1

dt
¼ �ðb2 þ k1ÞC1

þ b1ZXTOT 1 � Xp

XTOT
� C1

XTOT
� C2

XTOT
� C

XTOT

� � ð26Þ

dC2

dt
¼ �ðk2 þ a2ÞC2 þ a1YTOTXp 1 � C2

YTOT

� �
ð27Þ

dXp

dt
¼ k1C1 þ a2C2

� a1YTOTXp 1 � C2

YTOT

� �
þ koffC � konXpðpTOT � CÞ

ð28Þ
dC

dt
¼ �koffC þ konXpðpTOT � CÞ; ð29Þ

in which the expression of gene z is controlled by a promoter
with activity k(t). The terms in the large box in equation (25)
represent the retroactivity r to the input, while the terms in the
small box in equation (25) and in the boxes of equations (26)
and (28) represent the retroactivity s to the output. We assume
that XTOT�pTOT so that in equations (25) and (26) we can
neglect the term C/XTOT because CopTOT. Also, phosphoryla-
tion and dephosphorylation reactions in equations (23) and
(24) can occur at a much faster rate (on the timescale of a
second; Kholodenko et al, 2000) than protein production and
decay processes (on the timescale of minutes; Alon, 2007).
Choosing XTOT and YTOT sufficiently large, the separation of
timescales between equation (25) and equations (26–29) can be
explicitly modeled by lettingA¼d/koff, kon¼koff/kd, and by defin-
ing the new rate constants b1¼b1XTOTA/d, a1¼a1YTOTA/d,
b2¼b2A/d, a2¼a2A/d, ci¼Aki/d. Letting z¼ZþC1 (the total
amount of kinase) be the slow variable, we obtain the system
in the standard singular perturbation form

dz

dt
¼kðtÞ � dðz � C1Þ

2 dC1

dt
¼�dðb2þ c1ÞC1 þdb1ðz�C1Þ 1 � Xp

XTOT
� C1

XTOT
� C2

XTOT

� �

2 dC2

dt
¼� dðc2 þ a2ÞC2 þ da1Xp 1 � C2

YTOT

� �

2 dXp

dt
¼dc1C1 þ da2C2 � da1Xp 1 � C2

YTOT

� �

þ dC � d=kdðpTOT � CÞXp

2 dC

dt
¼� dC þ d=kdðpTOT � CÞXp

in which the boxed terms represent the retroactivity to the
output s. We then compute the dynamics on the slow manifold

by letting A¼0. When we set A¼0, the terms due to the
retroactivity s vanish. This means that if the internal dynamics
of the insulation device evolve on a timescale that is much
faster than the dynamics of the input signal Z, then (provided
we also have XTOT�pTOT) the retroactivity s to the output
has no effect on the dynamics of Xp at the quasi-steady
state. This is a crucial feature of this design. Letting
g¼(b2þ k1)/b1 and ḡ¼(a2þ k2)/a1, setting A¼0 in the third
and fourth equations of (30) the following relationships
can be obtained:

C1 ¼F1ðXpÞ ¼
ðXpYTOTk2=�gk1Þ

1 þ Xp=�g
;

C2 ¼F2ðXpÞ ¼
ðXpYTOT=�gÞ
1 þ Xp=�g

:

ð31Þ

Using expressions (31) in the second of equation (30) with
A¼0 leads to

F1ðXpÞ b2 þ c1 þ
b1Z

XTOT

� �
¼ b1Z 1 � Xp

XTOT
� F2ðXpÞ

XTOT

� �
: ð32Þ

Assuming for simplicity that Xp�ḡ, we obtain that
F1ðXpÞ  ðXpYTOTk2=�gk1Þ and that F2ðXpÞ  ðXp=�gÞYTOT. As a
consequence of these simplifications, equation (32) leads to

Xp ¼ b1Z

ðb1Z=XTOTÞð1 þ YTOT=�gþ ðYTOTk2Þ=ð�gk1ÞÞ þ ðYTOTk2Þðb2 þ c1Þ=ð�gk1Þ

:¼ mðZÞ:

In order not to have distortion from Z to Xp, we require that

Z � YTOTðk2=k1Þðg=�gÞ
1 þ ðYTOT=�gÞ þ ðYTOT=�gÞðk2=k1Þ

ð33Þ

so that mðZÞ  ZðXTOT�gk1Þ=ðYTOTg k2Þ and therefore we have
a linear relationship between Xp and Z with gain from Z to Xp

given by ðXTOT�gk1Þ=ðYTOTgk2Þ. In order not to have attenuation
from Z to Xp, we require that the gain is greater than or equal to
one, that is,

input=output gain  XTOT�gk1

YTOTgk2
� 1: ð34Þ

Requirements (33), (34), and Xp�ḡ are enough to guarantee
that we do not have nonlinear distortion between Z and Xp and
that Xp is not attenuated with respect to Z. To guarantee that
the retroactivity r to the input is sufficiently small, we need to
quantify the retroactivity effect on the Z dynamics due to the
binding of Z with X. To achieve this, we proceed as in section
Quantification of the effect of the retroactivity to the output by
computing the Z dynamics on the slow manifold, which gives
a good approximation of the dynamics of Z if AE0. Such a
dynamics is given by

dZ

dt
¼ ðkðtÞ � dZÞ 1 � dF1

dXp

dXp

dz

� �
;

in which ðdF1=dXpÞðdXp=dzÞ measures the effect of the

retroactivity r to the input on the Z dynamics. Direct
computation of dF1=dXp and of ðdX=dZÞ along with Xp�ḡ
and with (33) leads to ðdF1=dXpÞðdXp=dzÞ  XTOT=g, so that to

(30)
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have small retroactivity to the input, we require that

XTOT

g
� 1: ð35Þ

In conclusion, for having attenuation of the effect of the
retroactivity to the output s, we require that the timescale of
the phosphorylation–dephosphorylation reactions is much
faster than the production and decay processes of Z (the input
to the insulation device) and that XTOT�pTOT, that is, the total
amount of protein X is in abundance compared to the
downstream binding sites p. To obtain also a small effect of
the retroactivity to the input, we require that g�XTOT as
established by relation (35). This is satisfied if, for example,
kinase Z has low affinity to bind with X. To keep the input–
output gain between Z and Xp close to one (from equation
(34)), one can choose XTOT¼YTOT, and equal co-
efficients for the phosphorylation and dephosphorylation
reactions, that is, g¼�g and k1¼k2.

Simulation results. System in equations (25–29) was
simulated with and without the downstream binding sites p,
that is, with and without, respectively, the terms in the small
box of equation (25) and in the boxes in equations (26) and
(28). This is performed to highlight the effect of the retro-
activity to the output s on the dynamics of Xp. The simulations
validate our theoretical study that indicates that when
XTOT�pTOT and the timescales of phosphorylation–dephospho-
rylation are much faster than the timescale of decay and
production of the protein Z, the retroactivity to the output s is
very well attenuated (Figure 8A). Similarly, the time behavior
of Z was simulated with and without the terms in the large box
in equation (25), that is, with and without X to which Z binds,
to verify whether the insulation component exhibits retro-
activity to the input r. In particular, the accordance of the
behaviors of Z(t) with and without its downstream binding
sites on X (Figure 8B) indicates that there is no substantial
retroactivity to the input r generated by the insulation device.
This is obtained because XTOT�g as indicated in equation
(35), in which 1/g can be interpreted as the affinity of the
binding of X to Z. Our simulation study also indicates that a
faster timescale of the phosphorylation–dephosphorylation
reactions is necessary, even for high values of XTOTand YTOT, to

maintain perfect attenuation of the retroactivity to the output s
and small retroactivity to the output r. In fact, on slowing down
the timescale of phosphorylation and dephosphorylation, the
system looses its insulation property (Figure 9). In particular,
the attenuation of the effect of the retroactivity to the output s
is lost because there is not enough separation of timescales
between the Z dynamics and the internal device dynamics.
The device also displays a non-negligible amount of retro-
activity to the input because the condition g�XTOT is not
satisfied anymore.

Discussion

The notion of retroactivity has generally been defined as a
signal traveling back from a downstream system to its
upstream system(s) upon interconnection. Retroactivity is
the quantity that changes the behavior of an upstream system
when its output is connected to downstream clients. ‘Down-
stream’ and ‘upstream’ refer to the direction in which we
imagine a signal traveling, i.e. from its source to its clients.
This retroactivity definition models all the effects that may
change the input–output behavior of a module when it is
input–output connected to other modules. The definition is
general, and can be formulated as a type of disturbance
rejection problem in control theory (see Supplementary
Information). More specifically, we suggest a concrete
approach to the quantification of the amounts of retroactivity
(section Quantification of the effect of the retroactivity to the
output), which applies to all systems in which the dynamics
internal to a module and in particular the dynamics of the
output of a module evolves on a slower timescale when
compared to the dynamics of the interconnection process.
That is, it applies whenever the dynamics of the output stage of
a module is much slower than the dynamics of the input stage
of a downstream module. This property is satisfied in a
number of systems, and in particular in gene transcriptional
networks. In fact, the internal dynamics of a module involves
protein production and decay processes (generally with a
timescale of minutes; Alon, 2007), which are slow when
compared to the dynamics of protein–protein binding/un-
binding (often with a subsecond timescale; Shen-Orr et al,

Z

Insulation component

X

Y

p

Xp

Figure 7 The dashed box contains the insulation device. The blue parts highlight the mechanism that provides negative feedback and amplification. Negative feedback
occurs through a phosphatase Y that converts the active form Xp back to its inactive form X. Amplification occurs through Z activating the phosphorylation of X.
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Figure 8 Simulation results for system in equations (25–29). In all plots, pTOT¼100, koff¼kon¼10, d¼0.01, k(t)¼0.01(1þ sin(ot)), and o¼0.005. (A, B),
k1¼k2¼50, a1¼b1¼0.01, b2¼a2¼10, and YTOT¼XTOT¼1500. (A) The signal Xp(t) without the downstream binding sites p is in green (solid line), while the same
signal with the downstream binding sites p is in blue (dashed line). The small error shows that the effect of the retroactivity to the output s is attenuated very well. (B) The
signal Z(t) without X to which Z binds is in red (solid), while the same signal Z(t) with X present in the system (XTOT¼1500) is in black (dashed line). The small error
confirms a small retroactivity to the input. The values of the complexes concentrations C1 and C2 oscillate about 0.4, so they are comparable to the values of Xp.
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Figure 9 In all plots, pTOT¼100 and koff¼kon¼10, d¼0.01, k(t)¼0.01(1þ sin(ot)), and o¼0.005. Phosphorylation and dephosphorylation rates are slower than the
ones in Figure 8, that is, k1¼k2¼0.01, while the other parameters are left the same, that is, a2¼b2¼10, a1¼b1¼0.01, and YTOT¼XTOT¼1500. (A) The signal Xp(t)
without the downstream binding sites p is in green (solid line), while the same signal with the downstream binding sites p is in blue (dashed line). The effect of the
retroactivity to the output s is dramatic. (B) The signal Z(t) without X in the system is in red (solid line), while the same signal Z(t) with X in the system is in black (dashed
line). The device thus also displays a large retroactivity to the input r.
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2002) and to the dynamics of protein promoter binding/
unbinding (with a timescale of a second; Alon, 2007). Using
this approach for transcriptional networks, we have provided a
formula (expression (7)), which is a measure of retroactivity
and holds at the steady state, during the transient, and during
permanent non-constant behavior, such as oscillatory beha-
vior. Such a formula is operationally useful because it can be
evaluated just on the basis of measurable biochemical
parameters such as association and dissociation rates,
concentration of binding sites, and dynamic range of the (time
varying) concentration of the protein interconnecting two
modules. For large-scale transcriptional networks, such a
formula does not need to be re-derived from scratch for each
interconnection. In fact, expression (7) is the same for every
interconnection in the network: one only needs to evaluate it
for every interconnection, once the biochemical parameters
and signal values characterizing the interconnection under
consideration are known. In section Quantification of the
effect of the retroactivity to the output, the quantification of the
retroactivity effect has been obtained for transcriptional
networks in which module interaction occurs at the transcrip-
tional level. This procedure can be applied to obtain a formula
similar to equation (7) also for the case of signal transduction
networks, in which interconnection between modules occurs
through protein–protein interaction. While we have left the
general derivation of the retroactivity effect for signal
transduction networks to future work, we have shown how
to derive it in the example of insulation device involving
phosphorylation cycles.

For transcriptional networks, sufficient conditions for a
small retroactivity are low affinity of the regulatory protein to
its binding sites in the downstream system and/or having a
small number of binding sites in the downstream system
compared to the amount of protein. These two conditions
imply, using the electrical analogy, a small flow (or current)
through the interconnection from an upstream system to a
downstream one. Numerous natural genetic systems, how-
ever, utilize small numbers of regulatory molecules, such that
the concentration of the binding sites, relative to the number of
regulatory protein molecules, is not negligible (Reitzer and
Magasanik, 1983; Yildirim and Mackey, 2003). It is thus often
the case that retroactivity is not negligible, and hence modular
analysis of the behavior of the interconnection is not possible.
Instead of considering the interconnection of the two
components as a larger module or considering a different
input–output partitioning of the network to minimize retro-
activity of the interconnection as proposed by several
researchers (see for example, Bruggeman et al, 2002; Saez-
Rodriguez et al, 2005), we have proposed (from a synthetic
biology perspective) to place suitable insulation devices
between components so that the behavior of the components
is not altered upon interconnection. This allows modular
analysis. In general, for the correct (according to some
criterion) functioning of a natural system, it is not necessary
that the retroactivity at each interconnection is small, because
parts of the system may have been finely tuned to work well
with each other in a specific interconnection configuration.
From the point of view of understanding a large natural system
or from the point of view of building one from small modules,
it is desirable to have low retroactivity at the interconnections

or to have some way to attenuate its effect (especially for the
synthetic case). Whether there are naturally occurring systems
that have been designed so that retroactivity at the inter-
connections is small (or has a small effect) and whether this
insulation feature is necessary for the functioning of that
specific system are challenging questions, which we plan to
explore in the future.

We have illustrated a general solution to the problem of
attenuating retroactivity upon interconnection of modules.
This general solution, inspired by the design of electronic non-
inverting amplifiers, relies on large input signal amplification
and on a similarly large output negative feedback. It has been
considered before in the context of signaling networks by
Sauro and Kholodenko (2004) and Sauro and Ingalls (2007). In
this paper, we have proposed two concrete realizations of such
a general solution for gene transcriptional components and
have mathematically and computationally shown the proper-
ties of these realizations with respect to retroactivity. The first
solution (design 1), relies on a strong, non-leaky, promoter for
input amplification and on an enhanced protein degradation
through a protease as a negative feedback mechanism. The
second solution (design 2) relies on protein phosphorylation
as amplification mechanism and on protein dephosphoryla-
tion as a negative feedback mechanism. From the point of view
of synthetic biology, the analysis performed for both designs
provides a number of conditions on the biochemical para-
meters of the proposed device, which have to be satisfied for
obtaining an insulator. Such conditions can be checked in
practice once the biochemical parameters are known and thus
they provide a design guideline for fabrication.

The remarkable ability of the phosphorylation–dephos-
phorylation cycle (design 2) to provide insulation relies on
the relatively rapid timescale of these reactions in comparison
to the protein production and decay processes. This was
mathematically shown by the employment of singular
perturbation analysis and confirmed by simulation study
(Figures 8 and 9). By comparison, the relatively slower rates of
protein synthesis and decay in design 1 limit the insulation
capacity, unless the gain of the system is so large that it may be
hardly realizable in vivo (Figure 6). It is not surprising that
protein phosphorylation and dephosphorylation constitutes
the most common type in signal transduction systems in
nature. It has long been realized that the metabolic cost of
phosphoryl groups is low, relative to the cost of protein
synthesis and degradation and to other types of covalent
protein modification, that the rates of protein phosphorylation
and dephosphorylation can be very rapid (Kholodenko et al,
2000), and that the chemical stabilities of several types of
phosphorylated amino acids are suitable for in vivo signaling
functions (Voet and Voet, 2004). Here, we argue that another
beneficial feature of covalent modification as a signal
transduction system is an inherent capacity to provide
insulation and thus to increase the modularity of the system
in which it is placed.

Materials and methods
All simulations are performed in MATLAB (Simulink), Version 7.0.1,
with variable step ODE solver ODE23s. Simulink models are available
upon request.
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Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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Supplementary Information

1 Stability of the slow manifold and derivation of the expression ofR(X̄)

Consider the system in standard singular perturbation form

dy
dt
= k(t) − δ(y−C)

ǫ
dC
dt

= −δC +
δ

kd
(pTOT −C)(y−C). (1)

For a variablex involved in system (1), we denote by ¯x the value of the variablex once we have setǫ = 0 in
system (1). Letg(C, y) := −δC + δkd

(pTOT −C)(y−C) and letC̄ = γ(ȳ) be the smallest root ofg(γ(ȳ), ȳ) = 0.
Then,C̄ = γ(ȳ) defines the slow manifold. Model (1) reduced to the slow manifold leads to the reduced model

dȳ
dt
= k(t) − δ(ȳ− γ(ȳ)). (2)

Let τ = t/ǫ and leteC = C− C̄ be the error betweenC and its approximation̄C, the dynamics of such an error,
called the boundary layer system, is given by

deC

dτ
= −δ(eC + C̄) +

δ

kd
(pTOT − eC − C̄)(ȳ− eC − C̄), (3)

and describe the dynamics of the error ofC with respect toC̄, in which ȳ and thusC̄ are considered frozen at
the initial condition. Since we desireC to tend toC̄, we study the stability of the equilibrium pointeC = 0 of
equation (3).

Proposition 1. The equilibrium eC = 0 of the boundary layer system (3) is asymptotically stable uniformly in
ȳ and∂g/∂C|C̄(t),ȳ(t) has real part smaller than a fixed negative number.

Proof. One can easily verify that∂g/∂C|C̄(t),ȳ(t) ≤ −δ and thatdeC
dτ = −K(ȳ)eC +

δ
kd

e2
C, in which K(ȳ) ≥ K0

with K0 independent of ¯y. Therefore, the local asymptotic stability is uniform in ¯y. �

This proposition implies that the slow manifold is stable asymptotically, that is, after a fast transienty is
well approximated by ¯y andC is well approximated bȳC. More formally, it follows that (Theorem 3.1 [5])
if eC(0) is in the region of attraction of the equilibriumeC = 0, then for a fixedT > 0 we have thaty(t) =
ȳ(t) +O(ǫ), for all t ∈ [0,T] and for each fixedt2 > t1 > 0 we have thatC(t) = C̄(t) +O(ǫ), for all t ∈ [t1, t2].
As a consequence, we also have thatX(t) = X̄(t) + O(ǫ), for all t ∈ [t1, t2]. SinceX̄(t) = ȳ(t) − C̄(t), the
differential equation that̄X satisfies is given bydX̄

dt =
dȳ(t)
dt −

dγ(ȳ)
dȳ

dȳ(t)
dt , which finally leads to

dX̄
dt
= (k(t) − δX̄)

(

1−
dγ(ȳ)

dȳ

)

. (4)

After a fast transientX(t) will follow X̄(t) solution of equation (4).
Since whendγ(ȳ)

dȳ = 0, the dynamics of equation (4) is the same as the dynamics of the isolated system, we

determine a more useful expression fordγ(ȳ)
dȳ as follows.
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Proposition 2.
dγ(ȳ)

dȳ
=

1

1+ (1+X̄/kd)2

pTOT/kd

=: R(X̄) (5)

andR(X̄) < 1.

Proof. We remove the bar from the variables to simplify notation. Suppose thatγ(y) satisfies thatg(γ(y), y) =
0, whereg(C, y) = δ

[

−C + 1
kd

(pTOT −C)(y− c)
]

. We want to calculatedγ/dy.

dγ/dy = −
∂g/∂y
∂g/∂C

=

1
kd

(pTOT −C)

1+ 1
kd

(pTOT −C) + 1
kd

(y−C)

so substituting
1
kd

(y−C) =
C

pTOT −C

this equals
1

1+ kd pTOT

(pTOT−C)2

=
1

1+ kd
pTOT

(

1+ C
pTOT−C

)2

and now substituting C
pTOT−C =

1
kd

(y−C) we conclude that this equals

1

1+ kd
pTOT

(

1+ 1
kd

(y−C)
)2
,

in which y−C = X.
�

2 Attenuation of the retroactivity to the output by feedback

Lemma 1. Consider the system
dX
dt
= G(t)(u(t) − KX)

in which G(t) ≥ G0 > 0 and |u′(t)| ≤ V uniformly in t. Then,

|X(t) −
u(t)
K
| ≤ exp(−tG0K)|X(0)−

u(0)
K
| +

V

G0K2
.

Proof. Let e= X−u/K. The error dynamics is given by ˙e= −G(t)Ke− u̇(t)
K . The solution of such a differential

equation is provided by

e(t) = e(0) exp(−
∫ t

0
KG(τ)dτ) +

∫ t

0
exp(−

∫ t

τ

KG(σ)dσ)
u′(t)
K

dτ.

Since|u′(t)| ≤ V andG(t) ≥ G0 > 0 for all t, we have that

|X(t) −
u(t)
K
| ≤ exp(−tG0K)|X(0)−

u(0)
K
| + (1− exp(−tG0K))V/(G0K2).

Hence, we obtain the desired result. �

Then, we can give the following simple corollary to Lemma 1.
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Corollary 1. Consider the two systems

dXr

dt
= G(u(t) − KXr) and

dX
dt
= Ḡ(t)(u(t) − KX), (6)

in which |u′(t)| ≤ V, Ḡ(t) > G0, and G≥ G0 for G0 > 0. Then

|X(t) − Xr (t)| ≤ exp(−tG0K)C0 + 2
V

G0K2
,

for a suitable nonnegative constant C0.

Proof. We can apply Lemma 1 to the two systems in equation (6), separately. This along with the triangular
inequality |X(t) − Xr (t)| ≤ |X(t) − u(t)/K| + |Xr (t) − u(t)/K| leads to|X(t) − Xr(t)| ≤ exp(−tG0K)C0 + 2 V

G0K2 ,

for a suitable nonnegative constantC0 depending on the initial conditions. �

Let us now consider the isolated system

dX
dt
= k(t) − δX, (7)

and the connected system (4) and assume that we can amplify with gainG the inputk(t) and apply an additional
negative feedback−G′X, in whichG′ = αG for someα = O(1). Then, we obtain the two systems (isolated an
connected) as

dXr

dt
= G(k(t) − (α + δ/G)Xr ) (8)

and
dX
dt
= G(k(t) − (α + δ/G)X)(1− d(t)) (9)

respectively, in whichd(t) =
∣

∣

∣

∣

dγ(y)
dy

∣

∣

∣

∣

andy(t) given by the reduced system

dy
dt
= Gk(t) − (G′ + δ)(y− γ(y)).

We can apply Corollary 1 to the two systems (8) and (9) withḠ(t) = G(1−d(t)), K = (α+δ/G), andk(t) = u(t),
to obtain thatX(t) can be made close toXr(t) by increasing the gainG.

2.1 Design 1: Amplification through transcriptional activation

The differential equations modeling the insulation device are given by

dZ
dt

= k(t) − δZ + k−Zp − k+Z(p0,TOT − Zp) (10)

dZp

dt
= k+Z(p0,TOT − Zp) − k−Zp (11)

dmX

dt
= GZp − δ1mX (12)

dX
dt

= νmX − η1YX+ η2W− δ2X + koffC − konX(pTOT −C) (13)

dW
dt

= η1XY− η2W− βW (14)

dY
dt

= −η1YX+ βW+ αG− γY + η2W (15)

dC
dt

= −koffC + konX(pTOT −C), (16)
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in which we have assumed that the expression of gene z is controlled by a promoter with activityk(t). These
equations will be studied numerically and analyzed mathematically in a simplified form. The variableZp is the
concentration of protein Z bound to the promoter controlling gene x,p0,TOT is the total concentration of the
promoter p0 controlling gene x,mX is the concentration of messenger RNA of X,C is the concentration of X
bound to the downstream binding sites with total concentration pTOT, γ is the decay rate of the protease. The
value ofG is the production rate of X mRNA per unit concentration of Z bound to the promoter controlling x;
the promoter controlling gene y has strengthαG, in whichα is a constant so that the promoter controlling y
has the same order of magnitude strength as the promoter controlling x. The dynamics of equations (10)–(16)
without the elements in the box in equation (13) describe thedynamics ofX with no downstream system,
which we callXr .

We mathematically explain why system (10)–(16) allows to have X ≈ Xr thus attenuating the effect of s
on theX dynamics. Equations (10) and (11) simply determine the signal Zp(t) that is the input to equations
(12)–(16). For the discussion regarding the attenuation ofthe effect of s, it is not relevant what the specific
form of signalZp(t) is. Let thenZp(t) be any bounded signalv(t). Since equation (12) takesv(t) as an input,
we will have thatmX = Gv̄(t), for a suitable signal ¯v(t). Let us assume for the sake of simplifying the analysis
that the protease reaction is a one step reaction, that is, X+ Y →β Y. Therefore, equation (15) simplifies to
dY
dt = αG−γY and equation (13) simplifies todX

dt = νmX−βYX−δ2X+koffC−konX(pTOT−C). If we consider
the protease to be at its equilibrium, we have thatY(t) = αG/γ. As a consequence, theX dynamics becomes

dX
dt
= νGv̄(t) − (βαG/γ + δ2)X + koffC − konX(pTOT −C) ,

with C determined by equation (16). By using the same singular perturbation argument employed in the
previous section, we obtain that the dynamics ofX will be after a fast transient approximatively equal to

dX
dt
= (νGv̄(t) − (βαG/γ + δ2)X)(1− d(t)), (17)

in which d(t) < 1. In the case in whichd(t) = 0, we obtain the dynamics of the isolated system as

dXr

dt
= νGv̄(t) − (βαG/γ + δ2)Xr . (18)

We can thus apply Corollary 1 to systems (18) and (17) withu(t) = νv̄(t), K = βα/γ + δ2/G, andḠ(t) =
G(1− d(t)), to conclude thatX(t) can be made closer toXr(t) by increasingG.

2.2 Design 2: Amplification through phosphorylation

A one step model for the phosphorylation reactions is considered to apply Corollary 1:

Z + X →k1Z + Xp,

and
Y + Xp→

k2Y + X.

The conservation of X givesX + Xp +C = XTOT, in which X is the inactive protein, Xp is the phosphorylated
protein that binds to the downstream sites p, and C is the complex of the phosphorylated protein Xp bound to
the promoter p. TheXp dynamics can be described by the first equation in the following model

dXp

dt
= k1XTOTZ(t)

(

1−
Xp

XTOT
− C

XTOT

)

− k2YXp + koffC − konXp(pTOT −C) (19)

dC
dt

= −koffC + konXp(pTOT −C). (20)
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The boxed terms represent the retroactivitys to the output. For a weakly activated pathway ([2]),Xp ≪ XTOT.
Also, if we assume that the concentration of total X is large compared to the concentration of the downstream
binding sites, that is,XTOT ≫ pTOT, equation (19) is approximatively equal to

dXp

dt
= k1XTOTZ(t) − k2YXp + koffC − konXp(pTOT −C).

DenoteG = k1XTOT andG′ = k2Y. Exploiting again the difference of time scales between theXp dynamics
and theC dynamics, after a fast initial transient, the dynamics ofXp can be well approximated by

dXp

dt
= (GZ(t) −G′Xp)(1− d(t)), (21)

in which 0 < d(t) < 1 is the effect of the retroactivitys to the output after a short transient. System (21)
with d(t) = 0 determines the isolated system. We callXr the output signal to the isolated system. We thus
apply Corollary 1 to system (21) withd(t) = 0 and to system (21) withu(t) = Z(t), Ḡ(t) = G(1 − d(t)), and
K = k2Y/(k1XTOT) to conclude thatX(t) can be made closer toXr(t) by increasing the gainG.

3 A general formulation of attenuation of retroactivity

We briefly discuss here a formalization of the “low-retroactivity” property, described in terms of the general
system model:

dx
dt
= f (x, u, s)

y = Y(x, u, s)

r = R(x, u, s). (22)

We view the input signalu and the retroactivitys to the output as belonging to setsU andV respectively.
These sets summarize all prior information available aboutthe signals, such as their ranges of values, or their
maximal rates of change. The initial conditions at timet = 0 for the state variablesx are supposed to lie in
a subsetX of the set of possible states. The definitions will be stated relative to a given a number∆ > 0 (in
practice, a small number) which specifies the tolerated level of retroactivity, and an intervalI ⊆ (0,+∞) which
specifies on what time interval the retroactivity should be small.

The system (22) will be said to have∆-level retroactivity to the output, on the time interval I, provided that,
for any initial conditionξ in X, any signalsu ∈ U ands∈ V, and any time instantt ∈ I :

|y(t) − y0(t)| ≤ ∆ and |r(t) − r0(t)| ≤ ∆,

wherex, y, r are as in (22) withx(0) = ξ, and:

dx0

dt
= f (x0, u, 0), x0(0) = ξ

y0 = Y(x0, u, 0)

r0 = R(x0, u, 0).

In words, the difference between the outputy and the outputy = y0 that would have been measured had the
retroactivity signals not been present (s = 0) is not larger than the number∆; and also the retroactivityr to
the input is not substantially different than ifswas not there.

Similarly, the system (22) will be said to have∆-level retroactivity to the input, on the time interval I, if for
any initial conditionξ ∈ X, any signalu ∈ U, and any time instantt ∈ I :

|r0(t)| ≤ ∆
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where, as earlier,r0 = R(x0, u, 0). In words, the retroactivity to the input is small, assuming that the system is
not subject to retroactivity to its outputs.

Observe that when the system has both∆-level retroactivity to the input and the output, from|r(t)−r0(t)| ≤ ∆
and |r0(t)| ≤ ∆ one has that|r(t)| ≤ 2∆, that is, the input retroactivity is “small” even if retroactivities to its
outputs are present.

These formulations are very general, and apply to arbitrarysystems.
The properties are a variant of the control theory property of almost disturbance decoupling[4, 9], and their

study and verification is naturally carried out using techniques based ongainsand input to state stability[1,
6, 7]. In this paper, we described but one particular approach, which is useful whenever time-scale separation
techniques can be employed. For simplicity, we presented our calculations for finite time intervals, but entirely
analogous calculations based on singular perturbation theory are possible on infinite intervals, appealing to
the methods described in [3] and [8].
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